Величина индукции магнитного поля внутри длинного соленоида. Магнитное поле бесконечно длинного соленоида

Без сомнения, всем в детстве нравилось играться с магнитом. Раздобыть постоянный магнит было очень просто: для этого нужно было найти старую колонку, извлечь из нее звуковоспроизводящий динамик и, после несложных «вандальных действий», достать из нее кольцевой магнит. Неудивительно, что многие проводили опыт с металлическим опилками и листом бумаги. Опилки располагались полосами - вдоль линий напряженности поля.

В электротехнике намного большее распространение получили не постоянные, а электромагниты. Из курса физики известно, что при протекании электрического тока по проводнику, вокруг последнего создается магнитное поле, величина которого непосредственно связана с действующим значением тока.

Сомневающиеся могут повторить простейший опыт Эрстеда, когда рядом с прямолинейным проводником с током размещается компас. При этом стрелка будет отклоняться от географического северного полюса планеты (перпендикулярно проводу). Направление отклонения можно определить при помощи правила правой руки: размещаем правую руку параллельно проводнику ладонью вниз. 4 пальца должны указывать Тогда отогнутый на 90 градусов большой палец укажет сторону отклонения стрелки. Вокруг прямого провода магнитное поле имеет вид цилиндра с проводом посередине. А вот линии напряженности образуют кольца.

В электротехнике указанные используются, прежде всего, в катушках. Часто можно услышать выражение «магнитное поле соленоида». Представим себе обыкновенный гвоздь и тонкий провод в изоляции. Равномерно наматывая провод на гвоздь, получаем соленоид. В данном случае гвоздь влияет на магнитное поле соленоида, но это тема совершенно другой статьи. Важно понять, что именно понимают под термином. Если теперь подключить катушку к то вокруг нее возникнет магнитное поле.

Поля соленоида прямопропорциональна значению индуктивности и квадрату проходящего по виткам тока. В свою очередь, индуктивность зависит от квадрата числа витков. При этом нужно учитывать конструкцию обмотки: это может быть простой случай с одним слоем витков, а также многослойная структура, где направление тока в витках оказывает корректирующее действие на суммарную энергию. Соленоиды используются в схемах трамваев, режущих механизмов, контакторов и пр.

Магнитное поле соленоида представляет собой кольца, выходящие из одного конца обмотки и входящие в другой. Внутри катушки силовые линии не прерываются, а распространяются в диэлектрической среде или по проводящему сердечнику. Следствие: поле соленоида полярно. Линии выходят из магнитного северного полюса, а возвращаются в южный. Нетрудно догадаться, что магнитное поле соленоида зависит от полярности источника тока, подключенного к концам провода. Магнитные свойства соленоида практически совпадают с Это позволяет использовать соленоид в качестве электромагнита. На производстве можно увидеть краны, у которых вместо крюка размещен диск электромагнита. Это «большой брат» соленоида - обмотка на сердечнике. Особенность всех электромагнитов в том, что магнитные свойства существуют лишь при протекании тока по виткам.

Кроме соленоидов часто используются тороиды. Это те же самые витки провода, но намотанные на магнитопроводе круглой формы. Соответственно, магнитное поле соленоида и тороида различны. Главная особенность в том, что силовые линии распространяются по основе-магнитопроводу внутри самой катушки, а не вне ее, как в случае соленоида. Все это свидетельствует о более высоком КПД катушек на кольцевом магнитопроводящем материале. Следствие: надежны и обладают меньшими потерями, чем их привычные собратья.

Соленоидом называют катушку цилиндрической формы из проволоки, витки которой намотаны в одном направлении (рис. 223). Магнитное поле соленоида представляет собой результат сложения полей, создаваемых несколькими круговыми токами, расположенными рядом и имеющими общую ось.

На рис. 223 показаны четыре витка соленоида с током Для наглядности полувитки, расположенные за плоскостью листа, изображены прерывистыми линиями. На этом рисунке видно, что внутри соленоида силовые линии каждого отдельного витка имеют одинаковое направление, тогда как между соседними витками они имеют противоположные направления Поэтому при достаточно плотной намотке соленоида противоположно направленные участки силовых линий соседних витков взаимно

уничтожатся, а одинаково направленные участки сольются в общую замкнутую силовую линию, проходящую внутри всего соленоида и охватывающую его снаружи.

Детальное изучение магнитного поля длинного соленоида, проведенное с помощью железных опилок, показывает, что это поле имеет вид, изображенный на рис. 224. Внутри соленоида поле оказывается практически однородным, вне соленоида - неоднородным и сравнительно слабым (густота силовых линий здесь весьма мала).

Внешнее поле соленоида подобно полю стержневого магнита (см. рис. 212). Как и магнит, соленоид имеет северный С и южный полюсы и нейтральную зону.

Напряженность магнитного поля внутри длинного соленоида рассчитывается по формуле

где I - длина соленоида, число его витков, сила тока в нем. Произведение принято называть числом ампер-витков

Формула (18) является частным случаем выражения напряженности поля внутри соленоида конечной длины, которое в свою очередь выводится следующим образом.

На рис. 225 изображен продольный разрез соленоида вертикальной плоскостью, проходящей через его ось. Длина соленоида I, радиус его витков число витков сила тока, идущего по соленоиду,

Рассматривая соленоид как совокупность вплотную приложенных друг к другу витков (круговых токов имеющих общую ось, определим напряженность магнитного поля в точке А на оси соленоида как сумму напряженностей от всех его витков. Для этого выделим малый участок длины соленоида.

В нем содержится витков. Согласно формуле (17), напряженность поля одного витка Поэтому напряженность поля от участка будет равна

Из рис. 225 видно, что Тогда Подставляя эти выражения в

формулу (19) и производя сокращения, получим

Интегрируя последнее выражение в пределах от до найдем полную напряженность поля в точке А:

Рис. 6.23. Магнитные силовые линии поля: 1 - соленоида; 2 - полосового магнита

Магнитное поле соленоида напоминает поле полосового магнита (рис. 6.23-2).

Если витки намотаны вплотную, то соленоид - это система круговых токов, имеющих одну ось.

Если считать соленоид достаточно длинным, то магнитное поле внутри соленоида однородно и направлено параллельно оси. Вне соленоида вдали от краев магнитное поле также должно иметь направление параллельное оси и на большом расстоянии от соленоида должно быть очень слабым. Поле убывает по закону

Подсчитаем поле внутри соленоида. Возьмем элемент соленоида длиной dh , находящийся на расстоянии h от точки наблюдения. Если катушка имеет n витков на единицу длины, то в выделенном элементе содержится ndh витков. Согласно формуле (6.11), этот элемент создает магнитное поле

Интегрируя по всей длине соленоида, получаем

Таким образом, поле в бесконечно длинном соленоиде дается выражением

На практике соленоиды бесконечно длинными не бывают. Для иллюстрации рассмотрим некоторые примеры.

Пример 1. Найти магнитное поле в середине соленоида конечной длины l (рис. 6.24). Сравнить с полем бесконечно длинного соленоида. При каких условиях разница составляет менее 0,5 %?

Рис. 6.24. Магнитное поле катушки конечной длины
В центре соленоида магнитное поле практически однородно и значительно превышает по модулю поле вне катушки

Решение. Магнитное поле в средней точке оси соленоида конечной длины l дается тем же интегралом (6.19), но с другими пределами интегрирования

Если длина соленоида много больше его диаметра (l >> 2R ), мы возвращаемся к формуле для поля в бесконечно длинном соленоиде (6.20). Относительная разница этих двух значений равна

По условию эта разница мала: , то есть мало отношение диаметра соленоида к его длине: 2R /l << 1. Поэтому можно воспользоваться формулой разложения квадратного корня

Подставляя численное значение d , находим, что разница будет менее половины процента при выполнении соотношения

Иными словами, соленоид может рассматриваться как бесконечно длинный, если его длина в двадцать или более раз превышает радиус.

Пример 2. Найти магнитное поле В е в крайней торцевой точке оси соленоида конечной длины l . Сравнить с результатом предыдущего примера.

Решение. Магнитное поле в торцевой точке оси соленоида конечной длины l дается тем же интегралом (6.19), но теперь пределы интегрирования будут выглядеть иначе

Отношение полей в средней и крайней точках оси соленоида равно

Это отношение всегда меньше единицы (то есть поле на торце меньше поля в середине соленоида). При l >> R имеем

Этот результат легко понять. Представим себе бесконечный соленоид, который мысленно рассекаем пополам в точке наблюдения. Можно считать, что поле в этой точке создается двумя одинаковыми «полубесконечными» соленоидами, расположенными по разные стороны от нее. Ясно, что при удалении одного из них точка наблюдения становится торцом оставшегося «полубесконечного» соленоида, а магнитная индукция в ней уменьшиться именно в два раза.

Это - так называемый краевой эффект. Пример демонстрирует, что недостаточно выполнения соотношения l >> R , чтобы пользоваться формулами для бесконечно длинного соленоида; надо еще, чтобы точка наблюдения находилась далеко от его концов.

На рис. 6.25 представлен опыт по исследованию распределения силовых линий магнитного поля вокруг соленоида. Поле соленоида, ось которого лежит в плоскости пластинки, сосредоточено в основном внутри соленоида. Силовые линии внутри имеют вид параллельных прямых вдоль оси катушки, а поле снаружи практически отсутствует.

Рис. 6.25. Визуализация силовых линий магнитного поля

Магнитное поле электрического тока

Магнитное поле создается не только естественными или искусственными , но и проводником, если по нему проходит электрический ток. Следовательно, существует связь между магнитными и электрическими явлениями.

Убедиться в том, что вокруг проводника, по которому проходит ток, образуется магнитное поле, нетрудно. Над подвижной магнитной стрелке параллельно ей поместите прямолинейный проводник и пропустите через него электрический ток. Стрелка займет положение, перпендикулярное проводнику.

Какие же силы могли заставить повернуться магнитную стрелку? Очевидно, силы магнитного поля, возникшего вокруг проводника. Выключите ток, и магнитная стрелка займет свое обычное положение. Это говорит о том, что с выключением тока исчезло и магнитное поле проводника.

Таким образом, проходящий по проводнику электрический ток создает магнитное поле. Чтобы узнать, в какую сторону отклонится магнитная стрелка, применяют правило правой руки. Если расположить над проводником правую руку ладонью вниз так, чтобы направление тока совпадало с направлением пальцев, то отогнутый большой палец покажет направление отклонения северного полюса магнитной стрелки, помещенной под проводником. Пользуясь этим правилом и зная полярность стрелки, можно определить также направление тока в проводнике.

М агнитное поле прямолинейного проводника имеет форму концентрических кругов. Если расположить над проводником правую руку ладонью вниз так, чтобы ток как бы выходил из пальцев, то отогнутый большой палец укажет на северный полюс магнитной стрелки. Такое поле называется круговым магнитным полем.

Направление силовых линий кругового поля зависит от в проводнике и определяется так называемым правилом «буравчика» . Если буравчик мысленно ввинчивать по направлению тока, то направление вращения его ручки будет совпадать с направлением магнитных силовых линий поля. Применяя это правило, можно узнать направление тока в проводнике, если известно направление силовых линий поля, созданного этим током.

Возвращаясь к опыту с магнитной стрелкой, можно убедиться в том, что она всегда располагается своим северным концом по направлению силовых линий магнитного поля.

Итак, вокруг прямолинейного проводника, по которому проходит электрический ток, возникает магнитное поле. Оно имеет форму концентрических кругов и называется круговым магнитным полем.

Соленоид. Магнитное поле соленоида

Магнитное поле возникает вокруг любого проводника независимо от его формы при условии, что по проводнику проходит электрический ток.

В электротехнике мы имеем дело с , состоящими из ряда витков. Для изучения интересующего нас магнитного поля катушки рассмотрим сначала, какую форму имеет магнитное поле одного витка.

Представим себе виток толстого провода, пронизывающий лист картона и присоединенный к источнику тока. Когда через виток проходит электрический ток, то вокруг каждой отдельной части витка образуется круговое магнитное поле. По правилу «буравчика» нетрудно определить, что магнитные силовые линии внутри витка имеют одинаковое направление (к нам или от нас, в зависимости от направления тока в витке), причем они выходят с одной стороны витка и входят в другую сторону. Ряд таких витков, имеющий форму спирали, представляет собой так называемый соленоид (катушку) .

Вокруг соленоида, при прохождении через него тока, образуется магнитное поле. Оно получается в результате сложения магнитных полей каждого витка и по форме напоминает магнитное поле прямолинейного магнита. Силовые линии магнитного поля соленоида, так же как и в прямолинейном магните, выходят из одного конца соленоида и возвращаются в другой. Внутри соленоида они имеют одинаковое направление. Таким образом, концы соленоида обладают полярностью. Тот конец, из которого выходят силовые линии, является северным полюсом соленоида, а конец, в который силовые линии входят, - его южным полюсом.

Полюса соленоида можно определить по правилу правой руки , но для этого надо знать направление тока в его витках. Если наложить на соленоид правую руку ладонью вниз, так чтобы ток как бы выходил из пальцев, то отогнутый большой палец укажет на северный полюс соленоида . Из этого правила следует, что полярность соленоида зависит от направления тока в нем. В этом нетрудно убедиться практически, поднеся к одному из полюсов соленоида магнитную стрелку и затем изменив направление тока в соленоиде. Стрелка моментально повернется на 180°, т. е. укажет на то, что полюсы соленоида изменились.

Соленоид обладает свойством втягивать в себя легкие же лезные предметы. Если внутрь соленоида поместить стальной брусок, то через некоторое время под действием магнитного поля соленоида брусок намагнитится. Этот способ применяют при изготовлении .

Электромагниты

Представляет собой катушку (соленоид) с помещенным внутрь нее железным сердечником. Формы и размеры электромагнитов разнообразны, однако общее устройство всех их одинаково.

Катушка электромагнита представляет собой каркас, изготовленный чаще всего из прессшпана или фибры и имеющий различные формы в зависимости от назначения электромагнита. На каркас намотана в несколько слоев медная изолированная проволока - обмотка электромагнита. Она имеет различночисло витков и изготовляется из проволоки различного диаметра, в зависимости от назначения электромагнита.

Для предохранения изоляции обмотки от механических повреждений обмотку покрывают одним или несколькими слоями бумаги или каким-либо другим изолирующим материалом. Начало и конец обмотки выводят наружу и присоединяют к выводным клеммам, укрепленным на каркасе, или к гибким проводникам с наконечниками на концах.

Катушка электромагнита насажена на сердечник из мягкого, отожженного железа или сплавов железа с кремнием, никелем и т. д. Такое железо обладает наименьшим остаточным . Сердечники чаще всего делают составными из тонких листов, изолированных друг от друга. Формы сердечников могут быть различными, в зависимости от назначения электромагнита.

Если по обмотке электромагнита пропустить электрический ток, то вокруг обмотки образуется магнитное поле, которое намагничивает сердечник. Так как сердечник сделан из мягкого железа, то он намагнитится мгновенно. Если затем выключить ток, то магнитные свойства сердечника также быстро исчезнут, и он перестанет быть магнитом. Полюсы электромагнита, как и соленоида, определяются по правилу правой руки. Если в обмотке электромагнита изм енить , то в соответствии с этим изменится и полярность электромагнита.

Действие электромагнита подобно действию постоянного магнита. Однако между ними есть большая разница. Постоянный магнит всегда обладает магнитными свойствами, а электромагнит- только тогда, когда по его обмотке проходит электрический ток.

Кроме того, сила притяжения постоянного магнита неизменна, так как неизменен магнитный поток постоянного магнита. Сила же притяжения электромагнита не является величиной постоянной. Один и тот же электромагнитможет обладать различной силой притяжения. Сила притяжения всякого магнита зависит от величины его магнитного потока.

С ила притяжения, а следовательно, и его магнитный поток зависят от величины тока, проходящего через обмотку этого электромагнита. Чем больше ток, тем больше сила притяжения электромагнита, и, наоборот, чем меньше ток в обмотке электромагнита, тем с меньшей силой он притягивает к себе магнитные тела.

Но для различных по своему устройству и размерам электромагнитов сила их притяжения зависит не только от величины тока в обмотке. Если, например, взять два электромагнита одинакового устройства и размеров, но один с небольшим числом витков обмотки, а другой - с гораздо большим, то нетрудно убедиться, что при одном и том же токе сила притяжения последнего будет гораздо больше. Действительно, чем больше число витков обмотки, тем большее при данном токе создается вокруг этой обмотки магнитное поле, так как оно слагается из магнитных полей каждого витка. Значит, магнитный поток электромагнита, а следовательно, и сила его притяжения будут тем больше, чем большее количество витков имеет обмотка.

Есть еще одна причина, влияющая на величину магнитного потока электромагнита. Это - качество его магнитной цепи. Магнитной цепью называется путь, по которому замыкается магнитный поток. Магнитная цепь обладает определенным магнитным сопротивлением . Магнитное сопротивление зависит от магнитной проницаемости среды, через которую проходит магнитный поток. Чем больше магнитная проницаемость этой среды, тем меньше ее магнитное сопротивление.

Так как м агнитная проницаемость ферромагнитных тел (железа, стали) во много раз больше магнитной проницаемости воздуха, поэтому выгоднее делать электромагниты так, чтобы их магнитная цепь не содержала в себе воздушных участков. Произведение силы тока на число витков обмотки электромагнита называется магнитодвижущей силой . Магнитодвижущая сила измеряется числом ампер-витков.

Например, по обмотке электромагнита, имеющего 1200 витков, проходит ток силой 50 ма. М агнитодвижущая сила такого электромагнита равна 0,05 х 1200 = 60 ампер-витков.

Действие магнитодвижущей силы аналогично действию электродвижущей силы в электрической цепи. Подобно тому как ЭДС является причиной возникновения электрического тока, магнитодвижущая сила создает магнитный поток в электромагните. Точно так же, как в электрической цепи с увеличением ЭДС увеличивается ток в цени, так и в магнитной цепи с увеличением магнитодвижущей силы увеличивается магнитный поток.

Действие магнитного сопротивления аналогично действию электрического сопротивления цепи. Как с увеличением сопротивления электрической цепи уменьшается ток, так и в магнитной цепи увеличение магнитного сопротивления вызывает уменьшение магнитного потока.

Зависимость магнитного потока электромагнита от магнитодвижущей силы и его магнитного сопротивления можно выразить формулой, аналогичной формуле закона Ома: магнитодвижущая сила = (магнитный поток / магнитное сопротивление)

Магнитный поток равен магнитодвижущей силе, деленной на магнитное сопротивление.

Число витков обмотки и магнитное сопротивление для каждого электромагнита есть величина постоянная. Поэтому магнитный поток данного электромагнита изменяется только с изменением тока, проходящего по обмотке. Так как сила притяжения электромагнита обусловливается его магнитным потоком, то, чтобы увеличить (или уменьшить) силу притяжения электромагнита, надо соответственно увеличить (или уменьшить) ток в его обмотке.

Поляризованный электромагнит

Поляризованный электромагнит представляет собой соединение постоянного магнита с электромагнитом. Он устроен таким образом. К полюсам постоянного магнита прикреплены так называемые полюсные надставки из мягкого железа. Каждая полюсная надставка служит сердечником электромагнита, на нее насаживается катушка с обмоткой. Обе обмотки соединяются между собой последовательно.

Так как полюсные надставки непосредственно присоединены к полюсам постоянного магнита, то они обладают магнитными свойствами и при отсутствии тока в обмотках; при этом сила притяжения их неизменна и обусловливается магнитным потоком постоянного магнита.

Действие поляризованного электромагнита заключается в том, что при прохождении тока по его обмоткам сила притяжения его полюсов возрастает или уменьшается в зависимости от величины и направления тока в обмотках. На этом свойстве поляризованного электромагнита основано действие и других электротехнических устройств .

Действие магнитного поля на проводник с током

Если в магнитное поле поместить проводник так, чтобы он был расположен перпендикулярно силовым линиям поля, и пропустить по этому проводнику электрический ток, то проводник придет в движение и будет выталкиваться из магнитного поля.

В результате взаимодействия магнитного поля с электрическим током проводник приходит в движение, т. е. электрическая энергия превращается в механическую.

Сила, с которой проводник выталкивается из магнитного поля, зависит от величины магнитного потока магнита, силы тока в проводнике и длины той части проводника, которую пересекают силовые линии поля. Направление действия этой силы, т. е. направление движения проводника, зависит от направления тока в проводнике и определяется по правилу левой руки.

Если держать ладонь левой руки так, чтобы в нее входили магнитные силовые линии поля, а вытянутые четыре пальца были обращены по направлению тока в проводнике, то отогнутый большой палец укажет направление движения проводника . Применяя это правило, надо помнить, что силовые линии поля выходят из северного полюса магнита.

Соленоид - это проволочная катушка цилиндрической формы. Его можно представить себе как множество сложенных в стопку круговых витков с током. Силовые линии магнитного поля, создаваемого электри­ческим током в соленоиде, показаны на рис. 6.6. Как видно из этого рисунка, внутри соленоида силовые линии почти прямые. Чем длин­нее соленоид, т.е. чем больше его длина по сравнению с его радиусом, тем меньше кривизна силовых линий внутри соленоида. В таком случае вектор В магнитной индукции поля внутри соленоида будет направлен параллельно его оси. Причем так, что его направление будет связано с направлением тока в соленоиде правилом правого винта. Направим ось х вдоль оси соленоида. При этом проекция вектора магнитной индукции на ось х будет равна его модулю, а все другие его проекции будут равны нулю:

B x =B, B y =B z =0.

Подставим эти проекции вектора В в уравнение (6.12). Получим

Из этого равенства вытекает, что внутри соленоида вектор магнитной индукции не только сохраняет свое направление, но его модуль здесь всюду одинаков. Таким образом, приходим к выводу, что внутри длин­ного соленоида магнитное поле является однородным.

Рис. 6.6. Магнитное поле соленоида

Найдем модуль вектора магнитной индукции поля внутри соленоида при помощи теоремы (6.8) о циркуляции этого вектора. В качестве кон­тура С, по которому будем вычислять циркуляцию вектора магнитной индукции, выберем ломанную линию, изображенную пунктиром на рис. 6.6. Отрезок этой линии длиной l находится внутри соленоида и совпа­дает с одной из силовых линий магнитного поля. Две перпендикулярные этому отрезку прямые начинаются на его концах и уходят в бесконеч­ность. Во всех точках этих прямых вектор магнитной индукции или перпендикулярен им (внутри соленоида), или равен нулю (вне соленои­да). Поэтому скалярное произведение Вdl в этих точках равно нулю. Таким образом, циркуляция магнитной индукции по рассматриваемому контуру С будет равна интегралу по отрезку силовой линии длиной l. С учетом того, что модуль вектора магнитной индукции есть постоянная величина будем иметь

Пусть число витков соленоида, охватываемых контуром С, равно N. При этом сумма токов, охватываемых контуром, будет равна NI, где I - сила тока в одном витке соленоида. Теорема (6.8) приводит к равенству

Вl = μ o NI ,

из которого найдем магнитную индукцию поля в соленоиде:

В = μ o nI

n-число витков, приходящихся на единицу длины соленоида.

Магнитное поле прямого тока

Рассмотрим магнитное поле, создаваемое электрическим током, теку­щим по тонкому бесконечно длинному проводу. Такая система обладает цилиндрической симметрией. Вследствие этого магнитное поле должно обладать следующими свойствами:

1) на любой прямой, параллельной проводу с током, вектор магнитной индукции должен быть всюду оди­наков;

2) при повороте всего магнитного поля целиком вокруг провода оно не изменяется. В таком случае силовыми линиями магнитного поля должны быть окружности, центры которых лежат на оси провода с то­ком (рис, 6.7), а вектор В на любой из этих окружностей всюду имеет один и тот же модуль.

При помощи теоремы (6.8) о циркуляции вектора магнитной индук­ции найдем модуль этого вектора. С этой целью вычислим циркуляцию магнитной индукции по одной из силовых линий С, радиус которой ра­вен а. Так как вектор В является касательным к силовой линии, он коллинеарен векторному элементу dl этой линии. Поэтому

где В - модуль вектора магнитной индукции, который, как было сказано, всюду на окружности С один и тот же. Вынесем В за знак интеграла. После интегрирования будем иметь

= В 2p a

Рис. 6.7. Силовые линии магнитного поля прямого токи

Так как контур С охватывает всего один провод с током I, теорема (6.8) приводит к равенству

2p a В = μ o I

Отсюда найдем, что на расстоянии а от бесконечного прямого провода с током I индукция создаваемого им магнитного поля будет

В = μ o I/ (2p a) (6.15)

Как видно из рис. 6.7, направление вектора В и направление тока I связаны правилом правого винта. В том, что это действительно так, нетрудно убедиться при помощи закона Био - Савара - Лапласа.

Взаимодействие токов

Рассмотрим два тонких параллельных друг другу прямых провода с токами I 1 и I 2 (рис. 6.8.). Если расстояние R между проводами много меньше их длины, то магнитную индукцию поля, создаваемого первым проводом на этом расстоянии, можно найти по формуле (6.15):

В = μ o I 1 / (2p R)

Направление вектора В 1 связано с направлением тока I 1 правилом пра­вого винта. Этот вектор изображен на рис. 6.8.

Рис. 6.8. Взаимодействие токов

Магнитное поле, создаваемое первым током, будет действовать на вто­рой провод с силой Ампера F 21 , которая определяется формулой (5.8):

(6.17)

F 21 = I 2 [l 2 B 1 ]

где l 2 - вектор, длина которого равна длина l рассматриваемого участка второго провода. Этот вектор направлен вдоль провода по направлению тока. Модуль силы (6.17) будет

F 21 = I 2 l B 1 . (6.18)

Подставив выражение (6.16) в формулу (6.18), получим следующее выра­жение для силы, с которой первый провод действует на участок второго провода длины l:

F 21 = μ o I 1 I 2 l / (2p R)

Направление силы F 21 найдем по формуле (6.17). Когда токи I 1 , I 2 текут в одном направлении эта сила будет направлена в сторону первого провода. Сила F 12 , с которой второй провод действует на участок первого провода длины l, равна по модулю и противоположна по направлению силе F 21 .

Итак, установлено, что параллельные провода с токами, текущими в одном направлении, притягиваются. Нетрудно доказать, что провода с токами, текущими в противоположных направлениях, отталкиваются друг от друга.

При помощи формулы (6.19) определена единица силы тока в СИ. Как известно, эта единица называется ампер. По определению два длинных тонких провода с токами силой в один ампер, расположенные парал­лельно на расстоянии 1 м один от другого, взаимодействуют с силой 2 10 -7 Н на 1 м длины. Подставив эти значения в формулу (6.19), найдем, что магнитная постоянная

m 0 = 4p 10 -7 Н/м.

Единица заряда в СИ - кулон - выражается через единицу силы тока: Кл = А*с. Измерения силы взаимодействия двух точечных зарядов в 1 Кл привели к значению F = 9 10 9 Н при расстоянии между зарядами R = 1 м. Используя эти значения, найдем электрическую постоянную e 0 из закона Кулона

F =| Q 1 Q 2 | /(4pe 0 R 2 )

Интересно отметить, что величина

1/Öe 0 m 0 =3 10 8 м/с

численно равна скорости света в пустоте.