Характеристики выборки и генеральной совокупности. Определение среднего значения, вариации и формы распределения

Оценка средней величины имеет целью установить величину генеральной средней для изученной категории объектов. Требуемая для этой цели ошибка репрезентативности определяется по формуле:

При изучении шерстной продуктивности одной породы овец было взято из разных мест обитания породы у 100 взрослых овец 100 годовых настригов шерсти. Средний настриг у 100 овец оказался μ = 5,0 кг, стандартное отклонение для этой выборки s = 1,0. Ответственность исследования обычная, поэтому был принят первый порог вероятности безошибочных прогнозов b 1 = 0,95.

Оценка среднего настрига для всей породы может быть проведена следующим образом:

n = 100; μ = 5,0; s = 1,0; n = 100 – 1 = 99; t = 2,0;

D = 2,0 × 0,1 =0,2;

μ max =5,0 + 0,2 = 5,2 (возможный максимум);

μ min = 5,0 – 0,2 = 4,8 (гарантированный минимум).

1 Средний настриг шерсти по изученной выборке равен
μ ± = 5,0 ± 0,2, доверительные границы генеральной средней 4,8 – 5,2. По этим показателям можно провести сравнение результатов проведенного исследования с результатами других работ.

2 Планировать выход шерсти (n = 10000) на основе проведенного исследования следует исходя из гарантированного минимума генеральной средней μ min = 4,8 кг на одну голову, или 48 т шерсти от всех взрослых овец породы.

3 Работы по стрижке, обработке, перевозке и хранению шерсти следует планировать исходя из возможного максимума генеральной средней μ mах = 5,2 кг с головы, или 52 т от всех овец изученной категории.

При изучении способности к обучению белых мышей для каждой из 40 особей определенного происхождения регистрировалось время прохождения лабиринта в поисках корма после пятой попытки В одном опыте были получены следующие сводные показатели:
n = 40, μ = 7,0 мин, s = 3,0 мин

Требовалось определить возможное время прохождения лабиринта в среднем для мышей всей изучаемой линии, что можно сделать следующим образом: n = 40, μ = 7,0, s = 3,0, n = 40 – 1 = 39, t = 2 (ответственность обычная: b = 0,95), = 3 / = 0,48; D = 2 × 0,48 = 0,96 ≈ 1,0, т.е не более 7,0 + 1,0 = 8,0; не менее 7,0 – 1,0 = 6,0.

1 Среднее время для опытной группы

μ ± = 7,0 ± 0,48 мин.

2 Доверительные границы генеральной средней

μ ± D = 6,0 – 8,0 мин.

3 Если встретится группа мышей со средним временем или меньше 6 мин. или больше 8 мин., возникнет предположение, что эта группа отличается от изученной по способности проходить лабиринт. Это предположение необходимо будет проверить методом определения достоверности разности.

Оценка средней разности

В некоторых исследованиях в качестве первичных данных берется разность двух измерений. Это может быть в случае, когда каждая особь выборки изучается в двух состояниях – или в разном возрасте, или при разных условиях жизни. В этих случаях индивидуальные и средние разности по своему знаку и величине могут характеризовать действие на изучаемый признак или возраста, или изменения условий жизни.

Характеристика действия определенных факторов по разности может быть произведена также и в экспериментах с аналогами, когда каждой особи в опытной группе соответствует строго определенная особь в контроле

При сортоиспытании пшеницы новый сорт А сравнивался со стандартным сортом В по разности урожаев, полученных на 20 парах параллельных делянок: d i = A i – В i . В результате в качестве первичных материалов было получено 20 разностей, некоторые из них были положительными (A>В), некоторые – отрицательными (А<В).

Для всей выборки, состоящей из 20 разностей, были получены сводные выборочные показатели: n = 20, μ = + 1,0 ц/га, s = 2,5 ц/га. В этой выборке новый сорт оказался лучше стандартного: А – В= + 1,0; A>В.

Возник вопрос: а будет ли и весь новый сорт (а не только выборка из него) в аналогичных условиях лучше стандартного? Можно ли считать, что полученная средняя выборочная положительная разность d =+1,0 правильно отражает соответствующую генеральную разность между новым сортом и всем стандартным сортом? Будет ли эта генеральная разность тоже положительной? Этот вопрос можно решить путем оценки генерального значения средней разности на основе полученных сводных выборочных показателей.

Генеральный параметр изучаемой разности был оценен в форме доверительных границ с надежностью β 2 = 0,99 (исследование имело большое экономическое значение) следующим образом.

Проверка гипотез о различиях между долями респондентов. Часто исследователю приходится решать следующую проблему. Предположим, все опрошенные подразделяются на две подгруппы. (Это могут быть представители двух независимо построенных выборок, например выборка из жителей Москвы и выборка из жителей Санкт-Петербурга, а могут - лица, различия между которыми выявились в ходе анкетирования представителей одной и той же выборки респондентов, например те, у кого есть, и те, у кого нет высшего образования.) Исследователь должен выяснить, одинаково или по-разному распределились ответы представителей этих двух подгрупп на какой-либо определенный вопрос анкеты.

Пример 12.6

Исследование предпочтений в одежде (данные условны)

Пусть, например, нас интересует, различаются ли доли тех, кто носит джинсы, в Москве и Санкт-Петербурге. Пусть в каждом из этих городов были построены репрезентативные выборки и проведены опросы. Предположим, были получены следующие результаты (табл. 12.21).

Таблица 12.21. Респонденты, которые носят и не носят джинсы, по данным опросов лиц в возрасте до 35 лет в Москве и Санкт-Петербурге, человек

Мы видим, что в Москве носят джинсы 80% опрошенных, а в Санкт-Петербурге - лишь 60%. Но достаточно ли разницы в 20%, чтобы утверждать, что это не случайность, что вообще москвичи чаще склонны носить джинсы, чем петербуржцы?

Для ответа на этот вопрос воспользуемся знакомой нам статистикой z, имеющей стандартизованное нормальное распределение, которая помогла нам установить, что определенная в ходе другого опроса доля респондентов, осведомленных о новом продукте, значимо отличается от намеченного исследователем фиксированного значения.

Статистика для данного случая имеет следующий вид:

где p1 и р2 - доли носящих джинсы от числа опрошенных в Москве и Санкт-Петербурге (0,8 и 0,6 соответственно); - оценка стандартного отклонения разности долей р1 и р2.

Оценка стандартного отклонения разности долей рассчитывается по формуле

(12.17)

где р - доля пользующихся джинсами среди всех опрошенных в двух выборках; n1 и n2 - число опрошенных в Москве и Санкт-Петербурге соответственно.

Величина р рассчитывается по формуле

В нашем примере имеем:

Поскольку нас интересует сам факт различия долей носящих джинсы в этих городах, а не превышения доли носящих джинсы в Москве по сравнению с такой долей в Санкт-Петербурге, нулевая и альтернативная гипотезы имеют вид:

Поэтому при прежней доверительной вероятности 0,95 пороговое значение на кривой нормального распределения равно 1,96.

А поскольку 4,36 > 1,96, нулевая гипотеза отвергается, т.е. данные опросов не противоречат утверждению, что доли носящих джинсы в Москве и Санкт-Петербурге различны.

Проверка гипотез о различиях между средними значениями. Часто требуется определить, являются ли случайными различия между средними значениями некоторой величины, рассчитанными по ответам представителей двух разных подвыборок респондентов. Например, исследователя может интересовать, действительно ли жители Москвы оценивают некоторый товар выше, чем жители Санкт-Петербурга, если средняя оценка этого товара по пятибалльной шкале респондентами-москвичами выше, чем респондентами-петербуржцами.

Для проверки такого рода гипотез используется статистика Стьюдента с числом степеней свободы (n1 + n0 - 1), где п1 и n2 - число объектов (в данном случае - респондентов) в каждой из двух выборок:

где и - средние значения оценок товара по данным опросов в Москве и в Санкт-Петербурге; - оценка стандартного отклонения разности интересующих нас средних значений между этими городами.

Последняя величина рассчитывается по формуле

где s - средневзвешенное среднеквадратическое отклонение оценок от соответствующих средних значений в каждой из выборок.

В свою очередь, величина s рассчитывается по формуле

(12.21)

где x1,i и x2,j - оценки, полученные на i-м объекте из первой выборки и j-м объекте из второй выборки.

Такие проверки проводятся с помощью программного пакета SPSS (меню Analyze - Compare Means - Independent Samples T-test ).

Зависимые выборки

Обсуждавшаяся выше проблема касалась случая, когда сравниваются доли или средние значения определенным образом ответивших на интересующий нас вопрос в двух разных группах респондентов. Нередко, однако, нужно сравнить между собой не реакции разных респондентов (например, живущих в разных городах), а две реакции у одних и тех же респондентов. Так бывает, когда информация собирается дважды на одной и той же выборке из n объектов. Например, дважды опрашиваются одни и те же респонденты и нужно проверить гипотезу, что за время, прошедшее между опросами, их оценки изменились. Скажем, надо узнать, действительно ли повысилась после рекламной кампании доля участников панели, знающих о существовании некоторого товара. Или узнать, действительно ли о существовании товара А знают больше респондентов, чем о товаре В, или наблюдаемое по данным опроса различие - просто случайность.

В случае зависимых выборок для проверки гипотезы об отсутствии различий в средних значениях применяется следующая тестовая статистика с (n - 1) степенями свободы:

где и - средние значения оценок в первом и втором замерах соответственно;- стандартное отклонение определения различий в средних значениях оценок в двух замерах, рассчитываемое по формуле

Здесь - стандартное отклонение различий между оценками в двух замерах, которое, в свою очередь, рассчитывается по формуле

(12.24)

где и - оценки на объектах в первом и втором замерах соответственно.

Отметим, что эти проверки можно провести с помощью программного пакета SPSS (меню Analyze - Compare Means - Pared Samples T-test ).

Обзор других задач анализа данных

Перед нами не было цели обсудить методы решения всего круга проблем, которые приходится время от времени решать при базовом анализе маркетинговых данных. Мы рассмотрели лишь те из них, которые используются чаще других.

В заключение раздела подчеркнем следующее. Как уже отмечалось, основной материал для отчета о маркетинговом исследовании дают таблицы частотных распределений и кросстабуляции. Структура этих таблиц может быть намечена заранее в той мере, в которой она связана с задачами исследования и выбранными подходами к их решению, т.е. исследователь сам назначает интересующие его группы респондентов и располагает их в столбцах таблиц сопряженности.

Однако нередко форма некоторых отчетных таблиц может быть окончательно установлена лишь на стадии углубленного анализа данных. Так, лишь на этой стадии можно провести сегментирование исследуемой совокупности и найти сегменты, наиболее резко отличающиеся друг от друга по реакции их представителей на маркетинговые действия фирмы. Построив затем соответствующие таблицы кросс-табуляции, можно детально изучить особенности каждого из сегментов, что позволит разработать набор эффективных маркетинговых комплексов.

Есть много методов углубленного анализа данных. Основное назначение большинства из них - подсказать исследователю, какой принцип сегментирования окажется наиболее удачным в том смысле, что построенные затем таблицы кросс-табуляции продемонстрируют наиболее яркие контрасты. Интересно, что многие исследователи, стремясь добиться краткости и ясности изложения материалов, а также не спеша раскрывать секреты своего мастерства, оставляют за рамками отчета примененный ими способ отыскания этой наиболее удачной формы таблиц. Мы рассмотрим два метода, дающих такие "подсказки", - методы кластерного и факторного анализов. Эти методы приспособлены для работы с часто встречающимися в маркетинговых исследованиях бинарными и метрическими шкалами.

Есть в арсенале исследователей и методы, позволяющие выяснить, как отнесутся потребители к тому или иному сочетанию свойств товара, насколько они ценят то или иное свойство товара. Это дает менеджерам рынка богатую пищу для размышлений при разработке маркетингового комплекса. Один из таких методов - совместный анализ (conjoint analysis ) - тоже будет рассмотрен нами в дальнейшем.

То, какие величины можно применять для оценки средних параметров, а какие нельзя, зависит от типа шкалы. В самом деле, среднее арифметическое значение пола вряд ли будет иметь смысл. Тем не менее, оценить средние параметры имеет смысл для любой шкалы. Оценку средних параметров еще называют измерением центральной тенденции . Эта задача, наряду с оценкой разброса значений, входит в раздел описательной статистики и является одним из первых шагов при обработке социологического опроса.

При номинальной шкале измерения мы можем лишь указать наиболее популярный ответ. Наиболее популярный ответ называется модой . Моду можно вычислить и при любой шкале. Однако это будет иметь смысл делать только тогда, когда число опрошенных значительно больше, чем число вариантов ответов. Действительно, если например, измерять рост в миллиметрах, то у всех 100-200 опрошенных окажутся разные значения роста. Модами тогда окажутся все эти варианты (они же будут максимально популярными!).

Имейте в виду, что мода – это вариант ответа, а не число человек, которые выбрали этот вариант. Также имейте в виду, что мод может быть несколько (как в предыдущем примере).

Если шкала порядковая , то помимо моды можно вычислить также медиану . Поясним смысл медианы. При порядковой шкале все варианты ответов можно расположить в порядке возрастания некоторого признака. Если это сделать, то какой-то ответ окажется в середине этого списка. Этот ответ и будет медианой. Другими словами, медиана это ответ, стоящий в середине упорядоченной выборки. Медиана – это вариант ответа, а не то, сколько раз этот ответ встречается в выборке. Медиану можно вычислить и при интервальных шкалах, поскольку эти шкалы также позволяют расположить ответы в порядке возрастания. Для номинальной шкалы вычислить медиану нельзя! О способах вычисления медианы будет более подробно рассказано ниже на примерах.

Для интервальных (метрических) шкал оценкой средних параметров является среднее арифметическое значение . Оно равно сумме всех значений, деленной на число этих значений:

Среднее арифметическое более точно отражает средние параметры выборки, чем медиана, поскольку медиана не учитывает величины отклонений отдельных измерений от средних показателей. Ни для порядковой шкалы, ни для номинальной шкалы среднее арифметическое значение вычислить нельзя. Ведь сумма значений для этих шкал не имеет смысла, даже если ее можно формально вычислить, просуммировав коды ответов.

Для дихотомической шкалы в качестве меры средней тенденции возможно использовать только моду – какой из ответов более популярен.

Основные характеристики параметров генеральной и выборочной совокупностей обозначаются символами: N - объем генеральной совокупности (число входящих в нее единиц); n - объем выборки (число обследованных единиц); - генеральная средняя (среднее значение признака в генеральной совокупности); - выборочная средняя; p - генеральная доля (доля единиц, обладающих данным значением признака в общем числе единиц генеральной совокупности); w - выборочная доля. Доля выборки есть отношение числа единиц выборочной совокупности к числу единиц генеральной совокупности: . Применяя выборочный метод в статистике, обычно используют два основных вида обобщающих показателя: среднюю величину количественного признака и относительную величину альтернативного признака (долю или удельный вес единиц в статистической совокупности, которые отличаются от всех других единиц этой совокупности только наличием изучаемого признака). Выборочная доля (w), или частость, определяется отношением числа единиц, обладающих изучаемым признаком т, к общему числу единиц выборочной совокупности п: w = т / п. Для характеристики надежности выборочных показателей различают среднюю и предельную ошибки выборки. Ошибка выборки или, иначе говоря, ошибка репрезентативности представляет собой разность соответствующих выборочных и генеральных характеристик: для средней количественного признака; для доли (альтернативного признака) . Выборочная средняя и выборочная доля являются случайными величинами, которые могут принимать различные значения в зависимости от того, какие единицы совокупности попали в выборку. Поэтому определяют среднюю из возможных ошибок - среднюю ошибку выборки.

Средняя ошибка выборки при повторном отборе рассчитывается по следующим формулам: для средней количественного признака: ; для доли (альтернативного признака): . Средняя ошибка выборки при бесповторном отборе рассчитывается по следующим формулам: для средней качественного признака; для доли (альтернативного признака) . В каждой конкретной выборке расхождение между выборочной средней и генеральной может быть меньше средней ошибки, равно ей или больше ее. Причем каждое из этих расхождений имеет различную вероятность. Поэтому фактические расхождения между выборочной средней и генеральной можно рассматривать как некую предельную ошибку, связанную со средней ошибкой и гарантируемую с определенной вероятностью Р. Предельную ошибку выборки можно рассчитать по следующим формулам: при повторном отборе: для средней, где t - нормированное отклонение - «коэффициент доверия», зависящий от вероятности, с которой гарантируется предельная ошибка выборки; - средняя ошибка выборки; для доли; при бесповторном отборе: для средней; для доли. При вероятности 0,683 коэффициент t = 1; при вероятности 0,954 коэффициент t = 2; при вероятности 0,997 коэффициент t = 3. Предельная ошибка выборки позволяет определить предельные значения характеристик генеральной совокупности и их доверительные интервалы: для средней; ; для доли; . Наряду с абсолютным значением предельной ошибки выборки рассчитывается также и предельная относительная ошибка выборки, которая определяется как процентное отношение предельной ошибки выборки к соответствующей характеристике выборочной совокупности: для средней, %: ; для доли, %: .

1.1. Описание данных, источник получения. Рассматриваемый период и пространственные рамки_ 3

1.2. Характеристика используемых статистических показателей, в том числе вид и единица измерения, тип (интервальный или моментальный) 3

1.3. Оценка среднего значения выбранного показателя 4

1.4. Оценка структурных средних_ 5

(моды, медианы) на основе структурной группировки_ 5

1.5. Графическое представление распределения значений_ 7

(гистограмма, куммулята) 7

2. Оценка показателей вариации_ 9

3. Оценка абсолютных и относительных показателей динамики для выбранного показателя 11

4. Анализ взаимосвязи между исследуемыми показателями_ 13

Список используемой литературы_ 15


Описание данных, источник получения. Рассматриваемый период и пространственные рамки

Для исследования было выбрано АО «Лукойл», так как компания является лидером в сфере добычи и переработки нефти и газа, сбыта нефтепродуктов (lukoil.ru

В данной работе предоставлены данные о выручке по кварталам в период с 2006 по 2009 год. Выручка – общая сумма денежных средств, полученных (вырученных) компанией за определённый период её деятельности, за счёт продажи услуг своим клиентам.

Характеристика используемых статистических показателей, в том числе вид и единица измерения, тип (интервальный или моментальный)

В связи с соответствием со стандартами, показатель выручки измеряется в тыс. руб.; тип рядов динамики – интервальный, т.к данные представлены за определенный период.


Оценка среднего значения выбранного показателя

Средняя арифметическая может быть простой или взвешенной. В данном случае расчет осуществляется по не сгруппированным данным (каждая единица имеет одинаковую значимость). Следовательно, применяется средняя арифметическая простая:

После проведения расчета получаем, что тыс. руб., т.е. в среднем в каждом квартале выручка предприятия составляет 29097147 тыс. руб.


Оценка структурных средних

(моды, медианы) на основе структурной группировки

Для расчета структурных средних величин (моды и медианы) нужно провести структурную группировку.

Первым этапом является определение числа групп. Для этого воспользуемся приближенной формулой Стерджесса: n = 1+3,322 lgN.

Рассчитываем: n=1+3,322lg15=4,95. Получаем 5 групп.

Для этого рассчитаем размах вариации (вычисляется как разница между максимальным и минимальным значением показателя):

R = 45313756 - 17551616=27762140

Теперь рассчитываем величину интервала:

h = 27762140/5 = 2776214

Вычисляем моду:

Мода – это значение изучаемого признака, повторяющееся с наибольшей частотой.

Определяем модальный интервал, такой, что его частота больше, чем у предыдущего и больше, чем у следующего. В данном случае это интервал: 23,1-28,7.

Тыс. руб.

Это означает, что в большинстве кварталов компания имела выручку больше тыс. руб.