Формула ускорения в векторном виде. Нормальное ускорение

Скорости тела при его движении за единицу времени:

Единицей ускорения в Международной системе единиц (СИ) служит метр в секунду за секунду (m/s 2 , м/с 2).

Метр на секунду в квадрате равен ускорению прямолинейно движущейся точки, при котором за одну секунду скорость этой точки увеличивается на 1 м/с. Иными словами, ускорение определяет, насколько изменяется скорость тела за одну секунду. Например, если ускорение равно 5 м/с 2 , то это означает, что скорость тела каждую секунду увеличивается на 5 м/с.

Рассмотрим движение автомобиля. Трогаясь с места, он увеличивает скорость движения, то есть движется ускоренно. Вначале его скорость равна нулю. Тронувшись с места, автомобиль постепенно разгоняется до какой-то определённой скорости. Если на его пути загорится красный сигнал светофора, то автомобиль остановится. Но остановится он не сразу, а за какое-то время. То есть скорость его будет уменьшаться вплоть до нуля - автомобиль будет двигаться замедленно, пока совсем не остановится. Однако в физике нет термина «замедление». Если тело движется, замедляя скорость, то это тоже будет ускорение тела, только со знаком минус.

Мгновенное ускорение тела (материальной точки) в данный момент времени - это физическая величина, равная пределу, к которому стремится среднее ускорение при стремлении промежутка времени к нулю. Иными словами - это ускорение, которое развивает тело за очень короткий отрезок времени:

Направление ускорения также совпадает с направлением изменения скорости Δ при очень малых значениях промежутка времени, за который происходит изменение скорости. Вектор ускорения может быть задан проекциями на соответствующие оси координат в данной системе отсчета.

Равнопеременное движение точки - это движение с постоянным ускорением,

Под словом равнопеременное понимают:

1. Равноускоренное движение - если модуль скорости увеличивается, т.е. ускорение параллельно скорости - ,

2. Равнозамедленное движение - если модуль скорости уменьшается, т.е. ускорение антипараллельно скорости: .

Поскольку ускорение равнопеременного движения постоянно, оно равно изменению скорости за любой конечный интервал времени:

где - скорость в начальный момент времени, принятый за нуль; - текущее значение скорости (в момент времени t ). Формула для определения ускорения из состояния покоя (равноускоренное движение, начальная скорость равна нулю: имеет вид:

Если же нулю равна не начальная, а конечная скорость ( торможение при равнозамедленном движении), то формула ускорения принимает вид:

При движении по криволинейной траектории изменяется не только модуль скорости, но и ее направление. В этом случае вектор ускорения представляют в виде двух составляющих: тангенциальной - по касательной к траектории движения, и нормальной - перпендикулярно траектории

В соответствии с этим проекцию ускорения на касательную к траектории называют касательным или тангенциальным ускорением , а проекцию на нормаль - нормальным или центростремительным ускорением .

Тангенциальное (касательное) ускорение - это составляющая вектора ускорения, направленная вдоль касательной к траектории в данной точке траектории движения. Тангенциальное ускорение характеризует изменение скорости по модулю при криволинейном движении.

Направление вектора тангенциального ускорения совпадает с направлением линейной скорости или противоположно ему. То есть, вектор тангенциального ускорения лежит на одной оси с касательной окружности, которая является траекторией движения тела.

Нормальное ускорение - это составляющая вектора ускорения, направленная вдоль нормали к траектории движения в данной точке на траектории движения тела. То есть, вектор нормального ускорения перпендикулярен линейной скорости движения. Нормальное ускорение характеризует изменение скорости по направлению. Вектор нормального ускорения направлен по радиусу кривизны траектории.

Полное ускорение при криволинейном движении складывается из тангенциального и нормального ускорений по правилу сложения векторов и определяется формулой:

Ускорение - физическая векторная величина, которая характеризует насколько быстро тело (материальная точка) изменяет скорость своего движения. Ускорение является важной кинематической характеристикой материальной точки.

Самый простой вид движения - равномерное движение по прямой линии, когда скорость тела постоянна и тело за любые равные промежутки времени проходит одинаковый путь.

Но большинство движений неравномерны. На одних участках скорость тела больше, на других меньше. Машина начиная движение двигается все быстрее. а останавливаясь замедляется.

Ускорение характеризует быстроту изменения скорости. Если, например, ускорение тела равно 5 м/с 2 , то это означает, что за каждую секунду скорость тела изменяется на 5 м/с , т. е. в 5 раз быстрее, чем при ускорении 1 м/с 2 .

Если скорость тела при неравномерном движении за любые равные промежутки времени изменяется одинаково, то движение называют равноускоренным .

Единицей ускорения в СИ является такое ускорение, при котором за каждую секунду скорость тела изменяется на 1 м/с, т. е. метр в секунду за секунду. Эту единицу обозначают 1 м/с2 и называют «метр на секунду в квадрате».

Как и скорость, ускорение тела характеризуется не только числовым значением, но и направлением. Это означает, что ускорение тоже является векторной величиной. Поэтому на рисунках его изображают в виде стрелки.

Если скорость тела при равноускоренном прямолинейном движении возрастает, то ускорение направлено в ту же сторону, что и скорость (рис. а); если же скорость тела при данном движении уменьшается, то ускорение направлено в противоположную сторону (рис. б).

Среднее и мгновенное ускорение

Среднее ускорение материальной точки на некотором промежутке времени - это отношение изменения его скорости, что произошло за это время, к продолжительности этого промежутка:

\(\lt\vec a\gt = \dfrac {\Delta \vec v} {\Delta t} \)

Мгновенное ускорение материальной точки в некоторый момент времени - это лимит его среднего ускорения при \(\Delta t \to 0 \) . Имея в виду определение производной функции, мгновенное ускорение можно определить как производную от скорости по времени:

\(\vec a = \dfrac {d\vec v} {dt} \)

Тангенциальное и нормальное ускорение

Если записать скорость как \(\vec v = v\hat \tau \) , где \(\hat \tau \) - орт касательной к траектории движения, то (в двухмерной системе координат):

\(\vec a = \dfrac {d(v\hat \tau)} {dt} = \)

\(= \dfrac {dv} {dt} \hat \tau + \dfrac {d\hat \tau} {dt} v =\)

\(= \dfrac {dv} {dt} \hat \tau + \dfrac {d(\cos\theta\vec i + sin\theta \vec j)} {dt} v =\)

\(= \dfrac {dv} {dt} \hat \tau + (-sin\theta \dfrac {d\theta} {dt} \vec i + cos\theta \dfrac {d\theta} {dt} \vec j)) v \)

\(= \dfrac {dv} {dt} \hat \tau + \dfrac {d\theta} {dt} v \hat n \) ,

где \(\theta \) - угол между вектором скорости и осью абсцисс; \(\hat n \) - орт перпендикуляра к скорости.

Таким образом,

\(\vec a = \vec a_{\tau} + \vec a_n \) ,

где \(\vec a_{\tau} = \dfrac {dv} {dt} \hat \tau \) - тангенциальное ускорение, \(\vec a_n = \dfrac {d\theta} {dt} v \hat n \) - нормальное ускорение.

Учитывая, что вектор скорости направлен по касательной к траектории движения, то \(\hat n \) - это орт нормали к траектории движения, который направлен к центру кривизны траектории. Таким образом, нормальное ускорение направлено к центру кривизны траектории, в то время как тангенциальное - по касательной к ней. Тангенциальное ускорение характеризует скорость изменения величины скорости, в то время как нормальное характеризует скорость изменения ее направления.

Движение по криволинейной траектории в каждый момент времени можно представить как вращение вокруг центра кривизны траектории с угловой скоростью \(\omega = \dfrac v r \) , где r - радиус кривизны траектории. В таком случае

\(a_{n} = \omega v = {\omega}^2 r = \dfrac {v^2} r \)

Измерение ускорения

Ускорение измеряется в метрах (разделенных) на секунду во второй степени (м/с 2). Величина ускорения определяет, насколько изменится скорость тела за единицу времени, если оно будет постоянно двигаться с таким ускорением. Например, тело, движущееся с ускорением 1 м/с 2 за каждую секунду изменяет свою скорость на 1 м/с.

Единицы измерения ускорения

  • метр в секунду в квадрате, м/с², производная единица системы СИ
  • сантиметр в секунду в квадрате, см/с², производная единица системы СГС
В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

Ускорение – это изменение скорости. В любой точке траектории ускорение задается не только изменением абсолютного значения скорости, но и ее направления. Ускорение определяется как предел отношении прироста скорости к интервалу времени, за которое этот прирост произошел. Тангенциальное и центростремительное ускорение называется изменение скорости тела за единицу времени. Математически ускорение определяется как производная от скорости по времени.

Поскольку скорость – производная от координаты, то ускорение можно записать, как вторую производную от координаты.

Движение тела, при котором ускорение не меняется ни по величине, ни по направлению, называется равноускоренным движением. В физике термин ускорения используется и в тех случаях, когда скорость тела не увеличивается, а уменьшается, то есть тело замедляется. При замедлении вектор ускорения направлен против движения, то есть противоположный вектору скорости.
Ускорение – одно из базовых понятий классической механики. Оно объединяет между собой кинематику и динамику. Зная ускорение, а также начальные положения и скорости тел, можно предсказать, как тела будут двигаться дальше. С другой стороны, значение ускорения определяется законами динамики через силы, действующие на тела.
Ускорение обозначается обычно латинской буквой a (от англ. Acceleration) и его абсолютная величина измеряется в системе СИ в метрах за квадратную секунду (м / с 2). В системе СГС единица измерения ускорения сантиметр в секунду в квадрате (см / с 2). Часто ускорение также измеряют, выбирая за единицу ускорение свободного падения, которое обозначают латинской буквой g, то есть говорят, что ускорение составляет, например, 2g.
Ускорение векторная величина. Его направление не всегда совпадает с направлением скорости. В случае вращения вектор ускорения перпендикулярен к вектору скорости. В общем случае вектор ускорения можно разложить на две составляющие. Составляющая вектора ускорения, которая направлена параллельно вектору скорости, а, следовательно, вдоль касательной к траектории называется тангенциальным ускорением. Составляющая вектора ускорения, направленная перпендикулярно вектору скорости, а, следовательно, вдоль нормали к траектории, называется нормальным ускорением.

.

Первый член в этой формуле задает тангенциальное ускорение, второй – нормальное или центростремительное. Изменение направления единичного вектора всегда перпендикулярна этого вектора, поэтому второй член в этой формуле нормальный к первому.
Ускорение центральное понятие для классической механики. Оно является результатом воздействия на тело сил. По второму закону Ньютона ускорение возникает в результате действия на тело сил:

Где m – масса тела, – Равнодействующая всех сил, действующих на это тело.
Если на тело не действуют никакие силы, или же действие всех сил на него уравновешена, то такое тело движется без ускорения, т.е. с постоянной скоростью.
При одинаковой силе, действующей на различные тела, ускорение тела с меньшей массой будет больше, и, соответственно, ускорения массивного тела – меньше.
Если известна зависимость ускорения материальной точки от времени , То ее скорость определяется интегрированием:

,

Где – Скорость точки в начальный момент времени t 0.
Зависимость ускорения от времени можно определить из законов динамики, если известны силы, действующие на материальную точку. Для однозначного определения скорости нужно знать ее значение в начальный момент.
Для равноускоренного движения интегнування дает:

Соответственно, повторным интегрированием можно найти зависимость радиус-вектора материальной точки от времени, если известно его значение в начальный момент :

.

Для равноускоренного движения:

.

Если тело движется по окружности с постоянной угловой скоростью?, то его ускорение направлено к центру круга и равен по абсолютной величине

,

Где R – радиус окружности, v = ? R – скорость тела.
В векторном записи:

Где – Радиус-вектор. .
Знак минус означает, что ускорение направлено к центру круга.
В теории относительности движение с переменной скоростью тоже характеризуется определенной величиной, аналогичной ускорению, но в отличие от обычного ускорения 4-вектор ускорения является второй производной от 4-вектора координат не по времени, а по пространственно-временном интервала.

.

4-вектор ускорения всегда «перпендикулярный» 4-скорости

Особенностью движения в теории относительности является то, что скорость тела никогда не может превысить значение скорости света. Даже в случае, если на тело будет действовать стала сила, его ускорение уменьшается с ростом скорости и стремится к нулю при приближении к скорости света.
Максимальное ускорение твердого тела, удалось получить в лабораторных условиях, составляло 10 10 g. Для опыта ученые применили так называемую Z-машина (Z Machine), которая создает чрезвычайно мощный импульс магнитного поля, ускоряет в специальном канале снаряд – алюминиевую пластинку размером 30 x 15 мм и толщиной 0,85 мм. Скорость снаряда составляла примерно 34 км / с (в 50 раз быстрее пули).

Рассмотрим более детально, что такое ускорение в физике? Это сообщение телу дополнительной скорости за единицу времени. В Международной системе единиц (СИ) за единицу ускорения принято считать количество метров, пройденных за секунду (м/с). Для внесистемной единицы измерения Гал (Gal), которая применяется в гравиметрии, ускорение равно 1 см/с 2 .

Виды ускорений

Что такое ускорение в формулах. Вид ускорения зависит от вектора движения тела. В физике это может быть движение по прямой, по кривой линии и по окружности.

  1. Если предмет движется по прямой линии, движение будет равноускоренным, и на него начнут действовать линейные ускорения. Формула для его вычисления (смотри формулу 1 на рис): a=dv/dt
  2. В случае, если речь идет о движении тела по окружности, то ускорение будет состоять из двух частей (a=a т +a n): тангенциального и нормального ускорения. Оба они характеризуются скоростью движения предмета. Тангенциальное - изменением скорости по модулю. Его направление идет по касательной к траектории. Такое ускорение вычисляется по формуле (см. формулу 2 на рис): a t =d|v|/dt
  3. Если же скорость движения предмета по окружности постоянна, ускорение называется центростремительным или нормальным. Вектор такого ускорения постоянно направлен к центру окружности, а значение модуля равно (смотри формулу 3 на рис): |a(вектор)|=w 2 r=V 2 /r
  4. Когда скорость тела по окружности разная, возникает угловое ускорение. Оно показывает, как изменилась угловая скорость за единицу времени и равно (см. формулу 4 на рис.):E(вектор)=dw(вектор)/dt
  5. В физике также рассматриваются варианты, когда тело движется по окружности, но при этом приближается или удаляется от центра. В этом случае на предмет действуют ускорения Кориолиса.Когда тело движется по кривой линии, вектор его ускорения будет вычисляться по формуле (см. формулу 5 на рис): a (вектор)=a T T+a n n(вектор)+a b b(вектор)=dv/dtT+v 2 /Rn(вектор)+a b b(вектор),в которой:
  • v - скорость
  • T (вектор) - единичный касательный к траектории вектор, идущий вдоль скорости (касательный орт)
  • n (вектор) - орт главной нормали относительно траектории, который определяется как единичный вектор в направлении dT (вектор)/dl
  • b (вектор) - орт бинормали относительно траектории
  • R - радиус кривизны траектории

При этом бинормальное ускорение a b b(вектор) всегда равно нулю. Поэтому конечная формула выглядит так (см. формулу 6 на рис): a (вектор)=a T T+a n n(вектор)+a b b(вектор)=dv/dtT+v 2 /Rn(вектор)

Что такое ускорение свободного падения?

Ускорением свободного падения (обозначается буквой g) называется ускорение, которое придается предмету в вакууме силой тяжести. Согласно второму закону Ньютона, такое ускорение равно силе тяжести, которая воздействует на объект единичной массы.

На поверхности нашей планеты значением g принято называть 9,80665 или 10 м/с². Для вычисления реального g на поверхности Земли нужно будет учесть некоторые факторы. Например, широту и время суток. Так что значение истинного g может быть от 9,780 м/с² до 9,832 м/с² на полюсах. Для его вычисления применяют эмпирическую формулу (см. формулу 7 на рис), в которой φ - широта местности, а h - расстояние над уровнем моря, выраженное в метрах.

Формула для вычисления g

Дело в том, что такое ускорение свободного падения состоит из гравитационного и центробежного ускорения. Примерное значение гравитационного можно подсчитать, представляя Землю однородным шаром с массой M, и вычисляя ускорение на протяжении её радиуса R (формула 8 на рис, где G - гравитационная постоянная величина со значением 6,6742·10 −11 м³с −2 кг −1).

Если использовать эту формулу для вычисления гравитационного ускорения на поверхности нашей планеты (масса М = 5,9736·10 24 кг, радиус R = 6,371·10 6 м), получится формула 9 на рис, однако данное значение условно совпадает с тем, что такое скорость, ускорение в конкретном месте. Несоответствия объясняются несколькими факторами:

  • Центробежным ускорением, имеющим место в системе отсчёта вращения планеты
  • Тем, что планета Земля не шарообразной формы
  • Тем, что наша планета неоднородна

Приборы для измерения ускорения

Ускорение принято измерять акселерометром. Но он вычисляет не само ускорение, а силу реакции опоры, возникающую при ускоренном движении. Такие же силы сопротивления появляются и в поле тяготения, поэтому акселерометром можно измерять и гравитацию.

Есть еще один прибор для измерения ускорения – акселерограф. Он вычисляет и графически фиксирует значения ускорения поступательного и вращательного движения.