Не хотят брать на себя ответственность. Почему мужчины не хотят брать на себя обязательства? за свое эмоциональное состояние

Мониторинг биоэлектрической активности сердца наряду с регистрацией артериального давления, пульса и оксигенации артериальной крови является обязательным пунктом, предусмотренным большинством протоколов анестезиологического обеспечения операций и интенсивной терапии критических состояний.

История метода (ЭКГ) насчитывает более 100 лет. Мы уже отмечали заслуги A. Koelliker, H. Muller, A. D. Waller в становлении метода ЭКГ.
A. Koelliker, H. Muller в 1856 году с помощью электродов, расположенных непосредственно на поверхности сердца, определили наличие слабых токов, возникающих при сокращении миокарда.

Спустя 30 лет, в 1887 г. A.D. Waller показал, что слабые электрические потенциалы, возникающие в сокращающемся миокарде, можно зарегистрировать в виде кривой от электродов, расположенных на поверхности тела животного. Для этого он использовал ртутный капиллярный электрометр, в котором столбик ртути реагировал на возникающие в миокарде токи. Однако электрограмма А. Уоллера, прообраз современной ЭКГ, из-за большой инерционности ртутного столбика была весьма несовершенной.

Тем не менее, используя даже такую несовершенную технологию, Уоллеру удалось сформулировать основные положения электрофизиологии . Он установил, что сокращающееся сердце представляет собой диполь (равные по величине, но противоположные по знаку электрические заряды). Взаимодействие этих зарядов отражается на самописце в виде разнонаправленных зубцов (электрограмма А. Уоллера). Значительно позднее были вскрыты механизмы этого феномена, состоящие в перемещении ионов К+, Na+, Ca++, CI" через мембрану мышечной клетки. А. Уоллеру также удалось определить электрическую ось сердца.

Революцию в технологии электрокардиографии произвел голландский физиолог Willem Einthoven (1860-1927). Слушая лекцию А. Уоллера, он понял, что для практического использования электрокардиографии необходим высоко чувствительный гальванометр.
Понадобилось много лет, чтобы сконструировать прибор, способный зарегистрировать качественную ЭКГ. Таким прибором стал струнный гальванометр, созданный в 1903 году.

Основу гальванометра В. Эйнтховена составляла очень тонкая кварцевая нить, находящаяся под напряжением в магнитном поле. Она реагировала на очень малые токи, отклоняясь в ту или иную сторону в зависимости от силы и направления тока. Колебания нити усиливались и фотографировались на движущейся ленте. Таким образом возникала кривая, названная В. Эйнтховеном электрокардиограммой, которая довольно точно отражала биотоки сокращающегося сердца. Этот кардиограф был весьма громоздким. Он весил около 270 кг и обслуживался пятью сотрудниками.

Используя свой кардиограф , В. Эинтховен подробно изучил закономерности электрических явлений сердца. Им по существу было создано новое направление в физиологии кровообращения - электрофизиология сердца. В. Эйнтховеном были обозначены основные зубцы и интервалы электрокардиограммы, рассчитаны временные промежутки зубцов и интервалов, которые используются кардиологами и до настоящего времени. И наконец, им была предложена локализация основных электродов на поверхности тела пациента. Электроды располагались по углам некоего треугольника (треугольник Эйнтховена): на плечевых поверхностях обеих рук и левой ноге.

Соответственно расположению электродов обозначались отведения: обе руки - I отведение, на правой руке и левой ноге - II отведение, на левой руке и левой ноге - III отведение. В. Эинтховен установил, что сумма потенциалов I и III отведений равняется потенциалу II отведения. Эти отведения, получив в дальнейшем название стандартных отведений, используются и сегодня. В. Эйнтховеном же была разработана и методика определения электрических осей сердца.

Электрокардиография [электро- (от «электричество») + греческий kardia сердце + grapho писать, изображать] :

  1. метод регистрации электрической активности миокарда, распространяющейся по сердцу в течение сердечного цикла;
  2. раздел кардиологии, изучающий генез электрической активности сердца, ее характеристику в норме и при патологии, а также клинико-диагностическое значение. Некоторые исследователи обозначают электрокардиографию во втором значении как электрокардиологию, но этот термин не получил широкого распространения.

Электрокардиограмма (ЭКГ) - кривая, отражающая динамику разности потенциалов в двух точках электрического поля сердца в течение сердечного цикла. ЭКГ (или отведение ЭКГ) регистрируется электрокардиографом путем получения информации о потенциалах с помощью электродов, помещенных в выбранных двух точках электрического поля сердца. Иногда ЭКГ называют скалярной, поскольку она в отличие от векторной ЭКГ (см. Векторкардиография) не позволяет на основании анализа в одном отведении судить о направлении электродвижущей силы (ЭДС) сердца, представляя лишь информацию о ее величине. Чтобы получить как можно более полное представление о пространственном характере электрических процессов в сердце, отведения ЭКГ принято снимать при различном положении электродов. Каждое отведение характеризуется положением оси (линии между двумя электродами) и полярностью каждого из электродов (полюсов) отведения.

История

Наличие электрических явлений в сокращающейся сердечной мышце впервые обнаружили Р. Келликер и И. Мюллер (1856) на нервно-мышечном препарате лягушки. Шарпи (W. Sharpey, 1880) и Уоллер (A. D. Waller, 1887) первыми записали ЭКГ человека капиллярным электрометром, сконструированным Липпманном (G. Lippmann) в 1873 году Уоллер (1887-1889) предложил схему электрического поля сердца (рис. 1), выдвинул представление о дипольной структуре сердца и электрической оси. Развитие электрокардиографии неразрывно связано с именем голландского физиолога В. Эйнтховена, который в 1903 году создал первый электрокардиограф на базе струнного гальванометра, изобретенного Швейггером (J. S. Schweigger). Электрокардиограф В. Эйнтховена позволил детально, без существенных искажений записать ЭКГ и широко внедрить электрокардиографию в физиологические исследования и клиническую медицину.

В. Эйнтховен с сотрудниками предложил три стандартных отведения от конечностей, описал нормальную ЭКГ, разработал основы векторного анализа ЭКГ, базирующегося на изучении проекций вектора электродвижущей силы сердца на оси стандартных отведений, предложил метод определения электрической оси сердца и угла а, сформулировал правило треугольника и др. Существенный вклад в электрокардиографию внес отечественный физиолог А. Ф. Самойлов, описавший зависимость ЭКГ от фаз дыхания и представивший экспериментальное обоснование возможности кольцевого движения волны возбуждения по миокарду предсердий при мерцательной аритмии. А. Ф. Самойлов изучал вопросы генеза ЭКГ, совместно с А. 3. Черновым в 1930 году описал реципрокный ритм у человека. Большое значение для обоснования метода электрокардиграфии и его внедрения в клинику имели работы Ф. Kpayca, Николаи(G. Nicolai, 1910), Льюиса (Th. Lewis, 1920).

Развитие клинической электрокардиографии связано с именами В. Ф. Зеленина, описавшего ЭКГ при увеличении отделов сердца (1910) и нарушениях сердечного ритма (1915); Смита (Р. М. Smith, 1918), Парди (Н. Е. В. Pardee, 1920), Бейли (R. Вауley, 1942), показавших возможность диагностики инфаркта миокарда; Ротбергера и Винтерберга (С. J. Rothberger, Н. Winterberg, 1917), Венкебаха и Винтерберга (К. Wenckebach, Н. Winterberg, 1927), углубленно изучивших ЭКГ при нарушениях ритма и проводимости. В 1932 году Уилсон (F. N. Wilson) предложил однополюсные отведения. В 1942 году Гольдбергер (В. Goldberger) разработал усиленные однополюсные отведения от конечностей. С этого же времени в практику вошли грудные отведения ЭКГ, существенно расширившие возможности диагностики.

Первые советские руководства и монографии по электрокардиографии написаны Л. И. Фогельсоном (1928, 1948), П. Е. Лyкомским (1943), В. Е. Незлиным и С. Е. Карпай (1948, 1959), Г. Я. Дехтярем (1951), А. В. Гольцманом и И. Т. Дмитриевой (1960).

Уилсон (1935) ввел понятие об интегральном векторе сердца, отражающем суммарную ЭДС как сумму элементарных ЭДС всех возбудившихся элементов (диполей) миокарда. Он показал изменение интегрального вектора в течение сердечного цикла. Шефер (Н. Schaefer, 1951) и Грант (R. Grant, 1951 -1957) развили векторный анализ ЭКГ, связали изменение ориентации интегрального вектора с распространением возбуждения по различным отделам сердца, дали характеристику ЭКГ в любом отведении как кривой, регистрирующей динамику проекции интегрального вектора на ось данного отведения в течение сердечного цикла (рис. 2, 3).

Теоретические основы электрокардиографии

ЭКГ - периодически повторяющаяся кривая, представляющая собой графическое отображение изменений во времени разности потенциалов между различными точками тела, возникающих вследствие электрических процессов, которыми сопровождается распространение возбуждения по работающему сердцу. Распространение возбуждения по сердцу сопровождается возникновением в окружающем его объемном проводнике (теле) электрического поля. Форма, амплитуда и знак элементов электрокардиограммы зависят от пространственно-временных характеристик возбуждения сердца (хронотопографии возбуждения), от геометрических характеристик и пассивных электрических свойств тела как объемного проводника, от свойств отведений ЭКГ как измерительной системы.

Частота и ритм сердечных сокращений определяются возбуждением, ритмически генерируемым так наз. водителем ритма (см. Пейсмекер), распространяющимся по проводящей системе сердца (см.) и влекущим за собой волну сокращения миокарда.

Проводящая система сердца состоит из мышечных волокон особого строения. В ней различают узлы и пучки. В норме водителем ритма у высших животных и человека является синусно-предсердный узел, расположенный между верхней полой веной и правым ушком предсердия. Отсюда возбуждение распространяется по внутрипредсердным проводящим путям, миокарду предсердий и охватывает предсердно-желудочковый (атриовентрикулярный) узел, затем, после нек-рой задержки,- пучок Гиса (предсердно-желудочковый, или атриовентрикулярный пучок) с его разветвлениями и волокнами Пуркинье, а также «рабочий» миокард желудочков.

Сформировавшаяся в процессе эволюции очередность возбуждения и задержки волны возбуждения в предсердно-желудочковом узле создают необходимую для наиболее эффективного обеспечения насосной функции сердца последовательность сокращения его отделов и промежуток времени, требующийся для наполнения их кровью. Нарушения последовательности возбуждения разных отделов сердца находят определенное отражение на ЭКГ. Это дает возможность использовать электрокардиографию для весьма точной диагностики различных нарушений ритма и блокады проведения возбуждения, недоступной для других видов исследования, позволяет определить локализацию источника экстрасистолии, диагностировать гипертрофию предсердий и желудочков, выявлять диффузные и очаговые изменения миокарда и другие патологические состояния сердца.

Особенность электрокардиографического метода состоит в том, что отводящие электроды всегда расположены в отдалении от возбужденных клеток. Таким образом регистрируется разность потенциалов в соответствующих, находящихся на более или менее значительном расстоянии одна от другой, точках электрического поля сердца. На практике это расстояние минимально при записи эндокардиальной или эпикардиальной электрограммы и наиболее велико при регистрации стандартных отведений ЭКГ от конечностей. Информация об электрическом генераторе сердца, которую при этом получают, непосредственно связана с точностью представления о его поле, обеспечиваемом анализом ЭКГ, зарегистрированной в тех или иных отведениях.

Суммарный электрический генератор сердца состоит из множества элементарных генераторов - возбужденных клеток, распределенных в пространстве и составляющих фронт волны возбуждения. Число этих клеток и характер их распределения и ходе распространения возбуждения непрерывно меняются. Суммарный генератор имеет поэтому очень сложную переменную структуру, точное количественное описание которой практически неосуществимо. Для приближенного описания используют эквивалентные генераторы (ЭГ) - простые математические модели известной, задаваемой исследователем структуры в виде совокупности источников тока, которые при расположении их в области сердца должны были бы приводить к возникновению электрического поля, воспроизводящего поле сердца. ЭГ тем совершеннее, чем точнее его поле совпадает с полем сердца. Для оценки точности совпадения выбирают критерий эквивалентности. Адекватность модели определяется тем, в какой степени ее компоненты могут быть однозначно определены расчетным путем на основе анализа ЭКГ в данных отведениях (так называемая обратная задача электрографии, то есть построение модели ЭГ по имеющимся ЭКГ).

Из множества предложенных моделей решение обратной задачи наилучшим образом разработано для ЭГ мультипольного типа. Мульти-ноль представляет собой совокупность конечного числа дипольных источников тока с несовпадающими дипольными осями, расположенных в одной точке. При принятых допущениях о свойствах тела как объемного проводника (принимают, что тело - гомогенный изотропный объемный проводник, обладающий активным электрическим сопротивлением) потенциал мультипольного ЭГ в любой точке тела (φ) выражается как сумма величин, зависящих от характеристики мультиполя, определяемой, в свою очередь, величинами потенциалов и направлениями осей составляющих его диполей:

где h(i) - характеристика мультиполя. l(i) - коэффициенты, определяемые измерительными характеристиками отведений, локализацией точек отведений и свойствами проводящей среды, і - порядок мультиполя (мультиполь первого порядки - диполь, второго порядка - квадруполь, третьего порядка - октаполь и т. д.), используемый в данной модели и определяемый задаваемым критерием эквивалентности.

Рис. 1. Схематическое изображение электрического поля сердца (по схеме Уоллера): изопотенциальные линии (а - положительные, б - отрицательные) расположены нормально к силовым линиям (с), исходящим от положительного полюса (+) диполя и направленным к отрицательному полюсу (-). Результирующая ось АБ, или ось тока действия, перпендикулярна к линии нулевого потенциала.

Рис. 2. Схемы отведений электрокардиограммы от конечностей: а - стандартные отведения (треугольник Эйнтховена); проекция вектора Е на ось отведения образуется при опускании на нее перпендикуляров из нулевой точки диполя (О) и из конца интегрального сердечного вектора (Е); проекция нулевой точки разделяет каждую из осей отведения на положительный и отрицательный компоненты; ПР - правая рука, ЛР - левая рука, ЛН - левая нога, е(I), е(II), е(III) - проекции интегрального сердечного вектора соответственно на оси отведения ПР - ЛР, ПР - ЛН и ЛР - ЛН (I, II и III - стандартные отведения). Рядом с осями отведений схематически представлены ЭКГ. Угол α между вектором Е и осью I отведения определяет направление средней электрической оси сердца; б - схема расположения осей усиленных однополюсных отведений от конечностей; aVR, aVL,aVF (сплошные линии); знаками "+" и "-" обозначены положительный и отрицательный полюса отведений.

Первая теоретическая концепция генеза ЭКГ, получившая название «концепция сердечного диполя» была предложена Уоллером (1887) и разработана В. Эйнтховеном (1912). Согласно теории Уоллера - Эйнтховена моментное электрическое состояние работающего сердца может быть представлено так называемым эквивалентным сердечным диполем. Диполем называют совокупность двух точечных электрических зарядов, равных по величине и противоположных по знаку, находящихся на некотором расстоянии друг от друга; последнее может быть сколь угодно малым. Вокруг диполя образуется электрическое поле. Считают, что его силовые линии исходят от положительного полюса (исток) и входят в отрицательный полюс (сток). Перпендикулярно к силовым линиям проходят так называемые изопотенциальные линии, то есть линии, в любой точке которых величина электрического потенциала одинакова. Абсолютная величина потенциала для изопотенциальных линий обусловлена их расположением относительно полюсов диполя (рис. 1). Прямая линия, проходящая через полюса диполя, называется дипольной осью. В. Эйнтховен рассматривал эквивалентный сердечный диполь как гипотетический источник тока в объемном проводнике, сделав при этом ряд допущений, в частности предположив, что эквивалентный диполь расположен в центре грудной клетки как в объемном проводнике, причем этот проводник гомогенен и имеет форму сферы бесконечного радиуса. Эти допущения позволяют рассматривать сердце как эквивалентный диполь неизмеримо малой величины. Если при этом регистрировать разность потенциалов с вершин равностороннего треугольника, за которые В. Эйнтховен принял правую руку, левую руку и лонное сочленение, или лобковый симфиз (в практической электрокардиографии в качестве третьей вершины используется левая нога), можно с помощью несложных расчетов определить величину и направление (то есть векторы) электродвижущих сил. формирующих ЭКГ. В процессе работы сердца величина и направление электродвижущих сил непрерывно меняются, в соответствии с этим изменяется и значение так называемого интегрального вектора сердца, за начало которого принята точка, соответствующая середине расстояния между полюсами диполя.

Согласно Уилсону (F. N. Wilson, 1935), который ввел представление об интегральном векторе сердца, последний является векторной суммой электродвижущих сил огромного множества диполей, хотя, с точки зрения физики, вполне закономерно рассматривать его как вектор ЭДС единого эквивалентного диполя. Проецируя расположенный в пространстве интегральный вектор сердца на треугольник Эйнтховена, лежащий во фронтальной плоскости тела, получают так наз. манифестирующую ось сердца (также являющуюся вектором в данной плоскости). Если спроецировать манифестирующую ось на каждую из сторон треугольника Эйнтховена, получается скалярная величина ЭДС сердца в трех стандартных отведениях в данный момент времени. Эти скалярные величины, регистрируемые на протяжении сердечного цикла, и формируют ЭКГ (рис. 2, а, б).

За I стандартное отведение принято расположение регистрирующих электродов на правой и левой руках, за II - на правой руке и левой ноге, за III - на левой руке и левой ноге. Прямую, соединяющую точки расположения двух электродов противоположной полярности, называют осью данного отведения. Скалярные величины проекции сердечного вектора на стороны треугольника Эйнтховена в каждый момент времени определяются уравнением:

e II = e I + e III

где eI, eII, eIII - алгебраическая величина сигналов, зарегистрированных соответственно в I, II и III стандартных отведениях. Указанное соотношение носит название правила Эйнтховена; его справедливость подтверждается несложными тригонометрическими расчетами. Направление средней проекции интегрального вектора сердца на фронтальную плоскость тела получило название «электрическая ось сердца». Его определяют по соотношению положительных и отрицательных зубцов комплекса в I и III отведениях и считают одним из важных параметров ЭКГ. В клинической Э. стандартные отведения сохраняют свое значение до наст. времени. Позднее были предложены три однополюсных отведения от конечностей, а также шесть однополюсных грудных отведений. Последние предназначены для регистрации проекции вектора дипольного момента сердца на трансверсальную плоскость тела. Индифферентный электрод этих отведений (терминаль Уилсона) объединяет через смешивающие резисторы потенциалы обеих верхних и левой нижней конечностей. Воображаемые оси униполярных отведений соединяют точки наложения дифферентных электродов с центром сердца, который имеет потенциал, близкий к нулю, то есть весьма мало изменяющийся за время сердечного цикла. Двенадцать перечисленных отведений являются общепринятыми в клинической электрокардиографии. На самом деле эти отведения чувствительны и к недипольным компонентам электрического поля сердца, но не обеспечивают возможности количественного определения последних. Для точной регистрация дипольных компонентов разработаны системы ортогональных корригированных отведений. Они отличаются тем, что регистрация ЭКГ производится в трехмерной системе координат, оси X, У, Z которых (оси отведений) взаимно перпендикулярны. Масштабные коэффициенты по осям в хорошо корригированных системах равны между собой, а чувствительность к недипольным компонентам электрического поля сердца отсутствует. Дипольная теория получила широкое признание. Тем не менее для улучшения получаемой диагностической информации создано много других систем отведений ЭКГ. Среди них системы множественных отведений ЭКГ, позволяющие изучать распределение потенциала поверхности тела и его изменения во времени. Исследования, выполненные с использованием различных систем множественных отведений, показали, что по своей структуре электрическое поле сердца намного сложнее поля, которое должно было бы возникнуть под влиянием дипольного источника тока, и что дипольное описание электрического поля сердца - довольно грубое приближение. Поэтому системы ортогональных корригированных отведений, чувствительные лишь к дипольным компонентам поля, содержат хотя и важную, но не исчерпывающую диагностическую информацию. Создание оптимального эквивалентного генератора сердца - одна из важнейших задач современного биофизического направления электрокардиографии.

Электрокардиографические отведения

Для регистрации ЭКГ в клинике принята система, включающая 12 отведений: три стандартных отведения от конечностей (I, II III), три усиленных однополюсных отведения (по Гольдбергеру) от конечностей (aVR, aVL, aVF) и шесть однополюсных грудных (V1, V2, V3, V4, V5, V6) отведений (по Уилсону).

Стандартные отведения. Для регистрации отведений от конечностей (фронтальная плоскость проекции интегрального вектора сердца) электроды устанавливают на правое и левое предплечья и левую голень. При записи ЭКГ в I отведении электрод правой руки соединен с минусом электрокардиографа (отрицательный электрод), электрод левой руки - с плюсом (положительный электрод), ось отведения расположена горизонтально. II отведение регистрируют при расположении отрицательного электрода на правой руке, положительного - на левой ноге, ось отведения направлена сверху вниз и справа налево. Для записи ЭКГ в III отведении отрицательный электрод электрокардиографа помещают на левую руку, положительный - на левую ногу, ось отведения идет сверху вниз и слева направо. Еще В. Эйнтховен с сотрудниками (1913) определил оси стандартных отведений как стороны равностороннего треугольника; в этом случае углы между осями равны 60°. Однако, как показали Бюргер и сотр. (1948), в действительности расположение осей отведений, в том числе стандартных, несколько отличается от их геометрического положения из-за негомогенной электропроводности тканей в направлении отведений, сложной геометрической формы тела (в идеальной модели Эйнтховена принято допущение, что сердце расположено в центре гомогенной сферы бесконечного радиуса) и других факторов. Истинное расположение осей трех стандартных отведений (треугольник Бюргера) строится для каждого отведения с учетом этих факторов (вектора отведения) по формуле Бюргера: проекция вектора сердца на ось отведения, умноженная на длину вектора отведения.

Усиленные однополюсные отведения от конечностей (рис. 2, б). Отведение aVR: минус - объединенный (индифферентный, по терминологии Гольдбергера) электрод левой руки и левой ноги, плюс (активный электрод) - электрод правой руки, ось идет от середины расстояния между левыми электродами (объединенный электрод) через центр сердца (треугольника) к правой руке. Отведение aVL: минус - объединенный электрод правой руки и левой ноги, плюс - электрод на левой руке, ось проходит снизу вверх и налево. Отведение aVF: минус - объединенный электрод обеих рук, плюс - электрод на левой ноге, ось расположена вертикально положительной половиной между положительными полюсами осей отведений II и III. Таким образом, так называемые однополюсные отведении от конечностей фактически являются двухполюсными, а однополюсными их называют по традиции. Полюса этих отведений лежат на одной оси с «электрическим центром» сердца (центр линии нулевого потенциала электрического поля). Анализ ЭКГ в отведениях от конечностей позволяет характеризовать направление вектора ЭДС во фронтальной плоскости.

Грудные отведения. Так называемые грудные отведения также являются двухполюсными (название «однополюсные» сохраняется по традиции). Отрицательный их полюс (ему соответствует отрицательный электрод электрокардиографа) объединяет электроды правой руки, левой руки и левой ноги (индифферентный электрод, по терминологии Уилсона). Его потенциал близок к нулю, но не равен ему. Топографически его можно совместить с центром сердца. Положительные полюса соответствуют положению грудных электродов, оси проходят между центром сердца и грудными электродами. Грудные (положительные) электроды отведений V1-V6 располагаются следующим образом (рис. 3): отведение V1 в четвертом межреберье по правому краю грудины, V2 - на том же уровне по левому краю грудины, V3 - на уровне IV ребра по левой окологрудинной (парастернальной) линии, V4 - в пятом межреберье по левой среднеключичной линии, V5 - на уровне V4 по левой передней подмышечной линии и V6 на том же уровне по левой средней подмышечной липни. Оси грудных отведений лежат в плоскости, близкой к горизонтальной; они несколько опущены в сторону положительных электродов осей отведений V5 и V6. Анализ ЭКГ, зарегистрированной в грудных отведениях, позволяет оценить отклонения вектора эдс в горизонтальной плоскости. Двенадцать общепринятых отведений ЭКГ дают основную и в большинстве случаев достаточную информацию об эдс сердца в норме и при патологии.

В электрокардиографии применяются также дополнительные отведения в случаях, когда общепринятые отведения оказываются недостаточными. Необходимость использовать дополнительные отведения возникает, например, при аномальном расположении сердца в грудной клетке, в случае, если типичная клиническая картина инфаркта миокарда не находит четкого отражения в 12 общепринятых отведениях ЭКГ, при нарушениях сердечного ритма, которые не удается идентифицировать на основе анализа ЭКГ в общепринятых отведениях и в некоторых других случаях. Крайние правые грудные отведения V3R - V6R регистрируют справа от грудины симметрично V3-V6 при декстрокардии. Крайние левые грудные отведения - V7 (на уровне V4 - по задней подмышечной линии), V8 и V9 (на том же уровне соответственно по левой лопаточной и паравертебральной линиям) - при задних и боковых инфарктах миокарда. Высокие грудные отведения - V2/1, V2/2, V2/3, V3/4, V3/5, V3/6 (электроды располагаются на два или одно межреберье выше, чем в отведениях V1-V6; надстрочный индекс обозначает межреберье) - при базальных передних инфарктах и низкие грудные отведения - V1/6, V6/2, V6/3, V7/4, V7/5, V7/7. Последние используются при смещении сердца в грудной полости в случае низкого стояния диафрагмы.

Отведение по Лиану (L) или S5 применяют для уточнения диагноза сложных аритмий: его регистрируют при положении рукоятки коммутатора на I отведении, электрод для правой руки располагают во втором межреберье у правого края грудины, электрод для левой руки - у основания мечевидного отростка, справа или слева от него, в зависимости от того, при каком положении электрода лучше выявляется зубец Р.

Отведения по Небу (W. Nehb) записывают при положениях рукоятки переключателя на стандартных отведениях, электроды которых помещают на грудную клетку (рис. 4): электрод для правой руки во втором межреберье у правого края грудины (2), электрод для левой руки (LA) - в точку, находящуюся на уровне верхушечного толчка по левой задней подмышечной линии (2), для левой ноги - на область верхушечного толчка (3). Регистрируют три отведения: D (dorsalis) в положении переключателя на I отведении, A (anterior) - на II отведении, I (inferior) - на III отведении. Оси этих отведений составляют малый треугольник Неба. Отведения Неба часто применяют при проведении велоэргометрической и других функциональных электрокардиографических проб с физической нагрузкой. Значение их как дополнительных для диагностики локальных поражений миокарда дискутабельно. Три отведения (треугольник) Арриги располагаются в сагиттальной плоскости тела. Они не получили широкого применения. Довольно редко регистрируются пищеводные отведения Ео. Активным электродом отведений Ео служит олива дуоденального зонда, соединенная проводом с положительным полюсом электрокардиографа; отрицательным полюсом является объединенный электрод Уилсона. Оливу последовательно устанавливают на трех уровнях: на расстоянии 33 см (Eo33), 35-45 (Eo33-Ео45) и 45- 50 см (Ео45 - Еo50) от верхних резцов. В этих отведениях хорошо регистрируются предсердный зубец Р и изменения ЭКГ при инфаркте миокарда задней стенки левого желудочка. Чаще всего пищеводные отведения применяют для диагностики нарушений ритма сердца, плохо идентифицируемых на ЭКГ в общепринятых отведениях. Изменения предсердного зубца хорошо выявляются также в эндобронхиальных отведениях. Другие дополнительные отведения ЭКГ имеют еще более ограниченное применение.

В научных клинических исследованиях широко применяется метод регистрации ЭКГ в 35 однополюсных грудных отведениях по Мароко (P. Maroko, 1972) и электрокардиотопография - синхронная регистрация ЭКГ в 50 грудных отведениях, предложенная Р. 3. Амировым (1965). Регистрацию ЭКГ в множественных отведениях целесообразно проводить на многоканальных электрокардиографах, анализ таких ЭКГ крайне трудоемок и обычно проводится с применением электронной вычислительной техники. Указанные методы чаще всего применяют для оценки влияния тех или иных лекарственных средств на интенсивность рубцевания очага инфаркта миокарда.

Синхронная регистрация ЭКГ в нескольких отведениях и разработка проблемы автоматизации анализа ЭКГ показали возможность замены 12 общепринятых отведений тремя корригированными ортогональными отведениями ЭКГ. Эти отведения разработаны с учетом асимметрии электрического поля сердца на поверхности тела. Неравномерность потенциалов под электродами компенсируется дополнительными грудными электродами и электрическими сопротивлениями к полюсам отведений, расположенными близко к сердцу. В результате три корригированных отведения X, Y, Z получаются истинно ортогональными (взаимно перпендикулярными) в физическом смысле, то есть зубцы ЭКГ в этих отведениях являются точными проекциями эквивалентного сердечного диполя на три взаимно перпендикулярных оси пространства. Последнее позволяет проводить количественный пространственный анализ корригированных ЭКГ, достаточный для описания динамики эдс сердца в норме и при патологии. Обычно применяют системы корригированных отведений, предложенные Франком (Е. Frank, 1956). а также Мак-Фи и Парунгао (R. McFee, A. Parungao, 1961).

Электрокардиографическая диагностика

Водителем сердечного ритма у здоровых людей является синусно-предсердный узел (рис. 5), от которого возбуждение распространяется по сократительному миокарду предсердий внизу и немного влево (это отражается на ЭКГ формированием предсердного зубца Р) и одновременно по межузловым путям быстрого проведения - к предсердно-желудочковому узлу. Благодаря этому импульс попадает в предсердно-желудочковый узел еще до окончания возбуждения предсердий. В предсердно-желудочковом узле импульсы несколько задерживаются, что позволяет завершить механическую систолу предсердий до начала систолы желудочков, а затем быстро проводятся по предсердно-желудочковому пучку (пучку Гиса), его стволу и ножкам, разветвления которых через волокна Пуркинье передают возбуждение непосредственно волокнам сократительного миокарда желудочков. Возбуждение миокарда желудочков начинается с межжелудочковой перегородки (первые 0,01-0,03 сек. времени, занимаемого комплексом QRS), интегральный вектор которого ориентирован вправо и вперед. В следующие 0,015-0,07 сек. возбуждается миокард верхушек правого и левого желудочков от субэндокардиальных к субэпикардиальным слоям, их передняя, задняя и боковая стенки, и в последнюю очередь возбуждение распространяется на основание правого и левого желудочков (0,06-0,09 сек.). Интегральный вектор (ИВ) сердца в период между 0,04 и 0,07 сек. с момента начала возбуждения желудочков (ИВ 0,06-0,09 сек.) ориентирован влево и вниз к положительному полюсу отведений II и V4, V5; ИВ 0,06-0,09 сек. QRS - вверх и слегка вправо.

На ЭКГ (рис. 6) определяются: изоэлектрическая линия (изолиния), горизонтальный отрезок, записывающийся во время диастолы (между зубцом Т одного из циклов и зубцом Р следующего цикла), зубцы - отклонения кривой вверх (положительные зубцы) или вниз (отрицательные зубцы) от изоэлектрической линии или других горизонтальных сегментов с закругленными или остроконечными вершинами. Предсердный зубец Р, а также относящиеся к желудочковому комплексу зубцы Т и U, имеющие закругленные вершины, иногда называют волнами. Временные промежутки между одноименными зубцами соседних циклов носят название межцикловых интервалов, а между разными зубцами одного цикла - внутрицикловых интервалов. Отрезки ЭКГ между зубцами обозначают как сегменты, если описывается не только их продолжительность, но и конфигурация. Они могут смещаться вверх (элевация) или вниз (депрессия) по отношению к изолинии. Группу зубцов и сегментов, отражающих процесс возбуждения или его фазу в отделах сердца, обозначают как комплекс. Различают зубец Р, отражающий распространение возбуждения по предсердиям, комплекс QRST (желудочковый комплекс), соответствующий возбуждению желудочков и состоящий из комплекса QRS (распространение возбуждения, или деполяризация желудочков) и конечной части (сегмент RS - Т и зубец Т - угасание возбуждения, или реполяризация), а также не всегда регистрируемый зубец U (угасание возбуждения системы Гиса - Пуркинье). В комплексе QRS могут отсутствовать зубцы Q или (и) S (формы RS, QR, R). Могут также регистрироваться два зубца R или S, при этом второй зубец обозначается R’ (формы RSR" и RR") или S".

Рис. 7. Электрокардиограмма здорового человека: ритм синусовый, 60 сокращений в 1 мин.; интервалы: Р - Q = 0,13 сек., Р = 0,10 сек., QRS = 0,09 сек., QRST = 0,37 сек.

Нормальная электрокардиограмма (рис. 7) характеризуется синоатриальным, или синусовым (номотопным), регулярным ритмом с частотой возбуждения желудочков 60-80 в 1 мин. Синусовый ритм определяется по наличию положительного зубца Р в отведениях I, II, aVF, V6, (PI,II, aVF, V6) и двухфазного с положительной первой фазой или положительного P(V1) перед комплексом QRS. Характеристика зубца Р при синусовом ритме зависит от ориентации векторов зубца Р вниз и влево, к положительному полюсу отведений II и V3-6. Регулярность ритма определяется равенством межцикловых интервалов (Р-Р или R-R). При нерегулярном синоатриальном ритме (синусовая аритмия) интервалы Р-Р (R-R) различаются на 0,10 сек. и более. Нормальная продолжительность возбуждения предсердий, измеряемая по ширине зубца Р, равна 0,08- 0.10 сек. Время предсердно-желудочкового проведения - интервал Р-Q (R) - в норме равно 0,12-0,20 сек. Время распространения возбуждения по желудочкам, определяемое по ширине комплекса (QRS, составляет 0,06-0,10 сек. Продолжительность электрической систолы желудочков - интервал QRST (Q-Т), измеряемый от начала комплекса QRS до окончания зубца T,- в норме зависит от частоты ритма (должная продолжительность Q-T). Она подсчитывается по формуле Базетта: Q -T(должная) = К√C где К - коэффициент, составляющий 0,37 для мужчин и 0,39 для женщин и детей, С - продолжительность сердечного цикла (величина интервала R-R) в секундах. Увеличена или уменьшение интервала Q- Т более чем на 10% является признаком патологии. Нормальный зубец Р наиболее высок (до 2- 2,5 мм) во II отведении; он имеет полуовальную форму. Зубец Р (I, aVF, V2-V6) положительный, ниже РII. Зубец P(aVR) отрицательный, Р(V1) двухфазный с первой большей положительной фазой. Зубцы Р(III) и Р(aVL) положительные низкие (иногда неглубокие отрицательные). Комплекс QRS, в соответствии с направлением векторов возбуждения межжелудочковой перегородки (вправо, вперед), свободных стенок левого желудочка (влево, вниз) и основания желудочков (вверх, вправо), состоит в отведениях I, II, III, aVL, aVF, V5-V6 из маленького начального отрицательного зубца Q (не более 0,03 сек.), высокого зубца R и маленького конечного отрицательного зубца S. Такая форма обусловлена нормальным расположением средней электрической оси сердца - среднего вектора QRS (AQRS) во фронтальной плоскости отведений от конечностей вниз и влево - к положительному полюсу II отведения и левых грудных. Соответственно наиболее высок зубец Я в отведениях II, V4, V5. Также положительным регистрируется нормальный зубец T(I,II,III, aVL, aVF, V3-V6). Одинаковая ориентация AQRS и AT во фронтальной плоскости объясняет большую амплитуду зубца Т в тех отведениях, где выше зубец R (напр., во II отведении). В отведении aVR основной зубец комплекса QRS (зубец S) и зубец T - отрицательные, так как соответствующие векторы направлены к минусу этого отведения. В отведении V1 регистрируется комплекс rS (строчной буквой обозначают зубцы относительно малой амплитуды, когда необходимо специально подчеркнуть соотношение амплитуд), в отведениях V2 и V3 - комплекс RS или rS. Зубец R в грудных отведениях увеличивается справа налево (от V1 к V4-5) и далее несколько уменьшается к V6. Зубец S уменьшается справа налево от V2 к V6. Равенство разнонаправленных зубцов в одном отведении (напр., R и S) по Гранту определяет переходную зону - отведение в плоскости, перпендикулярной среднему пространственному вектору комплекса QRS. В норме переходная зона комплекса QRS находится между отведениями V2 и V4. Зубец может быть как положительным, так и отрицательным, зубец Т(V2) обычно положительный. Зубец Т наиболее высок в отведениях Vз или V4. Зубцы Т(V5) и Т(V6) положительные; они ниже, чем T(V4) но выше, чем Т(V1). Сегмент RS - Т во всех отведениях от конечностей и в левых грудных отведениях регистрируется на уровне изоэлектрической линии. Небольшие горизонтальные смещения (вниз до 0,5 мм или вверх до 1 мм) сегмента RS-T у здоровых людей возможны, особенно на фоне тахикардии или брадикардии, но необходимо во всех случаях исключать патологический характер подобных смещений путем динамического наблюдения, проведения функциональных проб или сопоставления с клиническими данными. В отведениях V1, V2, V3 сегмент RS-T расположен на изоэлектрической линии или смещен вверх на 1-2 мм.

Варианты нормальной ЭКГ определяются в основном расположением сердца в грудной клетке. Они рассматриваются условно как повороты сердца вокруг трех осей: передне-задней (определяется по положению AQRS - нормальное, горизонтальное, вертикальное, отклонение электрической оси влево и вправо), продольной (по и против часовой стрелки) и поперечной (поворот верхушкой сердца вперед или назад).

Положение электрической оси (рис. 8) определяется по величине угла α (см. рис. 2): нормальное положение - α от + 30 до + 69°, горизонтальное - α от 0 до +29°, вертикальное - α от +70 до +90°, отклонение влево - α от - 1 до -90°, вправо - α от +91 до ±180°. При горизонтальном положении электрической оси сердца зубец R(I) высокий (AQRS параллельна оси I отведения), выше, чем зубец R(II); R III < S III; R (aVF) ≥ S(aVF).

При отклонении электрической оси влево R I > R II > R (aVF) < S(aVF) (r III < S III). При вертикальном положении и отклонении AQRS вправо R I низкий, увеличивается S I и R III. Угол α определяется построением в системе осей стандартных отведений или по специальным схемам и таблицам после получения алгебраической суммы амплитуд зубцов комплекса MRS в любых двух отведениях от конечностей (обычно в I и III).

На ЭКГ при повороте сердца вокруг продольной оси по часовой стрелке для начальной части желудочкового комплекса характерна форма RS (I, V5, V6 и qR III). При повороте против часовой стрелки регистрируются qR (I, V5, V6) RS III, умеренное увеличение R (V1V3) (RS V1, RS V3) без смещения переходной зоны. Поворот сердца верхушкой вперед отображается формой qR в отведениях I, II и III. Для поворота сердца верхушкой назад, или типа S I , S II, S III, характерна начальная часть желудочкового комплекса, имеющая форму RS I, RS II, RS III.

Изменения на электрокардиограмме при некоторых патологических состояниях. Декстрокардия вследствие зеркального относительно сагиттальной плоскости изменения топографии сердца и смещения его вправо обусловливает ориентацию AP, AQRS и АТ вправо, то есть к минусу I отведения и к положительному полюсу III отведения. На ЭКГ регистрируется глубокий зубец S I (rS I), отрицательные зубцы Р I и T I, высокий зубец R III и положительные зубцы Р III и T III, грудных отведениях уменьшение вольтажа QRS в левых позициях при углублении зубца S(v5,6). При взаимном перемещении электродов правой и левой руки на ЭКГ в I и III отведениях регистрируются зубцы обычной формы и направления. Такая замена электродов и регистрация дополнительных грудных отведений V(3R), V(4R), V(5R), V(6R) позволяют подтвердить заключение и выявить или исключить другую патологию миокарда при декстрокардии. В отличие от декстрокардии при декстроверсии зубец P I,II,V6 положительный, начальная часть желудочкового комплекса имеет форму qR1, V6 и RSV (3R).

Изменения ЭКГ при гипертрофии того или иного отдела сердца обусловлены увеличением его эдс и вследствие этого увеличением и отклонением в сторону гипертрофированного отдела вектора суммарной эдс сердца. При этом увеличенный средний, конечный или (реже) начальный вектор проецируется на параллельные ему оси отведений зубцами увеличенной амплитуды (высокие зубцы P, R или глубокий зубец S) или измененной формы. При гипертрофии некоторых отделов сердца определяется небольшое уширение соответствующего зубца или его внутреннего (интринсикоидного) отклонения, то есть времени от начала зубца Р или желудочкового комплекса до момента, соответствующего максимуму их положительного отклонения. При гипертрофии желудочков может измениться конечная часть желудочкового комплекса: смещается вниз сегмент RS - Т и становится ниже или инвертируется (становится отрицательным) зубец Т в отведениях с высоким R. Такое изменение формы желудочкового комплекса обозначают как дискордантность (разнонаправленность) сегмента RS - Т и зубца Т по отношению к зубцу R. Наблюдается также дискордантность сегмента RS- Т и зубца Т по отношению к зубцу S в отведениях с глубоким зубцом S.

Рис. 9. Электрокардиограмма при гипертрофии левого предсердия: зубец Р уширен (0,14 сек.), P I, V4-V6 двугорбый, P II с уплощенной вершиной; внутреннее отклонение зубцов P I, V6 равно 0,10 сек., двух фазный с увеличенной отрицательной фазой.

При гипертрофии левого предсердия (рис. 9) зубец Р расширяется до 0,11 - 0,14 сек., становится двугорбым (Р mitrale) в ряде отведений от конечностей (I, II, aVL) и левых грудных отведениях, реже уплощается его вершина, увеличивается амплитуда второй вершины. Время внутреннего отклонения зубца P I,II,V6 > 0,06 сек., иногда отклоняется влево ось зубца Р или ось его второй половины. Наиболее частым и достоверным признаком гипертрофии левого предсердия служит увеличение отрицательной фазы PV1(+РV1 < -PV1), реже появление второй отрицательной фазы P (V2,V3).

Рис. 10. Электрокардиограмма при гипертрофии правого предсердия и правого желудочка у больного с хроническим легочным сердцем (S - тип ЭКГ). Зубец P II,III,aVF высокий (P II>=2,5 mm), нормальной ширины (0,09 сек.), слегка заострена вершина P (III aVF), AP вертикальная. угол а >= 90°. Тип RS (I-III, V1-V6) со смещением переходной зоны влево R (V4,6) < S (V4,5).

Гипертрофия правого предсердия (рис. 10) характеризуется увеличением амплитуды и остроконечной формой зубца P II,III,aVF (P pulmonale), АР имеет вертикальное положение, реже отклонена вправо, иногда слегка увеличивается зубец S(V1V2).

Рис. 11. Электрокардиограмма при гипертрофии левого желудочка c признаками его систолической перегрузки: комплекс QRS(V5,6) формы R (отсутствуют Q (V5,6) и S (V5,6); R (V5,6) > R(V4); R I > R II >= R III < S III (угол a = + 16°), S (V1V1) - глубокий, R (V5) + S (V3) >= 45 мм, RS - T I,II, aVL, V4 - V6 смещен вниз, Т (V4-V6) отрицательный, асимметричный. Определяются также признаки гипертрофии левого предсердия.

При гипертрофии левого желудочка на ЭКГ регистрируется (рис. 11) высокий зубец R в левых грудных отведениях и глубокий зубец S V1V2 . При типичных для гипертрофии левого желудочка формах qR и R комплекса QRSv9 или обычной форме qRs высокоспецифичным признаком является R (V6)>=R (V4); несколько менее надежные признаки R (V5)>R (V4), форма qR (V6) при смещении переходной зоны вправо, ряд критериев Соколова - Лайона - R (V5) + S (V1,2) > 35 мм (для лиц старше 40 лет) и более 40-45 мм (для лиц до 40 лет), R (V5,4,6) > 25 mm, S (v 1,2)> 20 mm, R (aVL)> 11 mm и др. При левожелудочковой гипертрофии чаще наблюдается горизонтальное положение или отклонение влево AQRS, но оно может быть нормальным и даже вертикальным. Подтверждением гипертрофии левого желудочка и указанием на ее выраженность, наличие вторичных дистрофических изменений миокарда являются дискордантные изменения сегмента RS-T и зубца T. В отведениях V(5,6) I, aVL при отклонении AQRS влево сегмент RS-T смещен вниз от изолинии, в отведениях с глубоким зубцом S (V1, V2,III и др.) сегмент RS-T смещен вверх, зубец Т высокий положительный. Менее выраженные изменения конечной части желудочкового комплекса при левожелудочковой гипертрофии характеризуются снижением зубца Т в левых грудных отведениях; при этом Т (V1)> T (V6).

Значительное увеличение амплитуды зубца P(V1,V2,V3) часто при нормальном положении AP наблюдается при врожденных пороках сердца (Р congenitale). Комбинированная гипертрофия обоих предсердий нередко отражается на ЭКГ (рис. 12) сочетанием ряда описанных выше признаков гипертрофии каждого из предсердий: одновременное уширений зубца Р и увеличение амплитуды заостренных P (II,III,aVF), расщепление P (I,V6), увеличение и положительной, и отрицательной фазы P(V1) .

Практическое значение имеет предпринятая Кабрерой и Монроем (Е. Cabrera, J. R. Monroy, 1952) попытка определить по изменениям ЭКГ тип хронической гемодинамической перегрузки желудочка, лежащей в основе развития его гипертрофии. При диастолической (изотонической) перегрузке левого желудочка (недостаточность аорты или митрального клапана и другие пороки сердца) комплекс QRS (V5V6) часто имеет форму QR с высоким зубцом R и нередко с углубленным зубцом Q нормальной ширины. Зубец Т может быть высоким положительным (Т Cabrera), чаще у молодых людей. В. И. Маколкин (1973) отметил снижение и инверсию зубца одновременно с уменьшением глубины зубца Q (V5V6) по мере прогрессирования поражения сердца у таких больных. При систолической (изометрической) перегрузке левого желудочка (например, при стенозе устья аорты) чаще всего наблюдается форма R (V5V6) или qR (V5V6) c очень маленьким q(V6), смещение сегмента RS-T(V5V6) вниз и отрицательный зубец T (V5V6). В правых грудных отведениях регистрируется rS и иногда QS с приподнятым сегментом RS-Т и положительным асимметричным зубцом Т.

Рис. 12. Электрокардиограмма при гипертрофии правого желудочка и обоих предсердий. Отклонение AQRS вправо, QRS (V1) формы R3, S (v1) < S (V2V3), RS - T (II,III,V1-V4) смещен вниз, Т (II,III,aVF,V1-V4) отрицательный. Зyбец P уширен (0,14 сек.); расщеплен в отведении II, зубец Р двухфазный с увеличенной отрицательной фазой в III, V1, aVF; P(V2V3) - высокий, заостренный.

Гипертрофия правого желудочка на ЭКГ (рис. 12) представлена высоким зубцом R (V1) (типы qR, R, Rs, RS) или R (V1) (типы rSR", RSR", rR" при нормальной ширине QRS) и глубоким зубцом S (V4) (типы rS, RS, Rs при смещении влево переходной зоны). При типах qR, R, Rs и rS (V1) обычно регистрируется депрессия сегмента RS-T(V1) и инверсия зубца T(V1). При типе RS(V1) - амплитуда S (V1) < S (V2V3). Электрическая ось сердца обычно отклонена вправо или расположена вертикально угол a > +100° служит признаком гипертрофии правого желудочка, если нет блокады левой задней ветви пучка Гиса. Описанная форма ЭКГ при гипертрофии правого желудочка наблюдается при пороках сердца и в отдельных случаях тяжелого хронического легочного сердца (типы qR, RS, Rs(V1)). В большинстве случаев хронического легочного сердца регистрируется S-тип ЭКГ (см. рис. 10) с выраженным зубцом S(V1) и низким зубцом r(V1). В этих случаях наличие гипертрофии правого желудочка подтверждается смещением переходной зоны влево или уменьшением амплитуды S(V1) (Sv1< < 3 mm и меньше Sv2v3), или типом rSr"(V1), или отклонением AQRS вправо. Признаки систолической (qRv1, RSv1) и диастолической (RSR"v1) перегрузок на фоне гипертрофии правого желудочка имеют диагностическое значение лишь при врожденных пороках сердца.

Комбинированная гипертрофия обоих желудочков не всегда находит отражение на ЭКГ, иногда регистрируются лишь признаки гипертрофии левого желудочка. В редких случаях удается обнаружить редуцированные признаки право- и левожелудочковой гипертрофии.

Рис. 13. Электрокардиограмма при синдроме Вольффа - Паркинсона - Уайта: интервал Р- Q равен 0,11 сек., комплекс QRS в отведениях II, III, aVF, V3 - V6 начинается Дельта-волной (0,06-0,08 сек.), направленной вверх, а в отведениях I, aVL - вниз; ширина QRS равна 0,13 сек.

Синдром (феномен) Вольффа -Паркинсона - Уайта, являющийся одной из разновидностей синдрома преждевременного возбуждения желудочков (см. Вольффа - Паркинсона - Уайта синдром), обусловлен преждевременным распространением возбуждения из предсердий через дополнительные пути быстрого проведения импульса (пучок Кента, волокна Махейма) в базальные отделы одного из желудочков или межжелудочковой перегородки. В соответствии с этим преждевременное возбуждение миокарда желудочков на ЭКГ выражается дельта-волной (низкоамплитудные колебания) в начале уширенного ею комплекса QRS и укорочением интервала Р-Q (рис. 13). В типичных случаях синдрома Вольффа - Паркинсона - Уайта продолжительность A-волны составляет 0,04-0,08 сек., P-Q -0,08- 0,11 сек., комплекс QRS 0,12-0,15 сек. При атипичном течении этого синдрома возбуждение проводится в желудочек через волокна Махейма; при этом дельта-волна занимает 0,02-0,03 сек., интервал Р-Q не укорочен, комплекс QRS не уширен. Преждевременное синхронное возбуждение обоих желудочков (через пучки Тореля и Джеймса) проявляется на ЭКГ укорочением интервала Р-Q (ниже 0,11 сек.) без изменения комплекса QRS. Укорочение интервала Р-Q (R) может возникнуть и вследствие других причин (ускорение проведения по предсердно-желудочковому узлу, по внутрипредсердным проводящим путям), поэтому такое изменение ЭКГ рекомендуется называть синдромом укороченного интервала Р-Q (P-R), по терминологии (1980) и классификации нарушений ритма сердца (1982) группы экспертов ВОЗ. При синдроме Вольффа - Паркинсона - Уайта и других синдромах короткого интервала Р-Q часто возникают пароксизмальные нарушения ритма сердца.

Нарушения внутрижелудочковой проводимости (см. Блокада сердца) классифицируются на основании концепции о трехпучковом строении внутрижелудочковой проводящей системы. Согласно этой концепции пучок Гиса (ствол предсердно-желудочкового пучка) делится на три функционально самостоятельные ветви (см. рис. 5): левую переднюю (передняя ветвь левой ножки), левую заднюю (задняя ветвь левой ножки) и правую (правая ножка). Основные ветви делятся в субэндокардиальном слое миокарда на многочисленные мелкие разветвления, которые оканчиваются проводящими мышечными волокнами Пуркинье.

Между периферическими разветвлениями передней и задней левых ветвей (ветви левой ножки) имеется сеть анастомозов проводниковых волокон, по к-рым в случае блокады одной из них возбуждение быстро (за 0,01- 0,02 сек.) распространяется из непораженной ветви в блокированную область. Это обусловливает нормальную ширину комплекса или незначительное его уширение (до 0,11 сек.) при блокаде одной из левых ветвей. Он становится шире (0,11-0,13 сек.) при сочетании блокады левой ветви с блокадой анастомозов. Между правой и левыми ветвями анастомозов нет, поэтому при блокаде правой ветви или обеих левых ветвей комплекс QRS значительно уширен (0,12 сек. и более). Термином «блокада ветви пучка Гиса» обозначают прекращение проведения импульса по одной ветви, а термином «неполная блокада ветви» - замедление проведения по ней или прекращение проведения по части ее разветвлений. Блокада ветви может быть постоянной (на данной ЭКГ или на нескольких) и непостоянной (перемежающейся, интермиттирующей).

Рис. 14.

Блокада левой передней ветви пучка Гиса на ЭКГ (рис. 14, а) характеризуется в I отведении комплексом qR, в III отведении - комплексом rS и выраженным отклонением влево (угол а >= -30°). При блокаде девой задней ветви регистрируется комплекс RS1 и qR III с отклонением электрической оси вправо (а>= +90°). Диагноз блокады левой задней ветви можно поставить по ЭКГ, только если ее признаки появляются в динамике в течение непродолжительного периода между последовательно зарегистрированными ЭКГ. Во всех других случаях для этого заключения необходимо по клин. данным исключить гипертрофию правого желудочка и вертикальное положение сердца, при которых на ЭКГ регистрируются идентичные изменения. Блокада правой ножки на ЭКГ (рис. 14, б) характеризуется уширением комплекса QRS до 0,12 сек. и более, широким зубцом S I,v6 (qRS I,v6) и комплексом RSR" (V1) с широким и высоким R 1/V1. Положение электрической оси нормальное, вертикальное или горизонтальное. Зубец Т(V1) отрицательный. При неполных блокадах любой из левых ветвей форма комплекса QRS в I и III отведениях такая же, а отклонение AQRS влево или вправо меньше, чем при полной блокаде соответствующей ветви. Для их точной диагностики необходимо проанализировать динамику конфигурации комплекса. Неполная блокада правой ножки характеризуется шириной комплекса QRS, равной 0,08-0,11 сек., комплексом rSr (V1) или rSR (V1) с небольшим уширением зубца r (V1) или S (1,V3,aVL), либо появлением комплекса rSr" + + Sr" (V1) в динамике.

Блокада двух ветвей (двухпучковая блокада) пучка Гиса ведет к запаздыванию возбуждения либо правого желудочка и одной из стенок левого (блокада правой и одной из левых ветвей), либо всего левого желудочка (блокада обеих ветвей левой ножки). При блокаде правой и одной из левых ветвей на ЭКГ регистрируются признаки блокады каждой из них (рис. 14, в), так как блокированная стенка левого желудочка возбуждается с меньшей задержкой, чем правый желудочек: ширина QRS>0,12 сек., признаки блокады правой ножки сочетаются со значительным отклонением AQRS влево (при одновременной блокаде левой передней ветви) или вправо (при сочетании с блокадой девой задней ветви). При блокаде обеих левых ветвей (блокада левой ножки) обе стенки левого желудочка возбуждаются приблизительно с одинаковым опозданием, поэтому на ЭКГ признаки блокады каждой из этих ветвей четко не регистрируются, и комплекс QRS имеет весьма своеобразную форму (рис. 14, г) - широкий зубец R I,V6 (ширина> 0,12 сек.) с уплощенной или зазубренной вершиной (зубец Q (V5) отсутствует) и широкий глубокий зубец Sv1v2 (rS или QS); сегмент RS-Т и зубец T в отведениях I, V1, V2 и V3 резко дискордантны основному зубцу комплекса QRS.

При блокаде всех трех ветвей (трехпучковая блокада) возникает неполная или полная атриовентрикулярная блокада дистального уровня. При дистальной атриовентрикулярной блокаде I пли II степени на ЭКГ наряду с удлинением интервала Р-Q или блокированием отдельных желудочковых комплексов регистрируются признаки блокады двух ветвей пучка Гиса. Полная дистальная атриовентрикулярная блокада характеризуется возникновением собственно желудочкового (идиовентрикулярного) замещающего ритма с аберрантной (резко измененной) формой желудочкового комплекса по типу двухпучковой блокады.

Во время приступа стенокардии (см. Стенокардия), а в части случаев после окончания болей или в межприступном периоде на ЭКГ регистрируется депрессия сегмента RS-T и снижение или инверсия зубца Т. Эти изменения ЭКГ связаны с ишемией наиболее уязвимых в отношении кровоснабжения субэндокардиальных и частично интрамуральных слоев миокарда стенки левого желудочка. Кратковременная элевация сегмента RS - Т наблюдается при так называемой стенокардии Принцметала (см. Стенокардия). Элевация сегмента RS-Т отражает кратковременную трансмуральную ишемию. При стенокардии на ЭКГ нередко выявляются также различные виды нарушения сердечного ритма и проводимости. Однако более чем у половины больных стенокардией в межприступном периоде на ЭКГ могут полностью отсутствовать признаки ишемии миокарда или их трудно идентифицировать на фоне других изменений ЭКГ (например, изменений сегмента RS-T и зубца Т при гипертрофии левого желудочка). В таких случаях для выявления скрытой коронарной недостаточности применяют функциональ ные электрокардиографические пробы. Наибольшее распространение получили электрокардиографические пробы с дозированной физической нагрузкой: велоэрго метрическая проба, проба на тредмиле (см. Эргография) и др. Эти пробы, как и фармакологические с применением дипиридамола (курантила), изопреналина или эргометрина, а также гипоксемическая проба моделируют стенокардию у больных ишемической болезнью сердца. На ЭКГ положительный результат пробы характеризуется появлением описанных выше признаков ишемии миокарда и аритмий, а клинически - приступом стенокардии или ее эквивалентов. Электрокардиографическая проба с нитроглицерином дает разнонаправленные изменения, которые весьма сложно интерпретировать. Применяют ее преимущественно в случаях измененной исходной ЭКГ. Ортостатическая проба (см. Ортостатические пробы) имеет ограниченное применение. При этой пробе снимают ЭКГ больного в горизонтальном положении, затем в вертикальном - сразу после вставания и далее через 30 сек., 3, 5, а иногда и 10 мин. неподвижного стояния. Проба считается положительной при депрессии на ЭКГ в ортостазе сегмента S-T и инверсии зубца T. Все функциональные электрокардиографические пробы проводят утром натощак или через 3 часа после завтрака. Окончательное решение о проведении пробы принимают в день ее проведения, после регистрации исходной ЭКГ. Снятие следующих ЭКГ зависит от времени возникновения изменений в миокарде под влиянием пробы.

В диагностике инфаркта миокарда (см.) электрокардиография играет наряду с клиникой ведущую роль. С ее помощью выявляют специфические диагностические симптомы, определяют локализацию, обширность, глубину поражения и оценивают динамику инфаркта. Развивающиеся в очаге инфаркта миокарда поражения имеют три зоны морфологических изменений: зону некроза в центре (ближе к внутренним слоям), зону резкой дистрофии («повреждения») и зону ишемии миокарда по периферии очага. Это обусловливает отклонение вектора Q (первой половины комплекса QRS) и вектора Т в сторону, противоположную зоне инфаркта, а вектора S-T в сторону направления этой зоны. Соответственно на ЭКГ в отведениях с положительным полюсом (рис. 15) над очагом увеличивается и уширяется зубец Q, уменьшается зубец R, сегмент RS-T смещается вверх, зубец Т становится отрицательным симметричным (коронарным). В отведениях с положительным полюсом со стороны сердца противоположной зоне инфаркта, наблюдаются реципрокные (взаимообратные) изменения зубцов ЭКГ: увеличивается зубец R (например, R (V1V2) при заднебазальном инфаркте), уменьшается зубец S, сегмент RS-Т смещается вниз от изолинии, зубец Т становится высоким симметричным.

Рис. 15. Схема генеза электрокардиографических признаков инфаркта миокарда: изображен острый инфаркт задней стенки левого желудочка, начальный вектор возбуждения - Q увеличен и ориентирован в сторону, противоположную очагу некроза, он проецируется к минусу III отведении (увеличенный Q III) и к плюсу отведения V3 (увеличенный R (V2) - реципрокный признак). Вектор S - Т - ориентирован в сторону инфаркта, соответственно сегмент RS - T III приподнят и RS - T(V3) опущен.

Рис. 16

Динамика изменений ЭКГ соответствует стадиям развитии инфаркта. Острейшая стадия в течение первых часов или суток болезни в связи с трансмуральным повреждением стенки желудочка сопровождается резким смещением сегмента RS - Т вверх (рис. 16) - образуется монофазная кривая (все элементы ЭКГ с одной стороны от изолинии). Затем увеличивается амплитуда и ширила зубца Q (через 4-12 часов, реже в конце первых - на вторые сутки инфаркта). Отрицательный коронарный зубец Т появляется не ранее конца первых суток. Увеличение зубца Q, инверсия зубца Т совпадают по времени с некоторым уменьшением элевации RS-T. Наблюдения М. И. Кечкера с сотр. (1970- 1976) показали, что на 3-5-е сутки инфаркта миокарда зубец Т становится менее глубоким, а нередко даже положительным или не претерпевает изменений в течение 5-7 дней. На 8-12-й день заболевания зубец Т повторно инвертируется (ложно-ишемические изменения ЭКГ) или начинает быстро углубляться (в случаях, когда он оставался отрицательным). Одновременно приближается к изолинии сегмент RS-Т. На 14-18-й день положение сегмента RS-Т нормализуется (стойкая элевация его в рубцовой стадии инфаркта - признак аневризмы левого желудочка), а зубец Г достигает максимальной глубины (окончание острой - начало подострой стадии инфаркта миокарда). Повторная инверсия зубца Т, по-видимому, обусловлена аутоиммунной реакцией миокарда, окружающего организующийся патологический очаг. В подострой стадии заболевания глубина зубца Т вновь уменьшается; в части случаев он становится положительным или изоэлектричным.

Рис. 17. Электрокардиограмма при остром перикардите в динамике: а - на второй день болезни (конкордантное смещение вверх сегмента RS-T); б - на пятый день (смещение RS - Т несколько уменьшилось, появился отрицательный T; в - на 12 -й день (RS - Т менее приподнят, T углубился, амплитуда зубца R слегка уменьшилась, зубец Q не увеличился).

Распространенность инфаркта миокарда удовлетворительно определяется числом отведений, в которых регистрируются характерные изменения ЭКГ (прямые и реципрокные). Более точную информацию о распространенности инфарктов передней локализации позволяет получить регистрация множественных про кардиальных отведений. Признаком трансмурального инфаркта миокарда, а также аневризмы левого желудочка служит зубец (исчезновение зубца R) в тех отведениях, где в норме регистрируется высокий зубец R. При интрамуральном (мелкоочаговом и крупноочаговом) инфаркте миокарда комплекс QRS обычно не изменяется (иногда снижается амплитуда зубца R), главным электрокардиографическим признаком является отрицательный «коронарный» зубец Т, регистрируемый в течение 3 недель и более. Сравнительно большая длительность этих изменений и обычно наблюдаемая повторная инверсия зубца Т позволяет отличать интрамуральный инфаркт от острой ишемии с очаговой дистрофией миокарда. Для субэндокардиального инфаркта миокарда характерна значительная депрессия сегмента RS-T с последующим формированием отрицательного зубца Т. Все формы острой коронарной недостаточности могут привести к нарушению внутрижелудочковой проводимости, к-рое нередко затрудняет диагностику очаговых изменении. При инфаркте миокарда часто наблюдаются также различные виды аритмии и нарушения предсердно-желудочковой проводимости.

Вегетативно-дисгормональная миокардиодистрофия часто проявляется инверсией зубца Т и депрессией сегмента RS-T. Эти изменения ЭКГ обычно не соответствуют клинике заболевания (появлению и исчезновению болей в области сердца). Они нередко сохраняются на ЭКГ многие месяцы и даже годы, хотя их выраженность меняется. Для дифференциальной диагностики вегетативно-дисгормональной миокардиодистрофии и ишемической болезни сердца применяют фармакол. электрокардиографические пробы с препаратами калия и блокаторами β-адренергических рецепторов (обзидан и др.). Исчезновение отрицательных зубцов Т и депрессии сегмента RS- Т через 60-90 минут после приема этих препаратов расценивается как положительный результат пробы (считается характерным для вегетативно-дисгормональной миокардиодистрофии).

При миокардите (см.) на ЭКГ регистрируются изменения зубца Т от снижения вольтажа до инверсии. При проведении электрокардиографических проб с препаратами калия и β-блокаторами зубец Т остается отрицательным. Нередко определяются нарушения сердечного ритма (экстрасистолия, мерцательная аритмия и др.) и проводимости.

Перикардит (см.) характеризуется в острой стадии значительной элевацией сегмента RS-T (повреждение субэпикардиальных слоев миокарда). Часто эта элевация сегмента RS- Т во всех стандартных и грудных отведениях носит конкордантный (однонаправленный) характер. Однако может наблюдаться и дискордантное смещение. Комплекс QRS при фибринозном перикардите не изменен (рис. 17). В дальнейшем (через 2-3 недели) наблюдается инверсия зубца T. смещение сегмента RS-T постепенно уменьшается. При накоплении экссудата резко уменьшается амплитуда зубцов комплекса QRS и других зубцов во всех отведениях. Иногда регистрируется альтернация комплекса QRS, под которой понимают регулярное чередование желудочковых комплексов, имеющих две несколько различные амплитуды и формы. Небольшая деформация одного из комплексов обусловлена главным образом определенным видом неполной внутрижелудочковой блокады. При слипчивом перикардите сегмент RS-T и зубец Т нередко дискордантны основному зубцу комплекса QRS; определяются признаки перегрузки предсердий.

Рис. 18. Электрокардиограмма при тромбоэмболии легочной артерии:RS I и QR III при уширении S I и R III, в отведении V1 комплекс rSr" (синдром S I, Q III и неполная блокада правой ветви пучка Гиса); сегмент RS - Т приподнят одновременно в отведениях III, aVF и V1; зубец Т отрицательный в отведениях III и V1-V3.

Тромбоэмболия легочного ствола и легочных артерий, вызывая синдром острого легочного сердца (см. Легочное сердце), обусловливает острую перегрузку, гипоксию и дистрофию правого желудочка и межжелудочковой перегородки. Поражение последней часто ведет к развитию электрокардиографического синдрома Мак-Гинна - Уайта - SI QIII (RS I, QR III), который рассматривается как проявление неполной или полной блокады левой задней ветви пучка Гиса (рис. 18). Значительно реже возникает неполная или полная блокада правой ветви пучка Гиса. Наиболее частыми электрокардиографическими признаками тромбоэмболии крупных ветвей легочного ствола являются смещение вверх сегмента RS - Т одновременно в отведениях III, aVF и V 1,2 (реже V3, v4), а также инверсия зуб ца T (III, aVF,V1-V3). Эти изменения возникают быстро (в течение десятков минут) и нарастают в течение первых суток. При благоприятном течении заболевания они исчезают за 1-2 недели, лишь инверсия зубца Т сохраняется иногда 3-4 недели.

Рис. 19. Электрокардиограмма при передозировке дигоксина: неполная атриовентрикулярная блокада второй степени с периодами Самойлова - Венкебаха (5: 4), интервал Q - Т укорочен (0,32 сек., при должном 0,35 сек.), сегмент RS - Т «корытообразно» смещен вниз от изолинии.

Применение некоторых лекарственных препаратов (сердечные гликозиды, хинидин, новокаинамид, мочегонные средства, кордарон и др.) может привести к изменениям ЭКГ. Одни из них отражают наличие терапевтического эффекта (например, при лечении гликозидами укорочение интервала Q-Т, депрессия сегмента RS- Т, снижение зубца Т и нормализация частоты сердечных сокращений), другие (рис. 19) указывают на интоксикацию вследствие передозировки препарата (например, при гликозидной интоксикации появление желудочковых экстрасистол, особенно политопных, или бигеминии, атриовентрикулярной блокады и других изменений ритма и проводимости вплоть до фибрилляции желудочков).

Электрокардиография в диагностике нарушений сердечного ритма и проводимости играет первостепенную роль. Оценка ЭКГ при аритмиях (см. Аритмии сердца) проводится прежде всего на основании измерения и сопоставления межцикловых и внутрицикловых интервалов в записях в течение 10-20 сек., а иногда и более длительных. Важное значение при этом имеет и анализ конфигурации и направления зубца Р и зубцов комплекса QRS, в том числе векторный пространственный их анализ. С этой точки зрения целесообразна синхронная регистрация отведений I, II, III и V1 (или I, III и V1), а также отведения Лиана (см. выше). В некоторых случаях для точного диагноза рекомендуется регистрация электрограмм пучка Гиса, а также внутрипредсердных и внутрижелудочковых электрограмм (см. Мерцательная аритмия, Пароксизмальная тахикардия, Экстрасистолия).

Все вышеизложенное указывает на большую диагностическую ценность электрокардиографии в отношении широкого спектра клинических форм и синдромов, особенно различных форм ишемической болезни сердца, миокардита и перикардита, гипертрофии, острых перегрузок различных отделов сердца и нарушений сердечного ритма и проводимости. Достоинством метода является возможность его применения в любых условиях и безвредность для больного. Эти качества привели к широкому внедрению электрокардиографии в практическую медицину.

Особенности электрокардиографии у детей

Для регистрации ЭКГ у детей можно использовать любые современные одноканальные или многоканальные электрокардиографы; для записи ЭКГ у плода применяют более чувствительные приборы, напр, отечественный аппарат ЭМП2-01. ЭКГ записывают обычно в 12 общепринятых отведениях. Для отведений от конечностей у новорожденных применяют прямоугольные или овальные электроды размером 3x2 см, у детей до 7-8 лет - размером 4x3 см. Для регистрации грудных отведений у новорожденных используют круглые электроды диаметром 5 мм, у детей до 3 лет - электроды диаметром 10-15 мм, у детей до 7-8 лет - 15-20 мм. При записи ЭКГ у детей старше 8 лет пользуются электродами таких же размеров, как и у взрослых.

ЭКГ у плода регистрируют непрямым методом (оба электрода располагают на передней брюшной стенке женщины), комбинированным методом (один электрод помещают на переднюю брюшную стенку, а второй - в прямую кишку, влагалище или матку) и прямым методом (электроды устанавливают непосредственно на головку рождающегося плода).

У здоровых детей разного возраста ЭКГ имеет свои особенности. Это зависит от анатомического положения сердца в грудной клетке, соотношения толщины стенок левого и правого желудочков, особенностей нейроэндокринной регуляции сердечно-сосудистой системы. Частота сердечных сокращений у плода в ранние сроки беременности составляет 150-170 в 1 мин., в конце беременности - 120-140 в 1 мин.; продолжительность интервала Р-Q в начале беременности колеблется от 0,06 до 0,12 сек., в поздние сроки беременности - от 0,08 до 0,13 сек.; длительность комплекса QRS возрастает с 0,02-0,03 сек. в ранние сроки беременности до 0,04 -0,05 сек.- в поздние ее сроки. С увеличением срока беременности увеличивается и амплитуда зубцов R, Q, S.

Регистрацию ЭКГ у плода производят для диагностики многоплодия, различных нарушений сердечной деятельности, с целью определения предлежащей части, исключения опухоли, несостоявшегося выкидыша и т. д.

После рождения ребенка на ЭКГ отмечается преобладание электрической активности правого желудочка сердца, что связано с особенностями внутриутробного кровообращения (см. Плод). Электрическая ось сердца отклонена вправо, угол а колеблется между + 90 и +180°. Ритм сердечных сокращений у новорожденных характеризуется выраженной лабильностью. В первые дни жизни наблюдается относительная брадикардия (110-130 сокращений в 1 мин.), затем повышение частоты сердечных сокращений со значительными колебаниями (от 130 до 180 сокращений в 1 мин.). Зубец Р в I и II стандартных отведениях высокий и часто заостренный, особенно у недоношенных. Отношение его высоты к высоте зубца R в указанных отведениях составляет 1:3. Зубец Q глубокий в отведениях II, III, aVF и aVR. Зубец R в отведениях II, III, aVF, V3-V6 высокий, а зубец S в отведениях I, aVL, V2-V6 глубокий. Зубец Т в стандартных отведениях снижен, иногда двухфазный или даже отрицательный; отношение его амплитуды к высоте зубца R I-II составляет 1: 6. В отведениях aVL и aVF он может быть отрицательным, а в отведении aVR - положительный. В грудных отведениях от V1 до V3 и даже до V4 зубец Т отрицательный, зубец T (V5,V6) снижен, иногда отрицательный.

Длительность основных интервалов и ширина зубцов ЭКГ у детей с возрастом увеличиваются. Продолжительность зубца Р у новорожденных в среднем составляет 0,05 сек. (0,04-0,06 сек.), длительность интервала Р-Q - в среднем 0,11 сек. (0,09-0,13 сек.). Ширина комплекса QRS в среднем соответствует 0,05 сек. (0,04-0,06 сек.), продолжительность интервала Т колеблется в пределах 0,22-0,32 сек.

ЭКГ у детей до двух лет характеризуется в большинстве случаев преобладанием электрической активности правого желудочка сердца. Угол а колеблется в пределах от +40 до +120°. Частота сердечных сокращений составляет 110-120 в 1 мин. Зубец Р становится более закругленным; отношение его высоты к высоте зубца R в I и II стандартных отведениях - 1:6. Сохраняется глубокий (больше 1/4 амплитуды зубца R) зубец Q (II,III,aVF,aVR). В I стандартном отведении высота зубца R увеличивается, а глубина зубца S уменьшается. В грудных отведениях (V2-V6) отмечаются высокие зубцы R и довольно глубокие зубцы S. Зубец Т I,II становится выше и составляет 1/з -1/4 часть высоты зубца R. В отведениях aVL, aVF, V5, V6 зубец Т положительный, но ниже, чем у старших детей, а в отведениях V1-V3 и часто в отведении V4 отрицательный. Продолжительность интервалов и ширина зубцов ЭКГ у детей раннего возраста по сравнению с новорожденными несколько увеличивается. Ширина зубца Р в среднем составляет 0,06 сек. (0,04-0,07 сек.), длительность интервала Р-Q - 0,12 сек. (0,11-0,15 сек.), ширина комплекса QRS - 0,06 сек. (0,04-0,07 сек.), продолжительность QRST варьирует в пределах 0,24-0,32 сек.

ЭКГ у детей от 2 до 7 лет характеризуется дальнейшим снижением электрической активности правого желудочка сердца и увеличением левого. Угол а колеблется в пределах от + 40 до +100°. Частота сердечных сокращений составляет 90-110 в 1 мин. Отношение высоты зубца P I,II к высоте зубца R I,II - 1: 8.

Зубец Q в стандартных отведениях менее выражен и наблюдается не нсегда. Высота зубца R в левых грудных отведениях увеличивается, а в правых - уменьшается, в то время как величина зубца S увеличивается в правых грудных отведениях и уменьшается в левых. Зубец Т(I,II,aVL,V5,V6), как правило, положительный и выше, чем у детей раннего возраста; зубец T (V1-V3), а иногда и T(V4) отрицательный. Ширина зубца Р у детей этого возраста в среднем составляет 0,07 сек. (0,05-0,08 сек.), длительность интервала Р - Q - 0,13 сек. (0,11-0,16 сек.), ширина - 0,07 сек. (0,05-0,08 сек.), продолжительность QRST колеблется в пределах 0,27-0,34 сек.

ЭКГ у детей 7-15 лет отличается от ЭКГ взрослых более выраженной лабильностью частоты сердечных сокращений (что связано, в частности, с наличием значительной дыхательной аритмии), меньшей продолжительностью основных интервалов. Частота пульса варьирует в пределах 70-90 ударов в 1 мин. Больше чем в половине случаев отмечается нормальный тип ЭКГ. Соотношение между амплитудами зубцов становится примерно таким же, как у взрослых. Ширина зубца Р у детей этого возраста в среднем составляет 0,08 сек. (0,06-0,09 сек.), продолжительность интервала Р -Q 0,14 сек. (0,14-0,18 сек.), ширина комплекса QRS 0,08 сек. (0,06- 0,09 сек.), длительность QRST колеблется в пределах 0,34-0,45 сек.

Таким образом, к основным особенностям ЭКГ у детей относятся: 1) более высокая частота сердечных сокращений; 2) лабильность сердечного ритма; 3) преобладание электрической активности правого желудочка над активностью левого; 4) меньшая ширина зубцов и продолжительность интервалов; 5) наличие отрицательного зубца Т в III стандартном и правых грудных отведениях.

Электрокардиографы

Электрокардиограф - прибор, предназначенный для усиления и регистрации электрических потенциалов, возникающих на поверхностях тела, а также в полостях внутренних органов и в глубине биологических тканей в результате электрических процессов, которыми сопровождается распространение возбуждения по сердцу.

Рис. 20. Структурная схема электрокардиографа: Э - электроды; КО - коммутатор отведений; УБП - усилитель биопотенциалов; РУ - регистрирующее устройство; УК - устройство калибровки.

Современный электрокардиограф состоит из следующих основных узлов: коммутатора отведений, усилителя биопотенциалов, регистрирующего устройства и устройства калибровки. Неотъемлемой его частью являются электроды. Обоб щенная структурная схема электрокардиографа представлена на рис. 20. Принцип работы электрокардиографа заключается в следующем. Электрический сигнал, снимаемый с поверхности тела, полостей внутренних органов или из глубины тканей посредством электродов, через кабель отведения поступает на коммутатор отведений, а затем на вход усилителя биопотенциалов. Усиленный до величины, достаточной для приведения в действие гальванометра, сигнал поступает на вход регистрирующего устройства, где преобразуется в перемещение пишущего устройства (световой луч, перо, струя чернил). Лентопротяжный механизм регистрирующего устройства передвигает с точно установленной скоростью диаграммную бумагу, на которой записывается ЭКГ.

Конструктивно электрокардиографы выполняют, как правило, одно-, двух-, четырех- и шестиканальными. В зависимости от конструкции основные узлы либо объединяются в единый корпус (одноканальные электрокардиографы), либо могут быть выполнены в виде отдельных самостоятельных блоков (многоканальные электрокардиографы). Характерная особенность одноканальных электрокардиографов - наличие общей панели, на к-рой располагаются все органы управления. Одноканальные электрокардиографы имеют малые габариты и массу от 0,4 до 5 кг. Многоканальные электрокардиографы изготавливают в виде отдельных блоков и кассет. Блочно-кассетная конструкция обеспечивает взаимозаменяемость блоков и кассет, упрощает эксплуатацию, ремонт, сборку и разборку прибора. Многоканальные электрокардиографы обычно имеют горизонтальную компоновку. Габариты многоканальных электрокардиографов значительно больше, чем одноканальных, а масса может превышать 40 кг. В одноканальных электрокардиографах для коммутации отведений обычно используют один многопозиционный переключатель, с помощью которого последовательно можно регистрировать отведения I, II, III, аVR, аVL, аVF, V, а также калибровочный сигнал. Многоканальные электрокардиографы имеют два переключателя, позволяющие в любой последовательности коммутировать отведения I, II, III, aVR, aVL, AVF, V1-6. В связи с тем, что на вход коммутатора отведений поступает сигнал низкого напряжения, основное требование к коммутатору - обеспечение малого переходного сопротивления на контактах. Электрический сигнал поступает на вход коммутатора через кабель отведений. Кабель отведений предназначен для подключения к электрокардиографу электродов, наложенных па тело пациента. Кабель отведений состоит из проводов, число к-рых соответствует числу электродов; концы этих проводов снабжены контактами для подключения к электродам. Провода кабеля отведений маркируются следующим образом; красный - к электроду на правой руке, желтый - к электроду на левой руке, зеленый - к электроду на левой ноге, черный или коричневый - к электроду на правой ноге, белый - к грудному электроду.

Скоммутированный в нужной последовательности и комбинации сигнал имеет величину порядка 0,03-5 мв, в связи с чем зарегистрировать его на бумажной ленте без предварительного усиления невозможно. Поэтому сигнал с коммутатора отведений поступает на вход усилителя биопотенциалов. Здесь сигнал усиливается до величины, необходимой для перемещения гальванометра. Усилители современных электрокардиографов чаще всего выполняются на интегральных схемах. Для этой цели широко используются промышленные интегральные схемы операционных усилителей, позволяющие построить усилители биопотенциалов очень высокой чувствительности (порядка 10 мкв) с малым уровнем собственных шумов (5-10 мкв), большим входным сопротивлением (5 МОм и выше), высокой помехоустойчивостью, способностью подавлять сетевые помехи в 10 тысяч раз и более по отношению к регистрируемому полезному сигналу.

Усиленный сигнал поступает на вход регистрирующего устройства, с помощью которого обеспечиваются такие важные характеристики электрокардиографов, как скорость движения бумажной ленты, толщина линии записи и др. Регистрационное устройство электрокардиографа с чернильной и тепловой записью состоит из перьевого гальванометра и лентопротяжного механизма. Гальванометр служит для преобразования электрического сигнала в перемещение пера. Гальванометр состоит из магнитопровода, разделенного воздушными зазорами на две симметричные половины, ротора, двух катушек управления движением пера и двух постоянных магниов. Зависимость между перемещением пера и током в катушке стремятся сделать близкой к линейной. Вращающий момент, действующий ротор, отклоняет перо, закрепленное на выходном конце вала ротора.

Лентопротяжный механизм предназначен для перемещения диаграммной ленты, на которой производится запись ЭКГ. Один из вариантов конструкции лентопротяжного механизма состоит из двигателя, редуктора, подвижного стола. Вращение от двигателя к валику, протягивающему бумагу, передается редуктором. В нижней части подвижного стола находится втулка, на которую надевают рулон диаграммой бумаги. Стол имеет три направляющих валика и направляющие пазы для строго фиксированного перемещения бумажной ленты. Лента протягивается обрезиненным валиком редуктора. Бумага прижимается к обрезиненному валику цилиндрическими пружинами.

Многие электрокардиографы имеют широкий диапазон скоростей движения бумажной ленты: 1; 2,5; ; 10; 25; 50; 100; 250 мм/сек. Толщина линии записи лежит в пределах 0,3-1 мм, ширина записи (размах колебаний пишущего устройства) - в пределах 40-100 мм. Скорость чернильной и тепловой записи достигает 10 м/сек, скорость фотозаписи практически не ограничена. На качество записи в значительной мере влияет конструкция ищущего устройства. Наибольшую массу, а следовательно, и инерцию имеют металлические перья для чернильной и тепловой записи; меньшей инерцией обладают струйные гальванометры (в аппаратах типа «Мингограф»); наименее инертны гальванометры с лучевой записью. Большое значение имеет и качество бумажной ленты. Основа бумажной ленты (диаграммной бумаги) должна быть механически прочной и в то же время иметь минимальную толщину. Бумага не должна деформироваться под действием натяжения в лентопротяжном механизме.

Необходимым узлом любого электрокардиографа является устройство калибровки, предназначенное для подачи на вход усилителя калибровочного напряжения 1 мв, относительно которого измеряется амплнтуда зубцов ЭКГ. Электрокардиографы могут иметь вспомогательные приспособления: систему успокоения гальванометра, регулировку накала пера (для электрокардиографа тепловой записью), ручки управления перемещением пера и т. д. Функциональные свойства электрокардиографа можно расширить за чет включения различных приставок. Для этой цели устанавливают выходные разъемы, к которым можно подключить, например, осциллоскоп для визуального наблюдения ЭКГ и т. п.

В соответствии с действующим ГОСТ электрокардиографы классифицируют по виду пишущего элемента и роду носителя информации на перьевые с записью на тепло-чувствительной бумаге, чернилами на диаграммной бумаге, на бумаге с использованием копировальной ленты и на электрочувствительной бумаге, струйные с записью на бумаге, лучевые с записью на фотобумаге, лучевые с записью па полупроводниковой бумаге, лучевые с записью на бумаге с непосредственным проявлением. Кроме того, различают электрокардиографы с сетевым, автономным или комбинированным питанием. ЭКГ может быть получена также средствами телеметрии (см. Телеметрия, Телеэлектрокардиография). В системах мониторирования (см. Мониторное наблюдение) используется промежуточная запись биопотенциалов на магнитную ленту. Дальнейшее совершенствование электрокардиографов идет по пути автоматизации управления работой этих приборов, применения в них автоматической обработки ЭКГ в реальном масштабе времени с выдачей результатов обработки ЭКГ в виде буквенно-цифровой информации непосредственно на бумажной ленте или дисплее.

Библиогр. : Воробьев А. И., Шишкова Т. В. и Коломейцева И. П. Кардиалгии, М., 1980; Гасилин В. С, и Сидоренко Б. А. Стенокардия, М., 1981; Дехтярь Г. Я. Электрокардиографическая диагностика. М., 1972; Дощицин В. Л. Клинический анализ электрокардиограммы, М., 1982, библиогр.; Зеленин В. Ф. Электрокардиограмма, ее значение для физиологии, общей патологии, фармакологии и клиники, Воен.-мед. журн., т. 128, август, с. 677, 1910; Исаков И. И., Кушаковский М. С. и Журавлева Н. Б. Клиническая электрокардиография, Д., 1984, библиогр.; Кубергер М. Б. Руководство по клинической электрокардиографии детского возраста, Д., 1983; Кушаковский М. С. и Журавлева Н. Б. Аритмии и блокады сердца: (Атлас электрокардиограмм), Л., 1981, библиогр.; Незлин В. Е. и Карпай С. Е. Анализ и клиническая оценка электрокардиограммы, М., 1959; Руководство по кардиологии, под ред. Е. И. Чазова, т. 2, М., 1982; Самойлов А. Ф. Кольцевой ритм возбуждения, Науч. слово, № 2, с. 73, 1930; Фогельсон Л. И. Клиническая электрокардиография, М., 1957, библиогр.; Чернов А. 3. и Кечкер М. И, Электрокардиографический атлас, М., 1979, библиогр.; Chou Т. - С. Electrocardiography in clinical practice, N. Y., 1979; Conover М. B. Understanding electrocardiography, St Louis, 1980; Differentialdiagnostik des EKG, hrsg. v. E. Nusser u. a., Stuttgart - N. Y., 1981: Dudea C. Electrocardiografie: Teoretica si practica, Bucuresti, 1981; Einthoven W. Die galvanometrische Registrierung des menschlichen Elektrokardiogramine, zugleich eine Beurtheilung Anwendung des Capillar-Elektrometers in der Physiologie, Pflugers Arch. ges. Physiol., Bd 99, S. 472, 1903; Einthoven W., Fahr G. u. Waart A. Uber die Richtung und die manifeste Grosse der Potentialschwankungen im menschlichen Herzen und fiber der Einfluss den Herzlage auf die Form des Electrokardiogramms, ibid., Bd 150, S. 275, 1913; GoldbergerE. The aVl, aVr and aVf leads, Amer. Heart J., v. 24, p. 378, 1942; Grant R. P, Clinical electrocardiography, N. Y. a. o. 1957; Lewis T. The mechanism and graphic registrations of the heart beat, L.t 1920; McLachlan E. M. Fundamentals of electrocardiography, Oxford, 1981; Marriott H.J. L. Practical electrocardiography, Baltimore - L., 1983; Ritter O. u. Fattorusso V. Atlas der Elektrokardiographie, Jena, 1981, Bibliogr.; Samojloff A. u. Tschernоff A. Reziproker Herzrhythmus beim Menscben, Z. ges. exp. Med., Bd 71, S. 768, 1930; Schaefer H. Das Elektrokardiogramm, B. u. a., 1951, Bibliogr.; Waller A. D. A demonstration in man of electromotive changes accompanying the heart’s beat, J. Physiol. (Lond.), v. 8, p. 229, 1887; What’s new in electrocardiography, ed. by H. J. Wellens a. H. E. Kulbertus, Hague a. o., 1981.

М. И. Кечкер, Ю. H. Гавриков; E. В. Неудахин (пед.), P. И. Утямышев (техн.), Б. М. Цукерман (теоретические основы).

Электрокардиография - метод исследования работы сердечной мышцы. При помощи ЭКГ-аппарата происходит фиксирование образующихся электрических полей с дальнейшим выведением результатов в виде графического изображения на термобумагу (в большинстве случаев). Первый ЭКГ-аппарат записывал данные на фотопленку, затем существовали чернильные самописцы. Если же прибор полностью электронный, то данные можно сохранять в память компьютера.

Использование электрокардиографов

Процедура электрокардиографии проводится со следующими целями:

  • определение частоты и регулярности сокращений сердечной мышцы;
  • если нужно определить наличие ишемической болезни или инфаркта;
  • если нужно подтвердить или опровергнуть наличие электролитной недостаточности;
  • уточнение наличия сердечных блокад;
  • оценка состояния в динамике при проведении проб с нагрузкой;
  • если нужно уточнить анатомо-физиологические особенности сердца (например, ;
  • если нужно подтвердить или опровергнуть развитие тромбоэмболии легочной артерии;
  • в превентивных целях в период диспансеризации населения.

Современные аппараты

Еще 20-30 лет назад ЭКГ-аппарат представлял собой необъятную машину, которая тяжело поддавалась транспортировке и занимала много места в помещении. Современные технологии позволили уменьшить габариты устройств (вплоть до переносных) без потери качества в функциональности.

Прибор для ЭКГ может записывать один или одновременно несколько каналов, на чем и основано разделение на группы. Кроме того, он должен быть снабжен определенным программным обеспечением:

  • синдромальное заключение по результатам полученных данных;
  • при нарушениях сердечного ритма должны автоматически включаться специальные отведения;
  • наличие устройства для дефибрилляции и его ручное управление;
  • мониторинг деятельности сердца на протяжении длительного времени с записью результатов в память прибора;
  • возможность сделать ЭКГ нескольким пациентам и одновременная фиксация этих данных в памяти аппарата;
  • дистанционный контроль.

Одноканальные приборы

Используются практически во всех государственных и частных лечебно-профилактических учреждениях, службах скорой помощи. Такой портативный электрокардиограф имеет вес до 1 кг. В прибор встроен мини-принтер, который выдает данные ЭКГ на термобумагу. Существует возможность автоматического определения диагноза. Такой ЭКГ-аппарат может функционировать от сети или от встроенного аккумулятора.

Существуют еще меньшие по габаритам модели (около 800 г), которые пользуются успехом среди фельдшеров. Есть возможность записывать небольшое количество данных в памяти устройства для ЭКГ. Цена одноканальных приборов находится в пределах 22-30 тысяч рублей.

Трехканальные аппараты

Такие электрокардиографы наделены термопринтером и трехканальным выведением результатов исследования. Обладают следующими особенностями:

  • расчеты проводятся автоматически, контроль работы прибора не нужен;
  • термопринтер обладает значительным расширением, позволяющим, помимо графических данных электрокардиограммы, указывать личную информацию о пациенте, используемый электрофильтр, уровень увеличения амплитуды исследования;
  • результаты могут быть перенесены на персональный компьютер для высчитывания дополнительных показателей;
  • существует возможность проведения дефибрилляции.

Стоимость трехканальных электрокардиографов находится в пределах 50 тысяч рублей.

Шестиканальные устройства

Такой ЭКГ-аппарат имеет более широкую сферу применения. Им пользуются сотрудники спасательных служб, военных госпиталей, служб скорой помощи, частных клиник. Снятие ЭКГ возможно на двух видах шестиканальных устройств: портативных (переносных) и компьютерных.

Особенности:

  • сохранение в памяти около 1000 результатов обследования (в наличии жесткий диск с 10 Гб);
  • возможность проводить обследование 150 пациентов без подзарядки аппарата;
  • высокая которая осуществляется автоматически;
  • возможность использования нескольких форматов бумаги для фиксирования результатов.

Помимо всего прочего, такой прибор для ЭКГ, цена которого находится в пределах 75 тысяч рублей, показывает состояние устройства: заряд аккумулятора, память, отсоединение электродов, выдает предупреждение о скором окончании бумаги.

Двенадцатиканальные электрокардиографы

Используются в ортопедии, терапии, хирургии, при неотложных состояниях, в период реабилитации после операционных вмешательств, при проведении физиотерапевтических манипуляций. Снятие ЭКГ на таком аппарате имеет массу преимуществ. Прибор позволяет делать часовую запись данных для одного пациента, вносить данные о больном, а также управлять электрокардиографом с компьютера.

Интересным моментом является то, что можно вбивать данные нормы, а в случае определения отклонений при обследовании прибор будет выдавать сигнал о нарушениях. Сделать ЭКГ позволяет набор, который состоит из следующих элементов:

  • электрокардиограф;
  • компьютер, который может связываться с ЭКГ-устройством через проводниковую или беспроводниковую связь;
  • принтер, позволяющий распечатать данные о результатах диагностики;
  • велоэргометр - прибор, с помощью которого можно оценить работу сердечной мышцы с нагрузкой, подключается к электрокардиографу через Bluetooth;
  • программное обеспечение.

Стоимость двенадцатиканальных приборов колеблется от 100 до 500 тысяч рублей, что зависит от страны производителя и комплектации набора.

Проведение исследования

Чтоб измерить разность потенциалов, используются электроды для ЭКГ одноразовые, которые накладываются на определенные участки тела. На область фиксации наносится гель, который улучшает проводимость кожных покровов. Так делают сейчас, а раньше использовались салфетки из марли, смоченные в соленой воде.

Клетки сердечной мышцы представляют собой маленькие электрические генераторы, которые при наступлении волны возбуждения заряжаются и разряжаются. Электрокардиограмма - итоговый показатель функциональных способностей этих генераторов, отображающий распространение электрических импульсов в сердце.

Что видит врач на кардиограмме?

Обычно на ЭКГ можно определить следующие показатели:

  1. Зубец Р - является отражением деполяризации предсердий.
  2. QRS - комплекс, обозначающий деполяризацию желудочков.
  3. ST и зубец Т - реполяризация желудочков.
  4. Волна U - специалисты имеют разные мнения о ее назначении. Одни считают, что волна обусловлена реполяризацией другие говорят о проникновении калия в сердечные клетки в период расслабления.

Важно знать о расположении отведений, благодаря которым измеряется разность потенциалов. Первые три отведения накладывают на конечности (красный электрод на правую руку, желтый - на левую, зеленый - на левую ногу). На правую ногу накладывают черный электрод, которые не измеряет показатели, а является заземлением.

Грудные отведения, на которые накладываются электроды для ЭКГ (одноразовые):

  • V1 - правый край грудины в 4-м межреберье;
  • V2 - левый край грудины в 4-м межреберье;
  • V3 - по середине между V2 и V4;
  • V4 - срединно-ключичная линия в 5-м межреберье;
  • V5 - по передней подмышечной линии на пересечении с горизонтальным уровнем V4;
  • V6 - по средней подмышечной линии на пересечении с горизонтальным уровнем V4;
  • V7 - по задней подмышечной линии на пересечении с горизонтальным уровнем V4;
  • V8 - по срединно-лопаточной линии на пересечении с горизонтальным уровнем V4;
  • V9 - по паравертебральной линии на пересечении с горизонтальным уровнем V4.

Другие методы ЭКГ

Существует значительное количество методик. Например, электрокардиография через пищевод. В просвет пищевода вводят электрод в активном виде. Такой метод информативен при различных сердечных блокадах.

Векторкардиография - диагностический метод, позволяющий фиксировать электрический вектор функциональности сердечной мышцы в виде проекции объемных фигур на плоскую поверхность.

Суточный мониторинг по Холтеру - оценка работы сердечной мышцы в динамике на протяжении длительного времени. Положительным моментом является возможность его проведения не только в стационарных, но и в домашних условиях. По окончании диагностики данные передаются на компьютер, где уже происходит их изучение врачом.

Гастрокардиомониторирование - происходит одновременная фиксация данных ЭКГ и гастрограммы на протяжении 24 часов. Вместе с прибором для электрокардиографии пациенту вводят через которые получают данные о кислотности в пищеводе или желудке.

Медицина в целом и кардиология в частности не стоят на месте. С каждым годом диагностическое оборудование усовершенствуется, трансформируя в достоинства те моменты, которые раньше были недостатками.

История кардиографии и ЭКГ начинается со знаменитого опыта Гальвани , установившего в 1786 году наличие электрических явлений в организме животного, возникающих при мышечном движении.

Гельмгольц в 1854 году показал, что каждая точка мышцы в момент своего возбуждения заряжается электроотрицательно относительно к участкам мышцы, находящихся в покое. Таким образом, впереди волны сокращения распространяется электроотрицательная волна.

Уоллер в 1875 год впервые зарегистрировал токи действия обнаженных сердец животных, а затем (1887г) и сердце человека. В отличие от электрограммы сердца, полученной непосредственной с обнаженного сердца животных, электрограмму, полученную с поверхности тела человека стали называть ЭКГ. Она в тот время имела всего 3 зубца, напоминающие Р, R и Т современной ЭКГ. Уоллер пришел к выводу, что верхушка сердца во время систолы положительно заряжена, а основание – отрицательно. Линия, соединяющая эти два полюса, была названа им электрической осью сердца.

Крупным событием в истории ЭКГ было применение сконструированного голландским ученым Эйнтховеном струйного гальванометра (1903г). ЭКГ уже состояла из 5 зубцов и напоминала современную запись.

Эйнтховеном был разработан классический метод отведений токов действия сердца от конечностей, который до сих пор применяется в клинической практике (система треугольника).

Совместно с сотрудниками Фаром и Ваартом предложил метод определения направления ЭОС. Им же было установлено математическое взаимодействие зубцов ЭКГ в трех классических отведениях.

Впервые теорию об ЭКГ как следствии интерференции суммарных токов действия правого и левого желудочков разработал основоположник отечественной клинической электрокардиографии В.Ф.Зеленин (1910г), задолго до Льюиса, блестяще подтвердившего ее экспериментально.

Льюис (1916г) экспериментально установил последовательность и время распространения возбуждения в различных отделах миокарда желудочков. Впервые введено понятие об электрическом векторе сердца.

В 1942 году Гольдберг предложил усиленные однополюсные отведения:

avR, avL, avF – augmented – увеличение, v – вольтаж.


Со­став­ные эле­мен­ты нор­маль­ной элек­т­ро­кар­дио­грам­мы

Зубцы ЭКГ. Сегменты и интервалы ЭКГ.

К составным элементам ЭКГ относятся: зубцы, интервалы, сегменты, комплексы. Они отражают процессы распространения возбуждения по различным отделам миокарда и его угасание.

Зубцы ЭКГ – это значимое отклонение кривой ЭКГ вверх или вниз от изоэлектрической линии. Зубцы обозначаются буквами латинского алфавита. Их названия: P, Q, R, S, T, U. Самый высокий из них – зубец R, самый низкий – зубец P.

Форма, величина и направление зубцов ЭКГ в разных отведениях определяются величиной и направлением проекции суммарного вектора ЭДС отделов миокарда на ось того или иного отведения.

Если вектор ЭДС направлен в сторону положительного (активного) электрода и проецируется на положительную часть оси отведения, регистрируются положительные зубцы (зубцы, направленные вверх). Всегда положителен зубец R, преимущественно положительны зубцы P,T.

Если вектор ЭДС направлен в сторону отрицательного электрода и проецируется на отрицательную часть оси отведения, регистрируются отрицательные зубцы (зубцы, направленные вниз). Всегда отрицательны зубцы Q, S.

Если вектор ЭДС перпендикулярен к оси отведения, зубцы на ЭКГ не регистрируются.

Если в течение распространения возбуждения по какому-то отделу миокарда вектор меняет свое направление по отношению к полюсам электродов, регистрируется двухфазный зубец. Двухфазными могут быть зубцы P и T в некоторых отведениях.

Интервалы ЭКГ – это временны е элементы, обозначающиеся двумя буквами соответственно зубцам, между которыми они регистрируются. К интервалам ЭКГ относятся:

PQ – от начала зубца Р до начала зубца Q (R).

QRS – от начала зубца Q (R) до конца зубца S (R).

QRST – от начала зубца Q (R) до конца зубца Т.

RR – между вершинами зубцов R в соседних сердечных циклах.

Изолиния регистрируется на ЭКГ, если разность потенциалов между возбужденным и невозбужденным участками миокарда равна «0» или очень мала (например, предсердия возбуждены полностью, а желудочки только в начальной фазе возбуждения; желудочки возбуждены полностью, а угасание возбуждения еще не началось или находится в начальной фазе), или, если сердце находится в состоянии покоя (диастола).

Сегменты ЭКГ – это отрезки кривой ЭКГ, находящиеся на уровне изоэлектрической линии или близко к ней. Обозначаются двумя буквами, соответственно зубцам, между которыми они регистрируются. К сегментам ЭКГ относятся:

PQ – от конца зубца Р до начала зубца Q (R) (не путать с интервалом PQ !!).

ST – от конца зубца S (R) до начала зубца Т.

ТР – от конца зубца Т до начала зубца Р следующего сердечного цикла.

Комплексы ЭКГ – это сложные элементы ЭКГ, включающие от одного до нескольких зубцов, интервалы, сегменты. Обозначаются соответственно зубцам, которые в них входят. К комплексам ЭКГ относятся следующие.

Зубец Р (предсердный комплекс) – отражает процесс возбуждения предсердий.

Комплекс QRS (начальная часть желудочкового комплекса) – отражает процесс возбуждения желудочков. Включает от 1 до 3 зубцов.

Комплекс QRST (желудочковый комплекс) – отражает процесс возбуждения и угасания возбуждения желудочков (электрическая систола желудочков). Состоит из комплекса QRS, сегмента ST и зубца Т.

Зубец Р ЭКГ (предсердный комплекс) отражает внутрипредсердную проводимость и процесс деполяризации (охват возбуждением) предсердий. Начальная, восходящая часть (до вершины) отражает возбуждение правого предсердия; вершина и часть нисходящей кривой отражает возбуждение и правого, и левого предсердий; конечная часть – только левого предсердия. Фаза реполяризации предсердий (предсердный зубец Т) на ЭКГ не регистрируется, т.к. сливается с комплексом QRS.

Сегмент PQ отражает распространение возбуждения по АВ-соединению, по пучку Гиса и его разветвлениям. Величина разности потенциалов при этом очень мала, поэтому на ЭКГ регистрируется изоэлектрическая линия.

Интервал PQ отражает процесс деполяризации (охват возбуждением) предсердий и распространение возбуждения по атрио-вентрикулярному соединению, пучку Гиса и его разветвлениям с задержкой волны возбуждения в АВ-узле и АВ-соединении.

Комплекс QRS (начальная часть желудочкового комплекса) отражает внутрижелудочковую проводимость и охват возбуждением желудочков (деполяризация желудочков).

Наличие 3-х зубцов, имеющих различное направление, в желудочковом комплексе QRS определяется последовательной сменой 3-х фаз распространения возбуждения по желудочкам и изменением ориентации 3-х главных суммарных моментных векторов. Это в свою очередь приводит к изменению величины и направления проекции главных векторов на оси отведений, что отражается регистрацией последовательных зубцов QRS желудочкового комплекса.

Зубец Q соответствует первому начальному главному вектору. Он отражает деполяризацию межжелудочковой перегородки, начиная со средней ее трети и субэндокардиальной части верхушки правого желудочка. Начальный моментный вектор ориентирован слева направо и несколько вверх, он малой величины и в большинстве отведений проецируется на отрицательные части осей отведений, поэтому на ЭКГ регистрируется непостоянный небольшой отрицательный зубец Q.

Зубец R соответствует среднему главному моментному вектору. Он отражает распространение возбуждения по миокарду правого и левого желудочков, кроме базальных отделов.

Средний главный моментный желудочковый вектор ориентирован справа налево и вниз, в сторону левого желудочка. Он большой величины и проецируется на положительные части осей большинства отведений, поэтому на ЭКГ регистрируются высокие положительные зубцы R.

Зубец S соответствует конечному главному моментному вектору. Он отражает деполяризацию базальных (верхних) отделов межжелудочковой перегородки и желудочков. Ориентация конечного вектора подвержена колебаниям. Чаще он ориентирован вверх, вправо и назад и проецируется на отрицательную часть большинства осей отведений. Поэтому на ЭКГ регистрируется непостоянный вариабельный отрицательный зубец S.

Интервал QRS отражает продолжительность проведения возбуждения по миокарду желудочков.

Интервал внутреннего отклонения – это время, соответствующее периоду от начала возбуждения желудочка до момента охвата возбуждением максимального количества его мышечных волокон. Показатель даёт представление о продолжительности активации правого (V 1) и левого (V 6) желудочков.

Сегмент ST отражает период полного охвата возбуждением обоих желудочков, когда разность потенциалов отсутствует, и период начальной, ранней реполяризации, когда возникающая ЭДС очень мала. Поэтому допускается небольшое смещение сегмента ST от изоэлектрической линии.

Зубец Т отражает процесс быстрой конечной реполяризации миокарда желудочков.

Зубец U регистрируется редко, окончательно его происхождение не выяснено. Предполагается, что он отражает реполяризацию волокон проводящей системы сердца. Чаще регистрируется в V 2 , V 3 , реже в V 4 -V 6 .

Интервал QRST отражает продолжительность электрической систолы желудочков.

Сегмент ТР соответствует фазе диастолы, когда восстанавливается поляризация мембраны клеток миокарда, последние находятся в невозбужденном состоянии (состояние покоя), разность потенциалов отсутствует. На ЭКГ регистрируется изоэлектрическая линия.

Интервал RR отражает продолжительность сердечного цикла и включает продолжительность предсердного (зубец Р) и желудочкового (QRST) комплексов, сегмента PQ и электрической диастолы сердца (сегмент ТР). Строго говоря, продолжительность сердечного цикла отражает интервал РР, который измеряется от начала зубца Р одного сердечного цикла до начала зубца Р следующего за ним цикла. Однако, на практике принято измерять интервал RR, который соответствует интервалу РР.


Анализ и характеристика

элементов электрокардиограммы

1. Оценка техники записи ЭКГ

1.1. Скорость движения ленты. Большинство современных электрокардиографов могут регистрировать ЭКГ с различной скоростью движения ленты: 12,5, 25, 50, 75 и 100 мм/с. При большой скорости (>50 мм/сек) ЭКГ выглядит растянутой с закруглёнными вершинами зубцов, при медленной – наоборот, наблюдается сближение заострённых зубцов ЭКГ, а амплитуда их кажется увеличенной. Как правило, при записи ЭКГ используют скорость 50 и 25 мм/с. Первая используется наиболее часто в повседневной практике, а вторая необходима при регистрации ЭКГ на длинную ленту при выявлении и анализе аритмий или при длительном ЭКГ-наблюдении. Скорость движения регистрируется на ленте ниже записи электрокардиограммы. При скорости 50 мм/с цена деления в 1 мм на ленте соответствует временному отрезку 0,02 с, при скорости 25 мм/с – 0,04 с.

1.2. Помехи при регистрации ЭКГ (наводные токи, дрейф изолинии из-за плохого контакта электродов с кожей и др.). Если помехи значительны, ЭКГ следует переснять.

1.3. Проверка контрольного милливольта. Для стандартизации зубцов ЭКГ ориентиром является контрольный милливольт – амплитуда калибровочного сигнала. При записи ЭКГ стандартное напряжение на входе составляет 1 милливольт (1 мВ), что соответствует отклонению осциллографа в 10 мм. Контрольный милливольт регистрируется на ленте после или перед записью ЭКГ, ли­бо ни­же ЭКГ записывается цифрами. При многоканальной записи ЭКГ одновременно регистрируется в нескольких отведениях. Нередко возникает ситуация, когда зубцы S и R в соседних отведениях наслаиваются друг на друга, тогда ЭКГ регистрируют с напряжением, уменьшенным до 0,5 мВ (5 мм).

Вид ЭКГ при разной величине контрольного милливольта

а) 10 мм/мВ

2. Измерение элементов ЭКГ

Постоянная скорость движения ленты и миллиметровая сетка на бумаге позволяют измерить продолжительность интервалов и амплитуду зубцов ЭКГ.

2.1. Определение продолжительности зубцов, интервалов, комплексов ЭКГ. Продолжительность измеряется на уровне изоэлектрической линии в том отведении от конечностей, в котором чётко выражены зубцы, являющиеся границами элементов (чаще всего во II стандартном), и выражается в секундах. Для этого необходимо количество миллиметровых клеточек умножить на 0,02 с при скорости движения ленты 50 мм/с или на 0,04 с - при скорости 25 мм/с.

2.2. Определение амплитуды (высоты, глубины) зубцов ЭКГ. Амплитуда зубцов расстояние в мм от вершины зубца до изоэлектрической линии.

2.3. Определение вольтажа ЭКГ. Так как наиболее высокими зубцами ЭКГ являются зубцы комплекса QRS, то имен­но на их амплитуду ориентируются, определяя вольтаж ЭКГ. При оценке вольтажа важно помнить о проверке контрольного милливольта (см. п. 1.2.). Измеряют амплитуду комплекса QRS от вершины зубца R до вершины зубца S в стандартных и грудных отведениях (оценку вольтажа см. в п. 6.3.5.).

3. Анализ сердечного ритма

Анализ сердечного ритма предусматривает:

Определение регулярности сердечных сокращений,

Определение водителя ритма,

Подсчёт частоты сердечных сокращений.

3.1. Определение регулярности сердечного ритма.

Регулярность сердечного ритма оценивается при сравнении продолжительности интерва­лов RR (РР) между последовательными сердечны­ми циклами. Если они близки (в пределах ±10% от средней продолжительности RR), сердечный ритм считается правильным (регулярным) . В противном случае ритм считается неправильным (нерегулярным) и следует идентифицировать аритмию.

3.2. Определение водителя ритма.

Для определения водителя ритма на ЭКГ необходимо оценить последовательность возбуждения отделов сердца: при синусовом номотопном ритме возбуждение предсердий предшествует возбуждению желудочков, поэтому в большинстве отведений (особенно в I, II, aVF, V 4 -V 6) зубцы Р положительные и регистрируются перед каждым комплексом QRS. Кроме того, зубцы Р имеют нормальную форму и ширину, и располагаются на одинаковом расстоянии от комплекса QRS (постоянный интервал PQ) в одном и том же отведении. При отсутствии этих признаков диагностируются различные варианты несинусового ритма : предсердный, желудочковый ритмы, ритм из AV-соединения и др. (эктопические, гетеротопные ритмы ).

3.3. Подсчёт частоты сердечных сокращений.

При правильном ритме проводится подсчёт продолжительности одного сердечного цикла (интервал RR в с), а далее выясняют, сколько таких циклов укладывается в 1 минуту (60 с), т.е.ЧСС = 60/ RR. Или можно воспользоваться специальной таблицей (таблица 1 приложений), в которой каждому значению RR (в с) соответствует заранее вычисленная ЧСС. Можно подсчитать и приблизительно: 600 разделить на количество больших клеток (5 мм) между RR. В случае небольшой синусовой аритмии подсчитывают среднюю цифру ЧСС по продолжительности нескольких (от 5 до 10) сердечных циклов. При выраженной синусовой аритмии определяют максимальную и минимальную ЧСС по продолжительности наибольшего и наименьшего RR. В заключении указывается два показателя ЧСС. При неправильном ритме в одном из отведений (чаще во II стандартном) ЭКГ записывают на длинную ленту. Подсчитывают число комплексов QRS, зарегистрированных за 3 с (15 см бумажной ленты при скорости 50 мм/с), и полученный результат умножается на 20.

3.4. Оценка частоты сердечных сокращений. При оценке ЧСС ориентируются на средневозрастной показатель и допустимые отклонения от него. В таблице 2 приложений приведены усреднённые показатели ЧСС по данным различных авторов. Если ЧСС выходит за пределы допустимых отклонений, говорят о тахикардии (учащение ЧСС) или брадикардии (урежение ЧСС). Возможна и более приблизительная эмпирическая оценка: допустимые отклонения составляют ±20% от средневозрастной нормы.

4. Анализ и оценка проводимости

Для определения проводимости измеряют:

Продолжительность зубца Р – проводимость по предсердиям;

Продолжительность интервала PQ – проводимость по предсердиям, AV-соединению и пучку Гиса;

Продолжительность комплекса QRS – проводимость по желудочкам;

В таблице 3 приложений приведены показатели продолжительности зубца Р, интервала PQ и комплекса QRS в зависимости от возраста. Увеличение продолжительности перечисленных элементов ЭКГ указывает на замедление, а уменьшение – на ускорение проведения импульсов в соответствующем отделе проводящей системы сердца.

Для закрепления прочитанного материала выполните следующее задание: На приведённой ЭКГ определить водитель ритма, подсчитать и оценить ЧСС, рассчитать продолжительность и амплитуду зубцов.

5. Определение положения электрической оси сердца

Электрическая ось сердца – это главное направление среднего результирующего вектора деполяризации желудочков (вектора QRS). Она определяется положением сердца в грудной полости. Т.к. сердце является трёхмерным органом, вектор QRS может быть спроецирован на фронтальную, горизонтальную и сагиттальную плоскости тела. В этих плоскостях могут происходить повороты сердца вокруг условных переднезадней (фронтальная плоскость), продольной (горизонтальная) и поперечной (сагиттальная плоскость) осей.

Повороты сердца вокруг осей характеризуются определёнными диагностическими признаками на ЭКГ. Для определение поворотов необходимо проанализировать величину и направление зубцов комплекса QRS в различных отведениях, т.к. последние отражают проекцию вектора QRS на оси этих отведений. Умение распознавать на ЭКГ повороты сердца вокруг осей, которые чаще всего происходят в нескольких плоскостях одновременно, важно для понимания и оценки расположения сердца в норме и, особенно, при патологии.

В обычной практике чаще ограничиваются определением поворотов сердца вокруг передне-задней оси во фронтальной плоскости, проходящей через 3 точки отведений от конечностей. Проекциюсуммарного вектораQRS на фронтальную плоскость и называют средней электрической осью сердца или просто электрической осью сердца (ЭОС) .

Переднезадняя ось сердца проходит спереди назад через центр массы сердца перпендикулярно к фронтальной плоскости. Поворот против часовой стрелки приводит сердце в горизонтальное положение (смещение ЭОС влево), а поворот по часовой стрелке – в вертикальное (смещение ЭОС вправо).

По предложению Эйнтховена ЭОС определяется в градусах и количественно выражается углом α , который образован электрической осью сердца и осью I отведения или тождественной последней горизонтальной линией, проведённой через электрический центр сердца. Чтобы получить величину угла α, следует описать окружность через вершины треугольника Эйнтховена с центром, совпадающим с электрическим центром сердца, или воспользоваться 6-и осевой схемой Бейли. Отчёт градусов условно принято начинать с правой стороны окружности от точки пересечения с горизонтальной линией, проведённой через электрический центр сердца, и делящей круг на нижнюю (положительную) и верхнюю (отрицательную) части. Отсчёт градусов в нижней половине идёт по часовой стрелке, начиная с 0° и до +180°; в верхней половине – против часовой стрелки, начиная с 0° и до -180°. Размещая электрический вектор в различных секторах окружности, можно определить величину угла α.

В норме у здоровых людей ЭОС ориентирована сверху вниз, справа налево чаще под уг­лом α=30°-70° с допустимыми отклонениями к вертикальному положению у астеников или горизонтальному – у тучных людей и гиперстеников. Таким образом, у здоровых людей угол α колеблется от 0° до 90°, располагаясь в левом нижнем квадранте окружности. ЭОС приблизительно соответствует ориентации анатомической оси серд­ца. У детей направление ЭОС изменяется с возрастом ребёнка (см. раз­дел «Осо­бен­но­сти ЭКГ у де­тей»). Для определения положения ЭОС нужно сопоставить и проанализировать соотношение и направление зубцов комплекса QRS в отведениях от конечностей (для приблизительной оценки достаточно только стандартных отведений).

При проекции ЭОС на положительную часть оси отведения, в этом отведении в комплексе QRS преобладает зубец R (R>S). При проекции ЭОС на отрицательную часть оси отведения в комплексе QRS преобладает зубец S (S>R).

Если ЭОС расположена параллельно оси данного отведения, то в этом отведении регистрируется зубец R или S наибольшей амплитуды. Если ЭОС располагается перпендикулярно оси данного отведения, то в этом отведении записывается изолиния или R=S.

Если доминирующим зубцом в комплексе QRS является зубец R, комплекс считается положительным (общая направленность комплекса QRS вверх «+»); если зубец S (Q) – комплекс считается отрицательным (общая направленность вниз «-»).

Виллем Эйнтховен, голландский врач-физиолог, потомок испанских евреев, бежавших от инквизиции в XV веке в Голландию, родился в 1860 году в Восточной, или Голландской Ост-Индии (ныне остров Ява) в семье колониального врача. В шестилетнем возрасте у Виллема умер отец, и семья вернулась в Утрехт. Как сын колониального врача мальчик имел право на бесплатное образование, но только по трем специальностям: учитель, врач и бухгалтер. Обязательным условием было возвращение на работу в колонии.


Эйнтховен искренне хотел пойти по стопам отца, но во время учебы в Утрехтском университете проявились его способности исследователя. Он понял, что научная работа привлекает его гораздо сильнее, чем врачебная практика. Уже его дипломная работа содержала научное открытие. Он исследовал оптическую иллюзию восприятия цвета: если на ровной поверхности расположены два круга разного цвета, например, синий и желтый, то один из цветов воспринимается как приближающийся, а другой как удаляющийся.

Научный руководитель Эйнтховена Херманн Снеллен (создатель таблицы для определения остроты зрения, которая до сих пор используется во всем мире) полагал, что этот оптический эффект обусловлен длиной волны. Но Эйнтховен доказал, что такое восприятие зависит от расположения зрачков: у одних людей они расположены ближе к вискам, у других - к переносице. Первые воспринимают синий цвет как «уходящий», а вторые наоборот. Именно эту работу Кандинский использовал для учения об агрессивных цветах в абстрактной живописи.

За эту работу Эйнтховен получил степень доктора медицины и философии и был рекомендован на освободившуюся в этот момент кафедру гистологии и физиологии Лейденского университета. Благодаря настойчивости своих научных руководителей, профессоров Дондерса и Снеллена, в 1886 году в возрасте 25 лет Эйнтховен становится профессором.

На четвертый год своего заведования кафедрой Эйнтховен услышал выступление Огастуса (Августа) Уоллера, читавшего лекции по физиологии в престижной лондонской больнице Сент-Мэри. Уоллер демонстрировал опыт на своем бульдоге Джимми.

Одна передняя и одна задняя лапы животного были помещены в две емкости с водой, которые были подключены к капилляру, заполненному ртутью и серной кислотой. При большом увеличении было видно, что на границе ртути и кислоты возникают повторяющиеся колебания. Джимми был знаменит на всю Англию, но когда парламентская комиссия возбудила уголовное дело о жестоком обращении с животными, Уоллер продемонстрировал опыт на себе.

Полученную таким образом кривую Эйнтховен предложил назвать «электрокардиограммой». Однако сложность математических пересчетов для представления колебаний на границе ртути и кислоты в капилляре и плохое качество исходной кривой заставили его искать новые способы регистрации. Эйнтховен использовал струйный гальванометр Клемана Адера, который тот изобрел для усиления радио- и электросигналов, получаемых из тех самых далеких колоний, в которых мог бы оказаться профессор.

Устройство полностью соответствовало своему названию по тонкому проводнику (струне), размещенному между двух сильных магнитов, проходил ток, и струна отклонялась от исходного положения в ту или иную сторону. Для получения тонкой, но достаточно прочной струны Эйнтховен использовал весьма экзотический способ. К кристаллам кварца крепилась стрела на тетиве лука, и когда кварц расплавлялся, стрела вылетала и тащила за собой жидкий кварц. Таким образом, ему удавалось получить струны диаметром до 7 микрон. Полученный «волосок» покрывался серебром в специальной камере - и проводник для очень слабых токов был готов.

Струна освещалась сверху мощным рефлектором, система линз переводила изображение колебаний на фотобумагу. Магниты были очень большими, требовали водяного охлаждения, система линз также требовала тщательной настройки. Целиком весь прибор весил около 290 кг, и требовалась команда из пяти человек для его обслуживания. Но главное было достигнуто: можно было снять электрические потенциалы работающего сердца у живого человека и зафиксировать их для дальнейшего анализа и изучения.

Регистрация ЭКГ проводилась в положении «сидя». Обе руки больного и левая нога (потом использовалась правая нога) помещались в металлические ванночки, для обеспечения проводимости, а провода от этих ванночек шли к струнному гальванометру. Регистрация токов между двумя руками, каждой рукой и ногой создавала треугольник, который был назван треугольником Эйнтховена. Эти первые отведения получили название стандартных и наименование I, II, III.

Для того чтобы не путать зубцы новых кардиограмм с предыдущими, снятыми с помощью ртутного капилляра и обозначавшимися буквами А, В, С, D, Эйнтховен использовал новую последовательность букв латинского алфавита: P, Q, R, S, T, U, которая и сохранилась до настоящего времени. Лаборатория Эйнтховена располагалась более чем в километре от клиники Лейденского университета, и это способствовало тому, что он назвал телекардиография. Токи от пациента по проводам передавались в лабораторию, и происходила запись кардиограммы. Очень быстро были описаны все основные нарушения ритма сердца и проводимости, а также изменения ЭКГ при различных заболеваниях. Метод оказался настолько информативным, что в лабораторию Эйнтховена потянулись врачи из всей Европы.

Эйнтховен выступал на съездах и конференциях врачей. В 1904 году на съезде в Брюсселе он познакомился с Александром Филипповичем Самойловым, основоположником электрокардиографии в России. Профессора подружились и до конца жизни состояли в переписке, в которой нередко шутили на тему сложной настройки струнного гальванометра.

Самойлов был профессором Казанского университета, к нему, как к Эйнтховену в Лейден, съезжались врачи всей России для знакомства с новым методом диагностики. Александр Филиппович был замечательным исполнителем фортепьянной музыки. Еще приват-доцентом в Петербурге он читал лекции о музыке, которые посещали Рахманинов, Танеев, Гречанинов. Он написал статью «Натуральные числа в музыке» (по поводу акустических особенностей гармонии А. Н. Скрябина). Благодаря работам Самойлова в 1922 году по распоряжению Ленина был приобретен один из первых электрокардиографов фирмы Siemens, весом всего 11 кг, для правительственного санатория. В 1927 году, в связи со смертью Эйнтховена, Лейденский университет пригласил Самойлова заведовать его кафедрой.

В 1924 году Виллему Эйнтховену была присуждена Нобелевская премия с формулировкой «За открытие техники электрокардиограммы». Большинство открытий и предложений Эйнтховена - наименование зубцов ЭКГ, стандартные отведения, понятие «треугольник Эйнтховена» - используются в медицинской практике и в настоящее время. Кардиография получила самое широкое распространение и применяется не только для больных, но и для обследования больших групп людей. В наше время трудно встретить человека, который не знает этого метода или хотя бы раз в жизни не делал кардиограмму. Современные кардиографы могут весить до 300 грамм, кривая может записываться на любые носители информации и передаваться на любые расстояния. Недаром открытие Эйнтховена считается одним из самых выдающихся открытий ХХ века.

Александр Свиридов