Тепловое состояние внутренних частей земного шара. Температура глубин Земли

Один из самых лучших, рациональных приемов в возведении капитальных теплиц - подземная теплица-термос.
Использование этого факта постоянства температуры земли на глубине, в устройстве теплицы дает колоссальную экономию расходов на обогрев в холодное время года, облегчает уход, делает микроклимат более стабильным .
Такая теплица работает в самые трескучие морозы, позволяет производить овощи, выращивать цветы круглый год.
Правильно оборудованная заглубленная теплица дает возможность выращивать, в том числе, теплолюбивые южные культуры. Ограничений практически нет. В теплице могут прекрасно чувствовать себя цитрусовые и даже ананасы.
Но чтобы на практике все исправно функционировало, обязательно нужно соблюсти проверенные временем технологии, по которым строились подземные теплицы. Ведь эта идея не нова, еще при царе в России заглубленные теплицы давали урожаи ананасов, которые предприимчивые купцы вывозили на продажу в Европу.
Почему-то строительство подобных теплиц не нашло в нашей стране большого распространения, по большому счету, она просто забыта, хотя конструкция идеально подходит как раз для нашего климата.
Вероятно, роль здесь сыграла необходимость рытья глубокого котлована, заливка фундамента. Строительство заглубляемой теплицы достаточно затратное, это далеко не парник, накрытый полиэтиленом, но и отдача от теплицы гораздо больше.
От заглубления в землю не теряется общая внутренняя освещенность, это может показаться странным, но в некоторых случаях светонасыщенность даже выше, чем у классических теплиц.
Нельзя не упомянуть о прочности и надежности конструкции, она несравнимо крепче обычной, легче переносит ураганные порывы ветра, хорошо противостоит граду, не станут помехой и завалы снега.

1. Котлован

Создание теплицы начинается с рытья котлована. Чтобы использовать тепло земли для обогрева внутреннего объема, теплица должна быть достаточно углублена. Чем глубже, тем земля становится теплее.
Температура почти не изменяется в течение года на расстоянии 2-2,5 метра от поверхности. На глубине 1 м температура грунта колеблется больше, но и зимой ее значение остается положительным, обычно в средней полосе температура составляет 4-10 С, в зависимости от времени года.
Заглубленная теплица возводится за один сезон. То есть зимой она уже вполне сможет функционировать и приносить доход. Строительство не из дешевых, но, применив смекалку, компромиссные материалы, возможно сэкономить буквально на целый порядок, сделав своеобразный эконом-вариант теплицы, начиная с котлована.
Например, обойтись без привлечения строительной техники. Хотя самую трудоемкую часть работы - рытье котлована -, конечно, лучше отдать экскаватору. Вручную вынуть такой объем земли тяжело и долго.
Глубина ямы котлована должна быть не меньше двух метров. На такой глубине земля начнет делиться своим теплом и работать как своеобразный термос. Если глубина будет меньше, то принципиально идея будет работать, но заметно менее эффективно. Поэтому рекомендуется не жалеть сил и средств на углубление будущей теплицы.
В длину подземные теплицы могут быть любыми, но ширину лучше выдержать в пределах 5 метров, если ширина больше, то ухудшаются качественные характеристики по обогреву и светоотражению.
По сторонам горизонта подземные оранжереи ориентировать нужно, как обычные теплицы и парники, с востока на запад, то есть так, чтобы одна из боковых сторон была обращена на юг. В таком положении растения получат максимальное количество солнечной энергии.

2. Стены и крыша

По периметру котлована заливают фундамент или выкладывают блоки. Фундамент служит основанием для стен и каркаса сооружения. Стены лучше делать из материалов с хорошими теплоизоляционными характеристиками, прекрасный вариант - термоблоки.

Каркас крыши чаще делают деревянным, из пропитанных антисептическими средствами брусков. Конструкция крыши обычно прямая двускатная. По центру конструкции закрепляют коньковый брус, для этого на полу устанавливают центральные опоры по всей длине теплицы.

Коньковый брус и стены соединяются рядом стропил. Каркас можно сделать и без высоких опор. Их заменяют на небольшие, которые ставят на поперечные балки, соединяющие противоположные стороны теплицы, - такая конструкция делает внутреннее пространство свободнее.

В качестве покрытия крыши лучше взять сотовый поликарбонат - популярный современный материал. Расстояние между стропилами при строительстве подгоняют под ширину поликарбонатных листов. Работать с материалом удобно. Покрытие получается с небольшим количеством стыков, так как листы выпускаются длиной 12 м.

К каркасу они крепятся саморезами, их лучше выбирать со шляпкой в виде шайбы. Во избежание растрескивания листа, под каждый саморез нужно просверлить дрелью отверстие соответствующего диаметра. С помощью шуруповерта, или обычной дрели с крестовой битой, работа по остеклению движется очень быстро. Для того чтобы не оставалось щелей, хорошо заранее по верху проложить стропила уплотнителем из мягкой резины или другого подходящего материала и только потом прикручивать листы. Пик крыши вдоль конька нужно проложить мягким утеплителем и прижать каким-то уголком: пластиковым, из жести, из другого подходящего материала.

Для хорошей теплоизоляции крышу иногда делают с двойным слоем поликарбоната. Хотя прозрачность уменьшается примерно на 10%, но это покрывается отличными теплоизоляционными характеристиками. Нужно учесть, что снег на такой крыше не тает. Поэтому скат должен находиться под достаточным углом, не менее 30 градусов, чтобы снег на крыше не накапливался. Дополнительно для встряхивания устанавливают электрический вибратор, он убережет крышу в случае, если снег все-таки будет накапливаться.

Двойное остекление делают двумя способами:

Между двумя листами вставляют специальный профиль, листы крепятся к каркасу сверху;

Сначала крепят нижний слой остекления к каркасу изнутри, к нижней стороне стропил. Вторым слоем крышу накрывают, как обычно, сверху.

После завершения работы желательно проклеить все стыки скотчем. Готовая крыша выглядит весьма эффектно: без лишних стыков, гладкая, без выдающихся частей.

3. Утепление и обогрев

Утепление стен проводят следующим образом. Предварительно нужно тщательно промазать раствором все стыки и швы стены, здесь можно применить и монтажную пену. Внутреннюю сторону стен накрывают пленкой термоизоляции.

В холодных частях страны хорошо использовать фольгированную толстую пленку, покрывая стену двойным слоем.

Температура в глубине почвы теплицы выше нуля, но холоднее температуры воздуха, необходимой для роста растений. Верхний слой прогревается солнечными лучами и воздухом теплицы, но все-таки почва отбирает тепло, поэтому часто в подземных теплицах используют технологию «теплых полов»: нагревательный элемент - электрический кабель - защищают металлической решеткой или заливают бетоном.

Во втором случае почву для грядок насыпают поверх бетона или выращивают зелень в горшках и вазонах.

Применение теплого пола может быть достаточным для обогрева всей теплицы, если хватает мощности. Но эффективнее и комфортнее для растений использование комбинированного обогрева: теплый пол + подогрев воздуха. Для хорошего роста им нужна температура воздуха 25-35 градусов при температуре земли примерно 25 С.

ЗАКЛЮЧЕНИЕ

Конечно, постройка заглубленной теплицы обойдется дороже, а усилий потребуется больше, чем при строительстве аналогичной теплицы обычной конструкции. Но вложенные в теплицу-термос средства со временем оправдываются.

Во-первых, это экономия энергии на обогреве. Каким бы образом ни отапливалась в зимнее время обычная наземная теплица, это будет всегда дороже и труднее аналогичного способа обогрева в подземной теплице. Во-вторых, экономия на освещении. Фольгированная теплоизоляция стен, отражая свет, увеличивает освещенность в два раза.Микроклимат в углубленной теплице зимой для растений будет благоприятнее, что непременно отразится на урожайности. Легко приживутся саженцы, превосходно будут чувствовать себя нежные растения. Такая теплица гарантирует стабильный, высокий урожай любых растений круглый год.

Самая большая трудность - избежать патогенной микрофлоры. А это сложно сделать в среде влагонасыщенной и достаточно теплой. Даже в самых лучших погребах всегда есть плесень. Посему нужна система регулярно используемой очистки труб от всякой гадости, накапливающейся на стенках. А сделать это при 3-х метровом залождении не так уж и просто. На ум в первую очередь приходит механический способ - ёршик. Как для чистки дымовых труб. С использованием какой-то жидкой химии. Или газ. Если прокачать через трубу фозген к примеру, то всё подохнет и на пару месяцев возможно этого хватит. Но любой газ вступает в хим. реакции с влагой в трубе и соответственно оседает в ней, что заставляет проветривать долго. А долгое проветривание приведет к восстановлению патогенов . Тут нужен грамотный подход со знанием современных средств чистки.

Вообщем подписьіваюсь под кажньім словом! (правда не знаю чему тут радоваться).

В данной системе я вижу несколько вопросов которьіе предстоит решить:

1. Достаточно ли длиньі данного теплообменника для еффективного его использования (какой то еффект ессно будет, но не ясно какой)
2. Конденсат. Зимой его не будет, так как по трубе будет прокачиваться холодньій воздух. Конденсат будет вьіпадать с внешней стороньі трубьі - в земле (она теплее). Но вот летом... Проблема КАК вьікачивать конденсат из под глубиньі 3м - уже додумался на стороне збора конденсата сделать герметичньій колодец-стакан для сбора конденсата. В него устанавливать насос которьій будет периодично откачивать конденсат...
3. Предполагается, что канализационньіе трубьі (пластиковьіе) - герметичньі. Если так, то грунтовьіе водьі вокруг не должньі проникать внуть и не должньі влиять на влажность воздуха. Поетому я полагаю влажности (как в подвале) там не будет. По крайней мере зимой. Я думаю подвал влажньій из за плохого проветривания. Плесень не любит солнечньій свет и сквозняки (в трубе будут сквозняки ). А теперь вопрос - НАСКОЛЬКО герметичньі канализационньіе трубьі в земле? На сколько лет мне их хватит? Дело в том что данньій проект сопутствующий - траншея копается для канализации (будет на глубине 1-1.2м) потом изоляция (пенополистирол) и глуже - земельньій аккумулятор). А значит данная система неремонтопригодна при разгерметизации - я ее вьікапьівать не буду - просто засьіплю землей и все.
4. Чистка труб. Думал в нижней точке делать смотровой колодец. сейчас "интузизизма" по етому поводу меньше - грунтовьіе водьі - может оказатся что его затопит и толку будет НОЛЬ. Без колодца вариантов не так то много:
а. с двух сторон делаются ревизии (для каждой 110мм трубьі), которьіе вьіходят на поверхность, в трубьі протягьівается нержавеющий тросик. Для чистки к нему крепим квач. Минусьі - на поверхность вьіходит куча труб, котоьіе будут влиять на температурньій и гидродинамический режим работьі аккумулятора.
б. периодически затапливать трубьі водой с хлоркой, например (или другим дезинфицирующим средством), откачивая воду из конденсационного колодца на другом конце труб. Потом сушка труб воздухом (возможно ревесньім режимом - из дома наружу, хотя такая идея мне не очень нравится).
5. Плесени не будет (сквозняк). а вот другие микроорганизмьі которьіе живут в пьіли - очень даже. Есть надежда на зимний режим - холодньій сухой воздух хорошо дезинфицирует. Вариант защитьі - фильтр на вьіходе из аккумулятора. Или ультрафиолет (дорого)
6. Насколько сильно напряжно гонять воздух по такой конструкции?
Фильтр (мелкая сетка) на входе
-> поворот на 90градусов вниз
-> 4м 200мм труба вниз
-> разделение потока на 4 110мм трубьі
-> 10 метров по горизонтали
-> поворот на 90градусов вниз
-> 1 метр вниз
-> поворот на 90градусов
-> 10 метров по горизонтали
-> сбор потока в 200мм трубу
-> 2 метра вверх
-> поворот на 90градусов (в дом)
-> фильтр бумажньій или тканевой карманньій
-> вентилятор

Имеем 25м труб, 6 поворотов на 90 градусов(поворотьі можно делать плавнее - 2х45), 2 фильтра. Хочется 300-400м3/ч. Скорость потока ~4м/сек

Здесь опубликована динамика изменения зимних (2012-13г.г.) температур земли на глубине 130 сантиметров под домом (под внутренним краем фундамента), а также - на уровне земли и температуры воды, идущей из скважины. Всё это - на стояке, идущем из скважины.
График - внизу статьи.
Дача (на границе Новой Москвы и Калужской области) зимняя, периодического посещения (2-4 раза в месяц по паре дней).
Отмостка и цоколь дома - не утеплены, еще с осени закрыты теплоизолирующими затычками (10см. пены). Теплопотери веранды, куда выходит стояк в январе изменились. См. Примечание 10.
Измерения на глубине 130см производятся системой Кситал GSM (), дискрет - 0,5*С, доп. погрешность - около 0,3*С.
Датчик установлен в заваренной снизу 20мм трубке из ПНД возле стояка, (с внешней стороны теплоизоляции стояка, но внутри 110мм трубы).
По оси абсцисс - даты, по оси ординат - температуры.
Примечание 1:
Температуру воды в скважине, а также - на уровне земли под домом, прямо на стояке без воды тоже буду отслеживать, но только по приезду. Погрешность - около +-0,6*С.
Примечание 2:
Температура на уровне земли под домом, у стояка водопровода опускалась в отсутствии людей и воды уже до минус 5*С. Это говорит о том, что я не зря сделал систему - Кстати, термостат, показавший -5*С - как раз от этой системы (RT-12-16).
Примечание 3:
Температура воды "в скважине" меряется тем же датчиком (он же - в Примечании 2), что и "на уровне земли" - он стоит прямо на стояке под теплоизоляцией, вплотную к стояку на уровне земли. Эти два измерения производятся в разные моменты времени. "На уровне земли" - до закачки воды в стояк и "в скважине" - после прокачки примерно 50-ти литров в течение получаса с перерывами.
Примечание 4:
Температура воды в скважине может быть несколько занижена, т.к. я не могу искать эту долбаную асимптоту, бесконечно качая воду (моя )... Как умею - так играю.
Примечание 5: Не актуально, удалил.
Примечание 6:
Погрешность фиксации уличной температуры примерно +-(3-7)*С.
Примечание 7:
Скорость остывания воды на уровне земли (без включения насоса) очень приблизительно 1-2*С в час (это - при минус 5*С на уровне земли).
Примечание 8:
Забыл описать, как у меня устроен и утеплен подземный стояк. На ПНД-32 надето два чулка утеплителя в сумме - 2см. толщины (видимо, вспененный полиэтилен), всё это вставлено в 110мм канализационную трубу и там запенено до глубины 130см. Правда, поскольку ПНД-32 шла не по центру 110-ой трубы, а также то, что в своей середине масса обычной пены может долго не застывать, а значит - не превращаться в утеплитель, то в качестве такого дополнительного утепления я сильно сомневаюсь... Наверное, было бы лучше использовать двухкомпонентную пену, о существовании которой я узнал только позже...
Примечание 9:
Хочу обратить внимание читателей на измерение температуры "На уровне земли" от 12.01.2013г. и от 18.01.2013г. Здесь, по моему мнению, величина в +0,3*С заметно выше ожидаемой. Думаю, что это - следствие операции "Засыпка снегом цоколя у стояка", проведенная 31.12.2012г.
Примечание 10:
С 12 января по 3 февраля произвел дополнительное утепление веранды, куда выходит подземный стояк.
В результате по приблизительным прикидкам теплопотери веранды были снижены со 100 Вт/кв.м. пола до примерно 50 (это - при минус 20*С на улице).
Отразилось это и на графиках. См. температуру на уровне земли 9 февраля: +1,4*С и 16 февраля: +1,1 - таких высоких температур еще не было с начала реальной зимы.
И еще: с 4 по 16 февраля впервые за две зимы с воскресенья по пятницу котел не включался для поддержания установленного минимума температуры потому, что она не дошла до этого минимума...
Примечание 11:
Как и обещал (для "порядка" и для завершения годового цикла) буду периодически публиковать температуры летом. Но - не в графике, чтобы зиму не "затенять", а здесь, в Примечании-11.
11 мая 2013г.
Продухи после 3-х недель проветривания закрыл до осени во избежание отложения конденсата.
13 мая 2013г. (на улице уже неделю +25-30*С):
- под домом на уровне земли +10,5*С,
- под домом на глубине 130см. +6*С,

12 июня 2013г.:
- под домом на уровне земли +14,5*С,
- под домом на глубине 130см. +10*С.
- вода в скважине с глубины 25м не выше +8*С.
26 июня 2013г.:
- под домом на уровне земли +16*С,
- под домом на глубине 130см. +11*С.
- вода в скважине с глубины 25м не выше +9,3*С.
19 августа 2013г.:
- под домом на уровне земли +15,5*С,
- под домом на глубине 130см. +13,5*С.
- вода в скважине с глубины 25м не выше +9,0*С.
28 сентября 2013г.:
- под домом на уровне земли +10,3*С,
- под домом на глубине 130см. +12*С.
- вода в скважине с глубины 25м =+8,0*С.
26 октября 2013г.:
- под домом на уровне земли +8,5*С,
- под домом на глубине 130см. +9,5*С.
- вода в скважине с глубины 25м не выше +7,5*С.
16 ноября 2013г.:
- под домом на уровне земли +7,5*С,
- под домом на глубине 130см. +9,0*С.
- вода в скважине с глубины 25м +7,5*С.
20 февраля 2014г.:
Наверно, это последняя запись в этой статье.
Всю зиму живем в доме постоянно, смысл в повторении прошлогодних измерений - небольшой, поэтому только две существенные цифры:
- минимальная температура под домом на уровне земли в самые морозы (-20 - -30*С) через неделю после их начала неоднократно опускалась ниже +0,5*С. В эти моменты у меня срабатывала

Это могло бы показаться фантастикой, если бы не было правдой. Оказывается, в суровых сибирских условиях можно получать тепло прямо из земли. Первые объекты с геотермальными системами отопления появились в Томской области в прошлом году, и хотя они позволяют снизить себестоимость тепла по сравнению с традиционными источниками примерно в четыре раза, массового хождения «под землю» пока нет. Но тренд заметен и главное - набирает обороты. По сути, это наиболее доступный альтернативный источник энергии для Сибири, где не всегда могут показать свою эффективность, например, солнечные батареи или ветряные генераторы. Геотермальная энергия, по сути, просто лежит у нас под ногами.

«Глубина промерзания грунта составляет 2–2,5 метра. Температура земли ниже этой отметки остается одинаковой и зимой и летом в диапазоне от плюс одного до плюс пяти градусов Цельсия. Работа теплового насоса построена на этом свойстве, - говорит энергетик управления образования администрации Томского района Роман Алексеенко . - В земляной контур на глубину 2,5 метра закапывают сообщающиеся трубы, на расстоянии примерно полутора метров друг от друга. В системе труб циркулирует теплоноситель - этиленгликоль. Внешний горизонтальный земляной контур сообщается с холодильной установкой, в которой циркулирует хладагент - фреон, газ с низкой температурой кипения. При плюс трех градусах Цельсия этот газ начинает закипать, и когда компрессор резко сжимает кипящий газ, температура последнего возрастает до плюс 50 градусов Цельсия. Нагретый газ направляется в теплообменник, в котором циркулирует обычная дистиллированная вода. Жидкость нагревается и разносит тепло по всей системе отопления, уложенной в полу».

Чистая физика и никаких чудес

Детский сад, оборудованный современной датской системой геотермального отопления открылся в поселке Турунтаево под Томском летом прошлого года. По словам директора томской компании «Экоклимат» Георгия Гранина , энергоэффективная система позволила в несколько раз снизить плату за теплоснабжение. За восемь лет это томское предприятие уже оснастило геотермальными системами отопления около двухсот объектов в разных регионах России и продолжает заниматься этим в Томской области. Так что в словах Гранина сомневаться не приходится. За год до открытия садика в Турунтаево «Экоклимат» оборудовал системой геотермального отопления, которая обошлась в 13 млн руб­лей, еще один детский сад «Солнечный зайчик» в микрорайоне Томска «Зеленые горки». По сути это был первый опыт такого рода. И он оказался вполне успешным.

Еще в 2012 году в ходе визита в Данию, организованного по программе Евро Инфо Корреспондентского Центра (ЕИКЦ-Томская область), компании удалось договориться о сотрудничестве с датской компанией Danfoss. А сегодня датское оборудование помогает добывать тепло из томских недр, и, как говорят без лишней скромности специалисты, получается довольно эффективно. Основной показатель эффективности - экономичность. «Отопительная система здания детского сада площадью 250 квадратных метров в Турунтаево обошлась в 1,9 миллиона руб­лей, - говорит Гранин. - А плата за отопление составляет 20–25 тысяч руб­лей в год». Эта сумма несопоставима с той, которую садик платил бы за тепло, используя традиционные источники.

Система без проблем проработала в условиях сибирской зимы. Был произведен расчет соответствия теплового оборудования нормам СанПиН, по которым оно должно поддерживать в здании детского сада температуру не ниже +19°C при температуре наружного воздуха -40°C. Всего на перепланировку, ремонт и переоборудование здания было затрачено около четырех миллионов руб­лей. Вместе с тепловым насосом сумма составила чуть меньше шести миллионов. Благодаря тепловым насосам сегодня отопление детского сада представляет собой полностью изолированную и независимую систему. В здании теперь нет традиционных батарей, а отопление помещения реализуется при помощи системы «теплый пол».

Турунтаевский садик утеплен, что называется, «от» и «до» - в здании обустроена дополнительная теплоизоляция: поверх существующей стены (толщиной в три кирпича) установлен 10-сантиметровый слой утеплителя, эквивалентный двум–трем кирпичам. За утеплителем находится воздушная прослойка, а следом - металлический сайдинг. Таким же образом утеплена и крыша. Основное внимание строителей сосредоточилось на «теплом полу» - системе отопления здания. Получилось несколько слоев: бетонный пол, слой пенопласта толщиной 50 мм, система труб, в которых циркулирует горячая вода и линолеум. Несмотря на то, что температура воды в теплообменнике может достигать +50°C, максимальный нагрев фактического напольного покрытия не превышает +30°C. Фактическая температура каждой комнаты может регулироваться вручную - автоматические датчики позволяют устанавливать температуру пола таким образом, чтобы помещение детского сада прогревалось до положенных санитарными нормами градусов.

Мощность насоса в Турунтаевском садике составляет 40 кВт вырабатываемой тепловой энергии, для производства которых тепловому насосу требуется 10 кВт электрической мощности. Таким образом, из 1 кВт потребляемой электрической энергии тепловой насос производит 4 кВт тепловой. «Мы немного боялись зимы - не знали, как поведут себя тепловые насосы. Но даже в сильные морозы в садике было стабильно тепло - от плюс 18 до 23 градусов Цельсия, - говорит директор Турунтаевской средней школы Евгений Белоногов . - Конечно, здесь стоит учесть, что и само здание было хорошо утеплено. Оборудование неприхотливо в обслуживании, и несмотря на то, что это разработка западная, в наших суровых сибирских условиях она показала себя довольно эффективно».

Комплексный проект по обмену опытом в сфере ресурсосбережения был реализован ЕИКЦ-Томская область Томской ТПП. Его участниками стали малые и средние предприятия, разрабатывающие и внедряющие ресурсосберегающие технологии. В мае прошлого года в рамках российско-датского проекта Томск посетили датские эксперты, и результат получился, что называется, налицо.

Инновации приходят в школу

Новая школа в селе Вершинино Томского района, построенная фермером Михаилом Колпаковым , - это третий объект в области, использующей в качестве источника тепла для отопления и горячего водоснабжения тепло земли. Школа уникальна еще и потому, что имеет наивысшую категорию энергоэффективности - «А». Систему отопления спроектировала и запустила все та же компания «Экоклимат».

«Когда мы принимали решение, какое отопление сделать в школе, у нас было несколько вариантов - угольная котельная и тепловые насосы, - говорит Михаил Колпаков. - Мы изучили опыт энергоэффективного детского сада в Зеленых Горках и посчитали, что отопление по старинке, на угле, нам обойдется более чем в 1,2 миллиона руб­лей за зиму, да еще и горячая вода нужна. А с тепловыми насосами затраты составят около 170 тысяч за весь год, вместе с горячей водой».

Для производства тепла системе необходимо только электричество. Потребляя 1 кВт электроэнергии, тепловые насосы в школе производят около 7 кВт тепловой энергии. Кроме того, в отличие от угля и газа, тепло земли - самовозобновляемый источник энергии. Установка современной отопительной системы школе обошлась примерно в 10 млн руб­лей. Для этого на территории школы пробурили 28 скважин.

«Арифметика здесь простая. Мы посчитали, что обслуживание угольной котельной, с учетом зарплаты истопнику и стоимости топлива, в год обойдется более чем в миллион руб­лей, - отмечает начальник управления образования Сергей Ефимов . - При использовании тепловых насосов придется платить за все ресурсы около пятнадцати тысяч руб­лей в месяц. Несомненные плюсы использования тепловых насосов - это их экономичность и экологичность. Система теплоснабжения позволяет регулировать подачу тепла в зависимости от погоды на улице, что исключает так называемые «недотопы» или «перетопы» помещения».

По предварительным расчетам, дорогостоящее датское оборудование окупит себя за четыре–пять лет. Срок службы тепловых насосов компании Danfoss, с которыми работает ООО «Экоклимат», - 50 лет. Получая информацию о температуре воздуха на улице, компьютер определяет, когда греть школу, а когда можно этого не делать. Поэтому вопрос о дате включения и отключения отопления отпадает вообще. Независимо от погоды за окнами внутри школы для детей всегда будет работать климат-контроль.

«Когда в прошлом году на общероссийское совещание приехал чрезвычайный и полномочный посол королевства Дании и посетил наш детский сад в «Зеленых Горках», он был приятно удивлен, что те технологии, которые даже в Копенгагене считаются инновационными, применены и работают в Томской области, - говорит коммерческий директор компании «Экоклимат» Александр Гранин .

В целом использование местных возоб­новляемых источников энергии в различных отраслях экономики, в данном случае в социальной сфере, куда относятся школы и детские сады, - одно из основных направлений, реализуемых в регионе в рамках программы по энергосбережению и повышению энергетической эффективности. Развитие возобновляемой энергетики активно поддерживает губернатор региона Сергей Жвачкин . И три бюджетных учреждения с системой геотермального отопления - лишь первые шаги по реализации большого и перспективного проекта.

Детский сад в «Зеленых Горках» на конкурсе в Сколково был признан лучшим энергоэффективным объектом России. Затем появилась Вершининская школа с геотермальным отоплением также наивысшей категории энергоэффективности. Следующий объект, не менее значимый для Томского района, - детский сад в Турунтаево. В нынешнем году компании «Газхимстройинвест» и «Стройгарант» уже приступили к строительству детских садов на 80 и 60 мест в поселках Томского района Копылово и Кандинке соответственно. Оба новых объекта будут отапливаться геотермальными системами отопления - от тепловых насосов. Всего в этом году на строительство новых садиков и ремонт существующих районная администрация намерена израсходовать почти 205 млн руб­лей. Предстоит реконструкция и переоборудование здания под детский сад в селе Тахтамышево. В этом здании отопление также будет реализовано посредством тепловых насосов, поскольку система успела себя хорошо зарекомендовать.

Температура грунта непрерывно изменяется по глубине и во времени. Она зависит от целого ряда факторов, из которых многие трудно поддаются учету. К последним, например, относится: характер растительности, экспозиция склона по сторонам света, затененность, снеговой покров, характер самих грунтов, наличие надмерзлотных вод и др. Однако температура грунта, как по величине, так и по характеру распределения сохраняется из года в год достаточно устойчиво, и решающее влияние здесь остается за температурой воздуха.

Температура грунта на разных глубинах и в различные периоды года может быть получена непосредственными измерениями в термоскважинах, которые закладываются в процессе изысканий. Но такой способ требует длительных наблюдений и значительных расходов, что не всегда оправдано. Полученные по одной-двум скважинам данные распространяются на большие площади и протяжения, значительно искажая действительность так, что расчетные данные о температуре грунта во многих случаях оказываются более надежными.

Температура грунта вечномерзлой толщи на любой глубине (до 10 м от поверхности) и на любой период года может быть определена по формуле:

tr = mt°, (3.7)

где z – глубина, отсчитываемая от ВГМ, м;

tr – температура грунта на глубине z, в град.

τr– время равное году (8760 ч);

τ - время, отсчитываемое вперед (через 1 января) от момента начала осеннего замерзания грунта до момента, для которого ведется отсчет температуры, в ч;

еxp х – экспонента (показательная функция exp берется по таблицам);

m – коэффициент, зависящий от периода года (для периода октябрь – май m = 1,5-0,05z, а для периода июнь- сентябрь m = 1)

Самая низкая температура на заданной глубине будет тогда, когда косинус в формуле (3.7) станет равным -1, т. е. минимальная температура грунта за год на данной глубине составит

tr мин = (1,5-0,05z) t°, (3.8)

Максимальная температура грунта на глубине z ,будет тогда, когда косинус примет значение, равное единице т.е.

tr макс = t°, (3.9)

Во всех трех формулах значение объемной теплоемкости С м следует рассчитывать для температуры грунта t° по формуле (3.10).

С 1 м = 1/W, (3.10)

Температуру грунта в слое сезонного оттаивания можно также определить расчетом, приняв во внимание, что изменение температуры в этом слое достаточно точно апроксимируется линейной зависимостью при следующих температурных градиентах (табл.3.1).

Рассчитав по одной из формул (3.8) – (3.9) температуру грунта на уровне ВГМ, т.е. положив в формулах Z=0, затем с помощью таблицы 3.1 определяем температуру грунта на заданной глубине в слое сезонного оттаивания. В самых верхних слоях грунта, примерно до 1 м от поверхности, характер температурных колебаний очень сложен.


Таблица 3.1

Температурный градиент в слое сезонного оттаивания на глубине ниже 1 м от поверхности земли

Примечание. Знак градиента показан в направлении к дневной поверхности.

Чтобы получить расчетную температуру грунта в метровом слое от поверхности, можно поступить следующим образом. Вычислить температуру на глубине 1 м и температуру дневной поверхности грунта, а затем путем интерполяции по этим двум значениям определить температуру на заданной глубине.

Температуру на поверхности грунта t п в холодный период года можно принимать равной температуре воздуха. В летний период:

t п = 2+1,15 t в, (3.11)

где t п - температура на поверхности в град.

t в – температура воздуха в град.

Температура грунта при несливающейся криолитозоне рассчитывается иначе, чем при сливающейся. Практически можно считать, что температура на уровне ВГМ будет равна 0°С в течении всего года. Расчетную температуру грунта вечномерзлой толщи на заданной глубине можно определить интерполяцией, считая, что она меняется на глубине по линейному закону от t° на глубине 10 м до 0°С на глубине залегания ВГМ. Температуру в талом слое h т можно принимать от 0,5 до 1,5°С.

В слое сезонного промерзания h п температуру грунта можно вычислить так же, как для слоя сезонного оттаивания сливающейся криолитозоны, т.е. в слое h п – 1 м по температурному градиенту (табл. 3.1), считая температуру на глубине h п равной 0°С в холодный период года и 1°С в летнее время. В верхнем метровом слое грунта температура определяется по интерполяции между температурой на глубине 1 м и температурой на поверхности.