Основные свойства функций. Основные элементарные функции и их свойства

Раздел содержит справочный материал по основным элементарным функциям и их свойствам. Приводится классификация элементарных функций. Ниже даны ссылки на подразделы, в которых рассматриваются свойства конкретных функций - графики, формулы, производные, первообразные (интегралы), разложения в ряды, выражения через комплексные переменные.

Страницы со справочным материалом по элементарным функциям

Классификация элементарных функций

Алгебраическая функция - это функция, которая удовлетворяет уравнению:
,
где - многочлен от зависимой переменной y и независимой переменной x . Его можно записать в виде:
,
где - многочлены.

Алгебраические функции делятся на многочлены (целые рациональные функции), рациональные функции и иррациональные функции.

Целая рациональная функция , которая также называется многочленом или полиномом , получается из переменной x и конечного числа чисел с помощью арифметических действий сложения (вычитания) и умножения. После раскрытия скобок, многочлен приводится к каноническому виду:
.

Дробно-рациональная функция , или просто рациональная функция , получается из переменной x и конечного числа чисел с помощью арифметических действий сложения (вычитания), умножения и деления. Рациональную функцию можно привести к виду
,
где и - многочлены.

Иррациональная функция - это алгебраическая функция, не являющаяся рациональной. Как правило, под иррациональной функцией понимают корни и их композиции с рациональными функциями. Корень степени n определяется как решение уравнения
.
Он обозначается так:
.

Трансцендентными функциями называются неалгебраические функции. Это показательные, тригонометрические, гиперболические и обратные к ним функции.

Обзор основных элементарных функций

Все элементарные функции можно представить в виде конечного числа операций сложения, вычитания, умножения и деления, произведенных над выражением вида:
z t .
Обратные функции могут выражаться также через логарифмы. Ниже перечислены основные элементарные функции.

Степенная функция :
y(x) = x p ,
где p - показатель степени. Она зависит от основания степени x .
Обратной к степенной функции является также степенная функция:
.
При целом неотрицательном значении показателя p она является многочленом. При целом значении p - рациональной функцией. При рациональном значении - иррациональной функцией.

Трансцендентные функции

Показательная функция :
y(x) = a x ,
где a - основание степени. Она зависит от показателя степени x .
Обратная функция - логарифм по основанию a :
x = log a y .

Экспонента, е в степени х :
y(x) = e x ,
Это показательная функция, производная которой равна самой функции:
.
Основанием степени экспоненты является число e :
≈ 2,718281828459045... .
Обратная функция - натуральный логарифм - логарифм по основанию числа e :
x = ln y ≡ log e y .

Тригонометрические функции :
Синус : ;
Косинус : ;
Тангенс : ;
Котангенс : ;
Здесь i - мнимая единица, i 2 = -1 .

Обратные тригонометрические функции :
Арксинус: x = arcsin y , ;
Арккосинус: x = arccos y , ;
Арктангенс: x = arctg y , ;
Арккотангенс: x = arcctg y , .

Функции и их свойства

Функция - одно из важнейших математических понятий. Функцией называют такую зависимость переменной у от переменной х, при которой каждому значению переменной х соответствует единственное значение перемен­ной у.

Переменную х называют независимой переменной или аргументом. Переменную у называют зависимой переменной. Говорят также, что переменная у явля­ется функцией от переменной х. Значения зависи­мой переменной называют значениями функции.

Если зависимость переменной у от переменной х является функцией, то коротко это записывают так: y = f ( x ). (Читают: у равно f от х .) Символом f ( x ) обозначают значение функции, соответствую­щее значению аргумента, равному х .

Все значения независимой переменной образу­ют область определения функции . Все значения, которые принимает зависимая переменная, образу­ют область значений функции .

Если функция задана формулой и ее область оп­ределения не указана, то считают, что область оп­ределения функции состоит из всех значений аргу­мента, при которых формула имеет смысл.

Способы задания функции:

1.аналитический способ (функция задается с помощью математической формулы;

2.табличный способ (функция задается с помощью таблицы)

3.описательный способ (функция задается словесным описанием)

4.графический способ (функция задается с помощью графика).

Графиком функции называют множество всех точек координатной плоскос­ти, абсциссы которых равны значениям аргу­мента, а ординаты - соответствующим значениям функции.

ОСНОВНЫЕ СВОЙСТВА ФУНКЦИЙ

1. Нули функции

Нуль функции – такое значение аргумента, при котором значение функции равно нулю .

2. Промежутки знакопостоянства функции

Промежутки знакопостоянства функции – такие множества значений аргумента, на которых значения функции только положительны или только отрицательны.

3. Возрастание (убывание) функции.

Возрастающая в некотором промежутке функ­ция - функция, у которой большему значению аргу­мента из этого промежутка соответствует большее значение функции.

Функция у = f ( x ) назы­вается возрастающей на ин­тервале (а; b ), если для лю­бых x 1 и x 2 из этого интерва­ла таких, что x 1 < x 2 , спра­ведливо неравенство f ( x 1 )< f ( x 2 ).

Убывающая в некотором промежутке функ­ция - функция, у которой большему значению аргу­мента из этого промежутка соответствует меньшее значение функции.

Функция у = f ( x ) назы­вается убывающей на интер­вале (а; b ) , если для любых x 1 и x 2 из этого интервала таких, что x 1 < x 2 , справед­ливо неравенство f ( x 1 )> f ( x 2 ).

4. Четность (нечетность) функции

Четная функция - функция, у которой область определения симметрична относительно начала коор­динат и для любого х из области определения выпол­няется равенство f (- x ) = f ( x ) . График четной функ­ции симметричен относительно оси ординат.

Например, у = х 2 - четная функция.

Нечетная функция - функция, у которой об­ласть определения симметрична относительно начала координат и для любого х из области определения справедливо равенство f (- x ) = - f (x ). График нечет­ной функции симметричен относительно начала координат.

Например: у = х 3 - нечетная функция .

Функция общего вида не является четной или нечетной (у = х 2 ).

Свойства некоторых функций и их графики

1. Линейной функцией называется функция вида , где k и b – числа.

Область определения линейной функции – множество R действительных чисел.

Графиком линейной функции у = kx + b ( k 0) является прямая проходящая через точку (0; b ) и параллельная прямой у = kx .

Прямая, не параллельная оси Оу, является графиком линейной функции.

Свойства линейной функции.

1. При k > 0 функция у = kx + b

2. При k < 0 функция у = kx + b убывающая в области определения.

y = kx + b ( k 0 ) является вся числовая прямая, т.е. множество R действительных чисел.

При k = 0 множество значений функции у = kx + b состоит из од­ного числа b .

3. При b = 0 и k = 0 функция не является ни четной, ни нечетной.

При k = 0 линейная функция имеет вид у = b и при b 0 она явля­ется четной.

При k = 0 и b = 0 линейная функция имеет вид у = 0 и являете одновременно четной и нечетной.

Графиком линейной функции у = b является прямая, проходящая через точку (0; b ) и параллельная оси Ох. Заметим, что при b = 0 график функции у = b совпадаете осью Ох .

5. При k > 0 имеем, что у > 0, если и у < 0, если . При k < 0 имеем, что у > 0, если и у < 0, если .

2. Функция y = x 2

R действитель­ных чисел.

Придавая переменной х несколько значений из области опреде­ления функции и вычисляя соответствующие значения у по формуле y = x 2 , изображаем график функции.

График функции y = x 2 называется параболой.

Свойства функции у = х 2 .

1. Если х = 0, то у = 0, т.е. парабола имеет с осями координат общую точку (0; 0) - начало координат.

2. Если х ≠ 0 , то у > 0, т.е. все точки параболы, кроме начала координат, лежат над осью абсцисс.

3. Множеством значений функции у = х 2 является промежуток функция у = х 2 убывает.

х

3.Фунуция

Область определения этой функции - промежуток функция y = | x | убывает.

7. Наименьшее значение функция принимает в точке х, оно равно 0. Наибольшего значения не существует.

6. Функция

Область определения функции: .

Область значений функции: .

График - гипербола.

1. Нули функции.

у ≠ 0, нулей нет.

2. Промежутки знакопостоянства,

Если k > 0, то у > 0 при х > 0; у < 0 при х < О.

Если k < 0, то у < 0 при х > 0; у > 0 при х < 0.

3. Промежутки возрастания и убывания.

Если k > 0, то функция убывает при .

Если k < 0, то функция возрастает при .

4. Четность (нечетность) функции.

Функция нечетная.

Квадратный трехчлен

Уравнение вида ax 2 + bx + c = 0, где a , b и с - некоторые числа, причем а≠ 0, называется квадратным.

В квадратном уравнении ax 2 + bx + c = 0 ко­эффициент а называется первым коэффициентом, b - вторым коэффициентам, с - свободным чле­ном.

Формула корней квадратного уравнения име­ет вид:

.

Выражение называется дискриминан­том квадратного уравнения и обозначается через D .

Если D = 0, то существует только одно чи­сло, удовлетворяющее уравнению ax 2 + bx + c = 0. Однако условились говорить, что в этом случае ква­дратное уравнение имеет два равных действитель­ных корня, а само число называют двукрат­ным корнем.

Если D < 0, то квадратное уравнение не имеет действительных корней.

Если D > 0, то квадратное уравнение имеет два различных действительных корня.

Пусть дано квадратное уравнение ax 2 + bx + c = 0. Так как а≠ 0, то, разделив обе части данного уравнения на а, получим уравнение . Полагая и , приходим к уравнению , в котором первый коэффициент равен 1. Такое уравнение называется приведенным.

Формула корней приведенного квадратного уравнения имеет вид:

.

Уравнения вида

а x 2 + bx = 0, ax 2 + с = 0, а x 2 = 0

называются неполными квадратными уравнениями. Неполные квадратные уравнения решаются разложением левой части уравнения на множители.

Теорема Виета .

Сумма корней квадратного уравнения равна взятому с противоположным зна­ком отношению второго коэффициента к первому, а произведение корней - отношению свободного члена к первому коэффициенту, т.е.

Обратная теорема.

Если сумма каких-нибудь двух чисел х 1 и х 2 равна , а их произ­ведение равно , то эти числа являются корнями квадратного уравнения ах 2 + b х + с = 0.

Функция вида ах 2 + b х + с называется квадратным трехчленом. Корни этой функции являются корнями соответствующего квадратного уравнения ах 2 + b х + с = 0.

Если дискриминант квадратного трехчлена больше нуля, то этот трехчлен можно представить в виде:

ах 2 + b х + с =а(х-х 1 )(х-х 2 )

где х 1 и х 2 - корни трехчлена

Если дискриминант квадратного трехчлена равен нулю, то этот трехчлен можно представить в виде:

ах 2 + b х + с =а(х-х 1 ) 2

где х 1 - корень трехчлена.

Например, 2 - 12х + 12 = 3(х - 2) 2 .

Уравнение вида ах 4 + b х 2 + с = 0 называет­ся биквадратным. С помощью замены переменной по формуле х 2 = y оно приводится к квадратному уравнению а y 2 + by + с = 0.

Квадратичная функция

Квадратичной функцией называется функция, которую можно записать формулой вида y = ax 2 + bx + c , где x – независимая переменная, a , b и c – некоторые числа, причем a 0.

Свойства функции и вид ее графика определяются, в основном, значениями коэффициента a и дискриминанта .

Свойства квадратичной функции

Область определения: R ;

Область значений:

при а > 0 [- D /(4 a ); ∞)

при а < 0 (-∞; - D /(4 a )];

Четность, нечетность:

при b = 0 функция четная

при b 0 функция не является ни четной, ни нечетной

при D > 0 два нуля: ,

при D = 0 один нуль:

при D < 0 нулей нет

Промежутки знакопостоянства:

если, а > 0, D > 0, то

если, а > 0, D = 0, то

e сли а > 0, D < 0, то

если а < 0, D > 0, то

если а < 0, D = 0, то

если а < 0, D < 0, то

- Промежутки монотонности

при а > 0

при а < 0

Графиком квадратичной функции является парабола – кривая, симметричная относительно прямой , проходящей через вершину параболы (вершиной параболы называется точка пересечения параболы с осью симметрии).

Чтобы построить график квадратичной функции, нужно:

1) найти координаты вершины параболы и отметить ее в ко­ординатной плоскости;

2) построить еще несколько точек, принадлежащих пара­боле;

3) соединить отмеченные точки плавной линией.

Координаты вершины параболы определяются по формулам:

; .

Преобразование графиков функции

1. Растяжение графика у = х 2 вдоль оси у в |а| раз (при |а| < 1 - это сжатие в 1/ |а| раз).

Если, а < 0, произвести, кроме того, зеркальное отражение графика отно­сительно оси х (ветви параболы будут направлены вниз).

Результат: график функции у = ах 2 .

2. Параллельный перенос графика функ­ции у = ах 2 вдоль оси х на | m | (вправо при

m > 0 и влево при т < 0).

Результат: график функции у = а(х - т) 2 .

3. Параллельный перенос графика функ­ции вдоль оси у на | n | (вверх при п > 0 и вниз при п < 0).

Результат: график функции у = а(х - т) 2 + п.

Квадратичные неравенства

Неравенства вида ах 2 + b х + с > 0 и ах 2 + bх + с < 0, где х - переменная, a , b и с - некоторые числа, причем, а≠ 0, называют неравенствами второй степе­ни с одной переменной.

Решение неравенства второй степени с одной пе­ременной можно рассматривать как нахождение промежутков, в которых соответствующая квадра­тичная функция принимает положительные или от­рицательные значения.

Для решения неравенств вида ах 2 + bх + с > 0 и ах 2 + bх + с < 0 поступают следующим образом:

1) находят дискриминант квадратного трехчлена и выясня­ют, имеет ли трехчлен корни;

2) если трехчлен имеет корни, то отмечают их на оси х и че­рез отмеченные точки проводят схематически параболу, вет­ви которой направлены вверх при а > 0 или вниз при а < 0; если трехчлен не имеет корней, то схематически изобража­ют параболу, расположенную в верхней полуплоскости при а > 0 или в нижней при а < 0;

3) находят на оси х промежутки, для которых точки парабо­лы расположены выше оси х (если решают неравенство ах 2 + bх + с > 0) или ниже оси х (если решают неравенство ах 2 + bх + с < 0).

Пример:

Решим неравенство .

Рассмотрим функцию

Ее графиком является парабола, ветви которой направлены вниз (т. к. ).

Выясним, как расположен график относительно оси х. Решим для этого уравнение . Получим, что х = 4. Уравнение имеет единственный корень. Значит, парабола касается оси х.

Изобразив схематически параболу, най­дем, что функция принимает отрицательные значе­ния при любом х, кроме 4.

Ответ можно записать так: х - любое число, не равное 4.

Решение неравенств методом интервалов

схема решения

1. Найти нули функции, стоящей в левой части неравенства.

2. Отметить положение нулей на числовой оси и определить их кратность (если k i четное, то нуль четной кратности, если k i нечетное - то нечетной).

3. Найти знаки функции в промежутках между ее нулями, на­чиная с крайнего правого промежутка: в этом промежутке функция в левой части неравенства всегда положительна для приведенного вида неравенств. При переходе справа налево через нуль функции от одного промежутка к сосед­нему следует учитывать:

если нуль нечетной кратности, знак функции изменяется,

если нуль четной кратности, знак функции сохраняется.

4. Записать ответ.

Пример:

(х + 6) (х + 1) (х - 4) < 0.

Найден нули функции. Они равны: х 1 = -6; х 2 = -1; х 3 = 4.

Отметим на координатной прямой нули функции f ( x ) = (х + 6) (х + 1) (х - 4).

Найдем знаки этой функции в каждом из промежутков (-∞; -6), (-6; -1), (-1; 4) и

Из рисунка видно, что множеством решений неравенства является объединение промежутков (-∞; -6) и (-1; 4).

Ответ: (-∞ ; -6) и (-1; 4).

Рассмотренный способ решения неравенств на­зывают методом интервалов.

Приведены справочные данные по показательной функции - основные свойства, графики и формулы. Рассмотрены следующие вопросы: область определения, множество значений, монотонность, обратная функция, производная, интеграл, разложение в степенной ряд и представление посредством комплексных чисел.

Определение

Показательная функция - это обобщение произведения n чисел, равных a :
y(n) = a n = a·a·a···a ,
на множество действительных чисел x :
y(x) = a x .
Здесь a - фиксированное действительное число, которое называют основанием показательной функции .
Показательную функцию с основанием a также называют экспонентой по основанию a .

Обобщение выполняется следующим образом.
При натуральном x = 1, 2, 3,... , показательная функция является произведением x множителей:
.
При этом она обладает свойствами (1.5-8) (), которые следуют из правил умножения чисел. При нулевом и отрицательных значениях целых чисел , показательную функцию определяют по формулам (1.9-10). При дробных значениях x = m/n рациональных чисел, , ее определяют по формуле(1.11). Для действительных , показательную функцию определяют как предел последовательности:
,
где - произвольная последовательность рациональных чисел, сходящаяся к x : .
При таком определении, показательная функция определена для всех , и удовлетворяет свойствам (1.5-8), как и для натуральных x .

Строгая математическая формулировка определения показательной функции и доказательство ее свойств приводится на странице «Определение и доказательство свойств показательной функции ».

Свойства показательной функции

Показательная функция y = a x , имеет следующие свойства на множестве действительных чисел () :
(1.1) определена и непрерывна, при , для всех ;
(1.2) при a ≠ 1 имеет множество значений ;
(1.3) строго возрастает при , строго убывает при ,
является постоянной при ;
(1.4) при ;
при ;
(1.5) ;
(1.6) ;
(1.7) ;
(1.8) ;
(1.9) ;
(1.10) ;
(1.11) , .

Другие полезные формулы.
.
Формула преобразования к показательной функции с другим основанием степени:

При b = e , получаем выражение показательной функции через экспоненту:

Частные значения

, , , , .

На рисунке представлены графики показательной функции
y(x) = a x
для четырех значений основания степени : a = 2 , a = 8 , a = 1/2 и a = 1/8 . Видно, что при a > 1 показательная функция монотонно возрастает. Чем больше основание степени a , тем более сильный рост. При 0 < a < 1 показательная функция монотонно убывает. Чем меньше показатель степени a , тем более сильное убывание.

Возрастание, убывание

Показательная функция, при является строго монотонной, поэтому экстремумов не имеет. Основные ее свойства представлены в таблице.

y = a x , a > 1 y = a x , 0 < a < 1
Область определения - ∞ < x < + ∞ - ∞ < x < + ∞
Область значений 0 < y < + ∞ 0 < y < + ∞
Монотонность монотонно возрастает монотонно убывает
Нули, y = 0 нет нет
Точки пересечения с осью ординат, x = 0 y = 1 y = 1
+ ∞ 0
0 + ∞

Обратная функция

Обратной для показательной функции с основанием степени a является логарифм по основанию a .

Если , то
.
Если , то
.

Дифференцирование показательной функции

Для дифференцирования показательной функции, ее основание нужно привести к числу e , применить таблицу производных и правило дифференцирования сложной функции.

Для этого нужно использовать свойство логарифмов
и формулу из таблицы производных :
.

Пусть задана показательная функция:
.
Приводим ее к основанию e :

Применим правило дифференцирования сложной функции . Для этого вводим переменную

Тогда

Из таблице производных имеем (заменим переменную x на z ):
.
Поскольку - это постоянная, то производная z по x равна
.
По правилу дифференцирования сложной функции:
.

Производная показательной функции

.
Производная n-го порядка:
.
Вывод формул > > >

Пример дифференцирования показательной функции

Найти производную функции
y = 3 5 x

Решение

Выразим основание показательной функции через число e .
3 = e ln 3
Тогда
.
Вводим переменную
.
Тогда

Из таблицы производных находим:
.
Поскольку 5ln 3 - это постоянная, то производная z по x равна:
.
По правилу дифференцирования сложной функции имеем:
.

Ответ

Интеграл

Выражения через комплексные числа

Рассмотрим функцию комплексного числа z :
f(z) = a z
где z = x + iy ; i 2 = - 1 .
Выразим комплексную постоянную a через модуль r и аргумент φ :
a = r e i φ
Тогда


.
Аргумент φ определен не однозначно. В общем виде
φ = φ 0 + 2 πn ,
где n - целое. Поэтому функция f(z) также не однозначна. Часто рассматривают ее главное значение
.

Разложение в ряд


.

Использованная литература:
И.Н. Бронштейн, К.А. Семендяев, Справочник по математике для инженеров и учащихся втузов, «Лань», 2009.

Русская гимназия

КОНСПЕКТ

Выполнил

ученик 10“Ф” класса Бурмистров Сергей

Руководитель

учитель Математики

Юлина О.А.

Нижний Новгород


Функция и её свойства

Функция- зависимость переменной у от переменной x , если каждому значению х соответствует единственное значение у .

Переменная х- независимая переменная или аргумент.

Переменная у- зависимая переменная

Значение функции- значение у , соответствующее заданному значению х .

Область определения функции- все значения, которые принимает независимая переменная.

Область значений функции (множество значений)- все значения, которые принимает функция.

Функция является четной- если для любого х f(x)=f(-x)

Функция является нечетной- если для любого х из области определения функции выполняется равенство f(-x)=-f(x)

Возрастающая функция- если для любых х 1 и х 2 , таких, что х 1 < х 2 , выполняется неравенство f( х 1 ) х 2 )

Убывающая функция- если для любых х 1 и х 2 , таких, что х 1 < х 2 , выполняется неравенство f( х 1 )>f( х 2 )

Способы задания функции

¨ Чтобы задать функцию, нужно указать способ, с помощью которого для каждого значения аргумента можно найти соответствующее значение функции. Наиболее употребительным является способ задания функции с помощью формулы у =f(x) , где f(x)- íåêîòîðîå âыðàæåíèå с переменной х . В таком случае говорят, что функция задана формулой или что функция задана аналитически.

¨ На практике часто используется табличный способ задания функции. При этом способе приводится таблица, указывающая значения функции для имеющихся в таблице значений аргумента. Примерами табличного задания функции являются таблица квадратов, таблица кубов.

Виды функций и их свойства

1) Постоянная функция- функция, заданная формулой у= b , где b- некоторое число. Графиком постоянной функции у=b является прямая, параллельная оси абсцисс и проходящая через точку (0;b) на оси ординат

2) Прямая пропорциональность- функция, заданная формулой у= kx , где к¹0. Число k называется коэффициентом пропорциональности .

Cвойства функции y=kx :

1. Область определения функции- множество всех действительных чисел

2. y=kx - нечетная функция

3. При k>0 функция возрастает, а при k<0 убывает на всей числовой прямой

3)Линейная функция- функция, которая задана формулой y=kx+b , где k иb - действительные числа. Если в частности, k=0 , то получаем постоянную функцию y=b ; если b=0 , то получаем прямую пропорциональность y=kx .

Свойства функции y=kx+b :

1. Область определения- множество всех действительных чисел

2. Функция y=kx+b общего вида, т.е. ни чётна, ни нечётна.

3. При k>0функция возрастает, а при k<0 убывает на всей числовой прямой

Графиком функции является прямая .

4)Обратная пропорциональность- функция, заданная формулой y=k /х, где k¹0 Число k называют коэффициентом обратной пропорциональности.

Свойства функции y=k / x:

1. Область определения- множество всех действительных чисел кроме нуля

2. y=k / x - нечетная функция

3. Если k>0, то функция убывает на промежутке (0;+¥) и на промежутке (-¥;0). Если k<0, то функция возрастает на промежутке (-¥;0) и на промежутке (0;+¥).

Графиком функции является гипербола .

5)Функция y=x 2

Свойства функции y=x 2:

2. y=x 2 - четная функция

3. На промежутке функция убывает

Графиком функции является парабола .

6)Функция y=x 3

Свойства функции y=x 3:

1. Область определения- вся числовая прямая

2. y=x 3 - нечетная функция

3. Функция возрастает на всей числовой прямой

Графиком функции является кубическая парабола

7)Степенная функция с натуральным показателем- функция, заданная формулой y=x n , где n - натуральное число. При n=1 получаем функцию y=x, ее свойства рассмотрены в п.2. При n=2;3 получаем функции y=x 2 ; y=x 3 . Их свойства рассмотрены выше.

Пусть n- произвольное четное число, большее двух: 4,6,8... В этом случае функция y=x n обладает теми же свойствами, что и функция y=x 2 . График функции напоминает параболу y=x 2 , только ветви графика при |х|>1 тем круче идут вверх, чем больше n, а при |х|<1 тем “теснее прижимаются” к оси Х, чем больше n.

Пусть n- произвольное нечетное число, большее трех: 5,7,9... В этом случае функция y=x n обладает теми же свойствами, что и функция y=x 3 . График функции напоминает кубическую параболу.

8)Степенная функция с целым отрицательным показателем- функция, заданная формулой y=x -n , где n - натуральное число. При n=1 получаем y=1/х, свойства этой функции рассмотрены в п.4.

Пусть n- нечетное число, большее единицы: 3,5,7... В этом случае функция y=x -n обладает в основном теми же свойствами, что и функция y=1/х.

Пусть n- четное число, например n=2.

Свойства функции y=x -2 :

1. Функция определена при всех x¹0

2. y=x -2 - четная функция

3. Функция убывает на (0;+¥) и возрастает на (-¥;0).

Теми же свойствами обладают любые функции при четном n, большем двух.

9)Функция y= Ö х

Свойства функции y= Ö х :

1. Область определения - луч }