Удельное расширение жидкостей таблица. Коэффициент температурного расширения

При изменении температуры происходит изменение размеров твердого тела, которое называют тепловым расширением. Различают линейное и объемное тепловое расширения. Эти процессы характеризуют коэффициентами теплового (температурного) расширения: — средний коэффициент линейного температурного расширения, средний коэффициент объемного теплового расширения.

ОПРЕДЕЛЕНИЕ

Коэффициентом температурного расширения называют физическую величину характеризующую изменение линейных размеров твердого тела при изменении его температуры.

Применяют, обычно средний коэффициент линейного расширения. Это характеристика теплового расширения материала.

Если первоначальная длина тела равна , — его удлинение при увеличении температуры тела на , тогда определен формулой:

Коэффициент линейного удлинения является характеристикой относительного удлинения (), которое происходит при увеличении температуры тела на 1К.

При увеличении температуры увеличивается объем твердого тела. В первом приближении можно считать, что:

где — начальный объем тела, — изменение температуры тела. Тогда коэффициентом объемного расширения тела является физическая величина, которая характеризует относительное изменение объема тела (), которое происходит при нагревании тела на 1 K и неизменном давлении. Математическим определением коэффициента объемного расширения является формула:

Тепловое расширение твердого тела связывают с ангармоничностью тепловых колебаний частиц, составляющих кристаллическую решетку тела. В результате данных колебаний при увеличении температуры тела увеличивается равновесное расстояние между соседними частицами этого тела.

При изменении объема тела происходит изменение его плотности:

где — начальная плотность, — плотность вещества при новой температуре. Так как величина то выражение (4) иногда записывают как:

Коэффициенты теплового расширения зависят от вещества. В общем случае они будут зависеть от температуры. Коэффициенты теплового расширения считают независимыми от температуры в небольшом интервале температур.

Существует ряд веществ, имеющих отрицательный коэффициент теплового расширения. Так при повышении температуры такие материалы сжимаются. Обычно это происходит в узком интервале температур. Есть вещества, у которых коэффициент теплового расширения почти равен нулю около некоторого определенного интервала температур.

Выражение (3) применяют не только для твердых тел, но и жидкостей. При этом считают, что коэффициент температурного расширения для капельных жидкостей изменяется при изменении температуры не существенно. Однако при расчете систем отопления его учитывают.

Связь коэффициентов теплового расширения

Единицы измерения

Основной единицей измерения коэффициентов температурного расширения в системе СИ является:

Примеры решения задач

ПРИМЕР 1

Задание Для того чтобы определять коэффициент объемного расширения жидкостей используют приборы, которые называют пикнометры. Это стеклянные колбы с узким горлом (рис.1). На горлышке ставят отметки о вместимости сосуда (обычно в мл). Как применяют пикнометры?

Решение Измеряют коэффициент объемного расширения следующим образом. Пикнометр наполняют исследуемой жидкостью, до избранной метки. Колбу нагревают, отмечая изменение уровня вещества. При таких известных величинах как: начальный объем пикнометра, площадь сечения канала шейки колбы, изменение температуры определяют долю начального объема жидкости, которая поступила в шейку пикнометра, при нагревании на 1 К. При этом следует учесть, что коэффициент расширения жидкости больше, полученной величины, так как произошло нагревание и расширение и колбы. Следовательно, для вычисления коэффициента расширения жидкости добавляют коэффициент расширения вещества колбы (обычно стекла). Надо сказать, что, так как коэффициент объемного расширения стекла существенно меньше, чем жидкости, при приблизительных расчетах коэффициентом расширения стекла можно пренебречь.

ПРИМЕР 2

Задание В чем состоят особенности расширения воды? В чем значение этого явления?
Решение Вода, в отличие от большинства других жидких веществ, расширяется при нагревании, только если температура выше 4 o С. В интервале температур объем воды при увеличении температуры уменьшается. Пресная вода при имеет максимальную плотность. Для морской воды максимальная плотность достигается при. Рост давления понижает температуру максимальной плотности воды.

Так как почти 80% поверхности нашей планеты покрыто водой, то особенности расширения ее играют значимую роль в создании климата на Земле. Лучи Солнца, попадая на водную поверхность, нагревают ее. Если температура ниже 1-2 o С, то нагревшиеся слои воды имеют большую плотность, чем холодные и опускаются вниз. При этом их место занимают более холодные слои, которые в свою очередь нагреваются. Так идет постоянная смена слоев воды и это ведет к прогреванию водяной толщи, до момента достижения максимальной плотности. Дальнейшее увеличение температуры приводит к тому, что верхние слои воды уменьшают свою плотность и остаются наверху.

Так, получается, что большой слой воды прогревается до температуры максимальной плотности довольно быстро, а дальнейшее увеличение температуры идет медленно. В результате глубокие водоемы Земли с некоторой глубины имеют температуру около 2-3 o С. При этом температура верхних слоев воды в морях теплых стран может иметь температуру около 30 o C и выше.

Подобно температурному коэффициенту линейного расширения можно ввести и применять температурный коэффициент объемного расширения, который является характеристикой изменения объема тела при изменении его температуры. Эмпирически установлено, что приращение объема в этом случае можно считать пропорциональным изменению температуры, если она изменяется не на очень большую величину. Коэффициент объемного расширения может быть обозначен по-разному, нет одного обозначения. Часто встречается обозначение:

ОПРЕДЕЛЕНИЕ

Обозначим объем тела при начальной температуре (t) как V, объем тела при конечной температуре , как , объем тела при температуре , как , тогда коэффициент объемного расширения определим в виде формулы:

Твердые тела и жидкости увеличивают свой объем при увеличении температуры незначительно, следовательно, так называемый «нормальный объем» () при температуре несущественно отличается от объема при другой температуре. Поэтому в выражении (1) заменяют на V, при этом получается:

Следует заметить, что для газов тепловое расширение иное и замена «нормального» объема на V возможно только для малых интервалов температур.

Коэффициент объемного расширения и объем тела

Используя коэффициент объемного расширения можно записать формулу, которая позволяет рассчитать объем тела, если известны начальный объем и приращение температуры:

где . Выражение () — называют биномом объемного расширения.

Тепловое расширение твердого тела связывают с ангармоничностью тепловых колебаний частиц, составляющих кристаллическую решетку тела. В результате данных колебаний при увеличении температуры тела увеличивается равновесное расстояние между соседними частицами этого тела.

Коэффициент объемного расширения и плотность вещества

Если при неизменной массе происходит изменение объема тела, то это приводит к изменению плотности его вещества:

где — начальная плотность, — плотность вещества при новой температуре. Так как величина то выражение (4) иногда записывают как:

Формулы (3)-(5) можно использовать при нагревании тела и при его охлаждении.

Связь объемного и линейного коэффициентов теплового расширения

Единицы измерения

Основной единицей измерения коэффициента температурного расширения в системе СИ является:

Примеры решения задач

ПРИМЕР 1

Задание Какое давление показывает ртутный барометр, который находится в комнате, если температура в помещении постоянна и равна t=37 o С. Коэффициент объемного расширения ртути равен Расширением стекла можно пренебречь.
Решение Фактическим объемом ртути в барометре будет величина V, которую можно найти соответствии с выражением:

где — объем ртути при нормальном атмосферном давлении и температуре .

Так температура в комнате не изменяется, то можно использовать закон Бойля — Мариотта и записать, что:

Проедем вычисления:

Ответ Па

ПРИМЕР 2

Задание Какова разность уровней жидкости в двух одинаковых сообщающихся трубках, если левая трубка имеет постоянную температуру , а правая title="Rendered by QuickLaTeX.com" height="18" width="66" style="vertical-align: -4px;">). Высота жидкости в левой трубке равна (рис.1). Коэффициент объемного расширения жидкости равен . Расширение стекла моно не учитывать.

Температурное расширение жидкостисостоит в том, что она может изменять свой объем при изменении температуры. Это свойство характеризуется температурным коэффициентом объемного расширения , представляющим относительное изменение объема жидкости при изменении температуры на единицу (на 1 о C) и при постоянном давлении:

По аналогии со свойством сжимаемости жидкости можно записать

или через плотность

Изменение объёма при изменении температуры происходит за счёт изменения плотности.

Для большинства жидкостей коэффициент t с увеличением давления уменьшается. Коэффициент t с уменьшением плотности нефтепродуктов от 920 до 700 кг/м 3 увеличивается от 0,0006 до 0,0008 ; для рабочих жидкостей гидросистем t обычно принимают не зависящим от температуры. Для этих жидкостей увеличение давления от атмосферного до 60 МПа приводит к росту t примерно на 10 – 20 % . При этом, чем выше температура рабочей жидкости, тем больше увеличение t . Для воды с увеличением давления при температуре до 50 о C t растёт, а при температуре выше 50 о C уменьшается.

Растворение газов

Растворение газов - способность жидкости поглощать (растворять) газы, находящиеся в соприкосновении с ней. Все жидкости в той или иной степени поглощают и растворяют газы. Это свойство характеризуется коэффициентом растворимости k р .

Если в закрытом сосуде жидкость находится в контакте с газом при давленииP 1 , то газ начнёт растворяться в жидкости. Через какое-то время

произойдёт насыщение жидкости газом и давление в сосуде изменится. Коэффициент растворимости связывает изменение давления в сосуде с объёмом растворённого газа и объёмом жидкости следующим соотношением

где V Г – объём растворённого газа при нормальных условиях,

V ж – объём жидкости,

P 1 и P 2 – начальное и конечное давление газа.

Коэффициент растворимости зависит от типа жидкости, газа и температуры.

При температуре 20 ºС и атмосферном давлении в воде содержится около 1,6% растворенного воздуха по объему (k p = 0,016 ). С увеличением температуры от 0 до 30 ºС коэффициент растворимости воздуха в воде уменьшается. Коэффициент растворимости воздуха в маслах при температуре 20 ºС равен примерно 0,08 – 0,1 . Кислород отличается более высокой растворимостью, чем воздух, поэтому содержание кислорода в воздухе, растворенном в жидкости, примерно на 50% выше, чем в атмосферном. При уменьшении давления газ из жидкости выделяется. Процесс выделения газа протекает интенсивнее, чем растворение.

Кипение

Кипение – способность жидкости переходить в газообразное состояние. Иначе это свойство жидкостей называютиспаряемостью .

Жидкость можно довести до кипения повышением температуры до значений, больших температуры кипения при данном давлении, или понижением давления до значений, меньших давления насыщенных паров p нп жидкости при данной температуре. Образование пузырьков при понижении давления до давления насыщенных паров называется холодным кипением.

Жидкость, из которой удален растворенный в ней газ, называется дегазированной. В такой жидкости, кипение не возникает и при температуре, большей температуры кипения при данном давлении.

Связи между частицами жидкости, как мы знаем, слабее, чем между молекулами в твердом теле. Поэтому следует ожидать, что при одинаковом нагревании жидкости расширяются в большей степени, чем твердые тела. Это действительно подтверждается на опыте.

Наполним колбу с узким и длинным горлышком подкрашенной жидкостью (водой или лучше керосином) до половины горлышка и отметим резиновым колечком уровень жидкости. После этого опустим колбу в сосуд с горячей водой. Сначала будет видно понижение уровня жидкости в горлышке колбы, а затем уровень начнет повышаться и поднимется значительно выше начального. Это объясняется тем, что вначале нагревается сосуд и объем его увеличивается. Из-за этого уровень жидкости опускается. Затем нагревается жидкость. Расширяясь, она не только заполняет увеличившийся объем сосуда, но и значительно превышает этот объем. Следовательно, жидкости расширяются в большей степени, чем твердые тела.

Температурные коэффициенты объемного расширения жидкостей значительно больше коэффициентов объемного расширения твердых тел; они могут достигать значения 10 -3 К -1 .

Жидкость нельзя нагреть, не нагревая сосуда, в котором она находится. Поэтому мы не можем наблюдать истинного расширения жидкости в сосуде, так как расширение сосуда занижает видимое увеличение объема жидкости. Впрочем, коэффициент объемного расширения стекла и других твердых тел обычно значительно меньше коэффициента объемного расширения жидкости, и при не очень точных измерениях увеличением объема сосуда можно пренебречь.

Особенности расширения воды

Наиболее распространенная на Земле жидкость - вода - обладает особыми свойствами, отличающими ее от других жидкостей. У воды при нагревании от 0 до 4 °С объем не увеличивается, а уменьшается. Лишь с 4 °С объем воды начинает при нагревании возрастать. При 4 °С, таким образом, объем воды минимален, а плотность максимальна*. На рисунке 9.4 показана примерная зависимость плотности воды от температуры.

* Эти данные относятся к пресной (химически чистой) воде. У морской воды наибольшая плотность наблюдается примерно при 3 °С.

Отмеченное особое свойство воды оказывает большое влияние на характер теплообмена в водоемах. При охлаждении воды вначале плотность верхних слоев увеличивается, и они опускаются вниз. Но после достижения воздухом температуры 4 °С дальнейшее охлаждение уже уменьшает плотность, и холодные слои воды остаются на поверхности. В результате в глубоких водоемах даже при очень низкой температуре воздуха вода имеет температуру около 4 °С.

Объем жидких и твердых тел увеличивается прямо пропорционально росту температуры. У воды обнаруживается аномалия: ее плотность максимальна при 4 °С.

§ 9.4. Учет и использование теплового расширения тел в технике

Хотя линейные размеры и объемы тел при изменении температуры меняются мало, тем не менее это изменение нередко приходится учитывать в практике; в то же время это явление широко используется в быту и технике.

Учет теплового расширения тел

Изменение размеров твердых тел вследствие теплового расширения приводит к появлению огромных сил упругости, если другие тела препятствуют этому изменению размеров. Например, стальная мостовая балка сечением 100 см 2 при нагревании от -40 °С зимой до +40 °С летом, если опоры препятствуют ее удлинению, создает давление на опоры (напряжение) до 1,6 10 8 Па, т. е. действует на опоры с силой 1,6 10 6 Н.

Приведенные значения могут быть получены из закона Гука и формулы (9.2.1) для теплового расширения тел.

Согласно закону Гука механическое напряжение
,где
- относительное удлинение,a Е - модуль Юнга. Согласно (9.2.1)
. Подставляя это значение относительного удлинения в формулу закона Гука, получим

(9.4.1)

У стали модуль Юнга Е = 2,1 10 11 Па, температурный коэффициент линейного расширения α 1 = 9 10 -6 К -1 . Подставив эти данные в выражение (9.4.1), получим, что при Δt = 80 °С механическое напряжение σ = 1,6 10 8 Па.

Так как S = 10 -2 м 2 , то сила F = σS = 1,6 10 6 Н.

Для демонстрации сил, появляющихся при охлаждении металлического стержня, можно проделать следующий опыт. Нагреем железный стержень с отверстием на конце, в которое вставлен чугунный стерженек (рис. 9.5). Затем вставим этот стержень в массивную металлическую подставку с пазами. При охлаждении стержень сокращается, и в нем возникают столь большие силы упругости, что чугунный стерженек ломается.

Тепловое расширение тел нужно учитывать при конструировании многих сооружений. Необходимо принимать меры для того, чтобы тела могли свободно расширяться или сжиматься при изменении температуры.

Нельзя, например, туго натягивать телеграфные провода, а также провода линий электропередачи (ЛЭП) между опорами. Летом провисание проводов заметно больше, чем зимой.

Металлические паропроводы, а также трубы водяного отопления приходится снабжать изгибами (компенсаторами) в виде петель (рис. 9.6).

Внутренние напряжения могут возникать при неравномерном нагревании однородного тела. Например, стеклянная бутылка или стакан из толстого стекла могут лопнуть, если налить в них горячей воды. В первую очередь происходит нагрев внутренних частей сосуда, соприкасающихся с горячей водой. Они расширяются и оказывают сильное давление на внешние холодные части. Поэтому может произойти разрушение сосуда. Тонкий же стакан не лопается при наливании в него горячей воды, так как его внутренняя и внешняя части одинаково быстро прогреваются.

Очень малый температурный коэффициент линейного расширения имеет кварцевое стекло. Такое стекло выдерживает, не трескаясь, неравномерное нагревание или охлаждение. Например, в раскаленную докрасна колбочку из кварцевого стекла можно вливать холодную воду, тогда как колба из обычного стекла при таком опыте лопается.

Разнородные материалы, подвергающиеся периодическому нагреванию и охлаждению, следует соединять вместе только тогда, когда их размеры при изменении температуры меняются одинаково. Это особенно важно при больших размерах изделий. Так, например, железо и бетон при нагревании расширяются одинаково. Именно поэтому широкое распространение получил железобетон - затвердевший бетонный раствор, залитый в стальную решетку - арматуру (рис. 9.7). Если бы железо и бетон расширялись по-разному, то в результате суточных и годовых колебаний температуры железобетонное сооружение вскоре бы разрушилось.

Еще несколько примеров. Металлические проводники, впаянные в стеклянные баллоны электроламп и радиоламп, делают из сплава (железа и никеля), имеющего такой же коэффициент расширения, как и стекло, иначе при нагревании металла стекло треснуло бы. Эмаль, которой покрывают посуду, и металл, из которого эта посуда изготовляется, должны иметь одинаковый коэффициент линейного расширения. В противном случае эмаль будет лопаться при нагревании и охлаждении покрытой ею посуды.

Значительные силы могут развиваться и жидкостью, если нагревать ее в замкнутом сосуде, не позволяющем жидкости расширяться. Эти силы могут привести к разрушению сосудов, в которых содержится жидкость. Поэтому с этим свойством жидкости тоже приходится считаться. Например, системы труб водяного отопления всегда снабжаются расширительным баком, присоединенным к верхней части системы и сообщающимся с атмосферой. При нагревании воды в системе труб небольшая часть воды переходит в расширительный бак, и этим исключается напряженное состояние воды и труб. По этой же причине в силовом трансформаторе с масляным охлаждением наверху имеется расширительный бак для масла. При повышении температуры уровень масла в баке повышается, при охлаждении масла - понижается.