Коэффициент полезного действия механизмов примеры применение. Цель работы

В реальной действительности работа, совершаемая при помощи какого - либо устройства, всегда больше полезной работы, так как часть работы выполняется против сил трения, которые действуют внутри механизма и при перемещении его отдельных частей. Так, применяя подвижный блок, совершают дополнительную работу, поднимая сам блок и веревку и, преодолевая силы трения в блоке.

Введем следующие обозначения: полезную работу обозначим $A_p$, полную работу - $A_{poln}$. При этом имеем:

Определение

Коэффициентом полезного действия (КПД) называют отношение полезной работы к полной. Обозначим КПД буквой $\eta $, тогда:

\[\eta =\frac{A_p}{A_{poln}}\ \left(2\right).\]

Чаще всего коэффициент полезного действия выражают в процентах, тогда его определением является формула:

\[\eta =\frac{A_p}{A_{poln}}\cdot 100\%\ \left(2\right).\]

При создании механизмов пытаются увеличить их КПД, но механизмов с коэффициентом полезного действия равным единице (а тем более больше единицы) не существует.

И так, коэффициент полезного действия - это физическая величина, которая показывает долю, которую полезная работа составляет от всей произведенной работы. При помощи КПД оценивают эффективность устройства (механизма, системы), преобразующей или передающей энергию, совершающего работу.

Для увеличения КПД механизмов можно пытаться уменьшать трение в их осях, их массу. Если трением можно пренебречь, масса механизма существенно меньше, чем масса, например, груза, который поднимает механизм, то КПД получается немного меньше единицы. Тогда произведенная работа примерно равна полезной работе:

Золотое правило механики

Необходимо помнить, что выигрыша в работе, используя простой механизм добиться нельзя.

Выразим каждую из работ в формуле (3) как произведение соответствующей силы на путь, пройденный под воздействием этой силы, тогда формулу (3) преобразуем к виду:

Выражение (4) показывает, что используя простой механизм, мы выигрываем в силе столько же, сколько проигрываем в пути. Данный закон называют «золотым правилом» механики. Это правило сформулировал в древней Греции Герон Александрийский.

Это правило не учитывает работу по преодолению сил трения, поэтому является приближенным.

КПД при передаче энергии

Коэффициент полезного действия можно определить как отношение полезной работы к затраченной на ее выполнение энергии ($Q$):

\[\eta =\frac{A_p}{Q}\cdot 100\%\ \left(5\right).\]

Для вычисления коэффициента полезного действия теплового двигателя применяют следующую формулу:

\[\eta =\frac{Q_n-Q_{ch}}{Q_n}\left(6\right),\]

где $Q_n$ - количество теплоты, полученное от нагревателя; $Q_{ch}$ - количество теплоты переданное холодильнику.

КПД идеальной тепловой машины, которая работает по циклу Карно равно:

\[\eta =\frac{T_n-T_{ch}}{T_n}\left(7\right),\]

где $T_n$ - температура нагревателя; $T_{ch}$ - температура холодильника.

Примеры задач на коэффициент полезного действия

Пример 1

Задание. Двигатель подъемного крана имеет мощность $N$. За отрезок времени равный $\Delta t$ он поднял груз массой $m$ на высоту $h$. Каким является КПД крана?\textit{}

Решение. Полезная работа в рассматриваемой задаче равна работе по подъему тела на высоту $h$ груза массы $m$, это работа по преодолению силы тяжести. Она равна:

Полную работу, которая выполняется при поднятии груза, найдем, используя определение мощности:

Воспользуемся определением коэффициента полезного действия для его нахождения:

\[\eta =\frac{A_p}{A_{poln}}\cdot 100\%\left(1.3\right).\]

Формулу (1.3) преобразуем, используя выражения (1.1) и (1.2):

\[\eta =\frac{mgh}{N\Delta t}\cdot 100\%.\]

Ответ. $\eta =\frac{mgh}{N\Delta t}\cdot 100\%$

Пример 2

Задание. Идеальный газ выполняет цикл Карно, при этом КПД цикла равно $\eta $. Какова работа в цикле сжатия газа при постоянной температуре? Работа газа при расширении равна $A_0$

Решение. Коэффициент полезного действия цикла определим как:

\[\eta =\frac{A_p}{Q}\left(2.1\right).\]

Рассмотрим цикл Карно, определим, в каких процессах тепло подводят (это будет $Q$).

Так как цикл Карно состоит из двух изотерм и двух адиабат, можно сразу сказать, что в адиабатных процессах (процессы 2-3 и 4-1) теплообмена нет. В изотермическом процессе 1-2 тепло подводят (рис.1 $Q_1$), в изотермическом процессе 3-4 тепло отводят ($Q_2$). Получается, что в выражении (2.1) $Q=Q_1$. Мы знаем, что количество теплоты (первое начало термодинамики), подводимое системе при изотермическом процессе идет полностью на выполнение газом работы, значит:

Газ совершает полезную работу, которую равна:

Количество теплоты, которое отводят в изотермическом процессе 3-4 равно работе сжатия (работа отрицательна) (так как T=const, то $Q_2=-A_{34}$). В результате имеем:

Преобразуем формулу (2.1) учитывая результаты (2.2) - (2.4):

\[\eta =\frac{A_{12}+A_{34}}{A_{12}}\to A_{12}\eta =A_{12}+A_{34}\to A_{34}=(\eta -1)A_{12}\left(2.4\right).\]

Так как по условию $A_{12}=A_0,\ $окончательно получаем:

Ответ. $A_{34}=\left(\eta -1\right)A_0$

Энергия, подводимая к механизму в виде работы движущих сил А дв.с . и моментов за цикл установившегося движения, расходуется на совершение полезной работы А п.с . , а также на совершение работы А Fтр , связанной с преодолением сил трения в кинематических парах и сил сопротивления среды.

Рассмотрим установившееся движение. Приращение кинетической энергии равно нулю, т.е.

При этом работы сил инерции и сил тяжести равны нулю А Ри = 0 , А G = 0 . Тогда для установившегося движения работа движущих сил равна

А дв.с. =А п.с. + А Fтр .

Следовательно, за полный цикл установившегося движения работа всех движущих сил равна сумме работ сил производственных сопротивлений и непроизводственных сопротивлений (сил трения).

Механический коэффициент полезного действия η (КПД) – отношение работы сил производственных сопротивлений к работе всех движущих сил за время установившегося движения :

η = . (3.61)

Как видно из формулы (3.61), КПД показывает, какая доля механической энергии, приведенной к машине, полезно расходуется на совершение той работы, для которой машина создана.

Отношение работы сил непроизводственных сопротивлений к работе движущих сил называется коэффициентом потерь :

ψ = . (3.62)

Механический коэффициент потерь показывает, какая доля механической энергии, подведенной к машине, превращается в конечном счете в теплоту и бесполезно теряется в окружающем пространстве.

Отсюда имеем связь между КПД и коэффициентом потерь

η =1- ψ .

Из этой формулы вытекает, что ни в одном механизме работа сил непроизводственных сопротивлений не может равняться нулю, поэтому КПД всегда меньше единице (η <1 ). Из этой же формулы следует, что КПД может равняться нулю, если А дв.с =А Fтр . Движение, при котором А дв.с = А Fтр называетсяхолостым . КПД не может быть меньше нуля, т.к. для этого необходимо, чтобы А дв.с <А Fтр . Явление, при котором механизм находится в покое и при этом удовлетворяется условие А дв.с <А Fтр, называется явлением самоторможения механизма . Механизм, у которого η = 1, называется вечным двигателем .

Таким образом, коэффициент полезного действия находится в пределах

0 £ η < 1 .

Рассмотрим определение КПД при различных способах соединения механизмов.

3.2.2.1. Определение КПД при последовательном соединении

Пусть имеется n последовательно соединенных между собой механизмов (рисунок 3.16).

А дв.с. 1 А 1 2 А 2 3 А 3 А n-1 n A n

Рисунок 3.16 - Схема последовательно соединенных механизмов

Первый механизм приводится в движение движущими силами, которые совершают работу А дв.с . Так как полезная работа каждого предыдущего механизма, затрачиваемая на производственные сопротивления, является работой движущих сил для каждого последующего механизма, то КПД первого механизма будет равняться:


η 1 =А 1 /А дв.с ..

Для второго механизма КПД равняется:

η 2 =А 2 /А 1 .

И, наконец, для n-го механизма КПД будет иметь вид:

η n =А n /А n-1

Общий коэффициент полезного действия равен:

η 1 n =А n /А дв.с.

Величина общего КПД может быть получена, если перемножить КПД каждого отдельного механизма, а именно:

η 1 n = η 1 η 2 η 3 …η n = .

Следовательно, общий механический коэффициент полезного действия последовательно соединенных механизмов равняется произведению механических коэффициентов полезного действия отдельных механизмов, составляющих одну общую систему :

η 1 n = η 1 η 2 η 3 …η n .(3.63)

3.2.2.2 Определение КПД при смешанном соединении

На практике соединение механизмов оказывается более сложным. Чаще последовательное соединение сочетается с параллельным. Такое соединение называется смешанным. Рассмотрим пример сложного соединения (рисунок 3.17).

Поток энергии от механизма 2 распределяется по двум направлениям. В свою очередь от механизма 3 ¢¢ поток энергии распределяется также по двум направлениям. Общая работа сил производственных сопротивлений равна:

А п.с. = A ¢ n + A ¢ ¢ n + A ¢ ¢¢ n .

Общий КПД всей системы будет равен:

η =А п.с /А дв.с = (A ¢ n + A ¢ ¢ n + A ¢ ¢¢ n )/А дв.с . (3.64)

Чтобы определить общий КПД, нужно выделить потоки энергии, в которых механизмы соединены последовательно, и рассчитать КПД каждого потока. На рисунке 3.17 показаны сплошной линией I-I, штриховой линией II-II и штрих- пунктирной линией III-III три потока энергии от общего источника.

А дв.с. А 1 А ¢ 2 А ¢ 3 … А ¢ n-1 A ¢ n

II А ¢¢ 2 II

А ¢¢ 3 4 ¢¢ А ¢¢ 4 А ¢¢ n-1 n ¢¢ A ¢¢ n

Лабораторная работа №9

Определение коэффициента полезного действия механизма

Цель работы – изучить теоретические основы определения к.п.д. простых механизмов, научиться определять к.п.д. винтовой пары экспериментально и аналитически, сопоставляя полученные результаты.

Коэффициентом полезного действия механизма называется отношение работы сил полезного сопротивления (полезной работы) А пс к работе движущих сил А дв за цикл установившегося движения

Так как за цикл установившегося движения работа движущих сил равна сумме работ всех сил сопротивлений, как полезных, так и вредных А вс (к последним отнсятся силы трения в кинематических парах, силы сопротивления окружающей среды), то

Отношение работы сил вредного сопротивления к работе движущих сил называется коэффициентом потерь:

Он связан с к.п.д. зависимостью:

К.п.д. определяется только для тягового режима работы машины, когда А пс <0 и А дв >0.

Для режима оттормаживания (при нем А пс >0 и А дв >0) к.п.д. не определяется.

Режим оттормаживания характерен для работы машин, в которых используются самотормозящиеся механизмы.

Работа сил вредных сопротивлений А вс для данной машины величина непостоянная и зависит от силы полезного сопротивления. Чем больше величина этой силы, тем большую величину будут иметь реакции в кинематических парах и тем больше будут силы трения.

К.п.д. машины также величина непостоянная и зависит от силы полезного сопротивления. До определенной величины силы полезного сопротивления к.п.д. машины растет, затем незначительно снижается. При нулевом значении силы полезного сопротивления ( Q =0), действующей на выходное звено, движущая сила или момент сил, приложенный к входному звену не равен нулю. Это вызвано наличием трения в кинематических парах механизма, сопротивлением окружающей среды и влиянием сил тяжести звеньев машины.

Момент двигателя, приложенный к входному звену, при Q =0 называется момент холостого хода (М х.х.).

Таким образом, момент на входном звене (М ) имеет две составляющих первая это момент холостого хода (М х.х.), вторая – момент, обусловленный силой полезного сопротивления (М Q ) т.е.

Значения работ за полное время установившегося движения машины пропорциональны средним значениям мощностей за тот же период времени. Отношение работ в формуле (1) можно заменить отношением мощностей

Или

где М 1 и М 2 – соответственно, моменты сил на входном и выходном звеньях; и – угловые скорости входного и выходного звеньев; u 12 - передаточное отношение механизма; - силовое передаточное отношение механизма как отношение момента сил (силы) на выходном звене к моменту сил (силе) на входном звене.

Зависимость (3) удобно использовать для аналитического определения к.п.д. Для большинства механизмов получены формулы для определения к.п.д. Однако, отклонения в качестве обработки поверхностей деталей, в термической обработке материалов, в условиях смазки дают ряд дополнительных факторов, учесть влияние которых на величину сил трения и к.п.д. при аналитических расчетах не всегда представляется возможным. Поэтому весьма важно уметь определить к.п.д. механизмов экспериментально.

Оборудование

Установка для определения к.п.д. винтовых пар ТММ-33 имеет основные технические данные:

1. На установке определяются к.п.д. для винтовых пар:

№1 – резьба М 42х4,5. Наружный диаметр резьбы d =42 мм, шаг резьбы Р=4,5 мм, резьба однозаходная n =1, где n – число заходов резьбы;

№2 – резьба прямоугольная Прям. 42 (3х8). Наружный диаметр резьбы d =42 мм, шаг резьбы Р=8 мм, резьба трехзаходная n =3.

2. Материал винтов – сталь 45. Материал гаек – вкладышей – бронза ОЦС 5-5.

3. Вращение винтов от электродвигателя реверсивное, полуавтоматическое – с угловой скоростью 60 1/с.

4. Рабочий ход гайки вдоль оси винта – 300 мм.

6. Максимальный момент на выходном валу редуктора – 100 Нм.

7. Потребляемая мощность электродвигателя – 50 Вт.

8. Питание от сети переменного тока – 110 –127В, 50Гц.

9. Габариты – 175х200х1440 мм.

Установка показана на рис.1, её принципиальная схема - на рис 2. Основанием установки является станина 1 из швеллера. На станине в стойках 2 и 3 закреплены подшипники. В подшипнике верхней стойки 2 установлены с возможностью свободного вращения статора двигателя 4 и редуктор 5. Статор электродвигателя 4 жестко связан с корпусом редуктора 5. В подшипниках стоек 2 и 3 установлен винт 6, который связан с выходным валом редуктора 5. С винтом взаимодействует посредством резьбы гайка 7. Груз 8 устанавливается на подвеске 9, прикрепленной к гайке 7. На крышке редуктора 5 закреплен жесткий рычаг 11, снабженный точечными упорами, через которые он взаимодействует с пластинчатой пружиной 12. С пружиной взаимодействует индикатор часового типа 13. От поворота гайка 7 удерживается пальцем 10, входящим в паз стойки 1.

Жестко связанная система – корпус двигателя (статор), корпус редуктора – не закреплена на станине а может свободно вращаться в подшипнике верхней стойки 2. При включении двигателя ротор через редуктор начинает вращать винт 6 и перемещать гайку 7 с грузом 8. При работе установки (при вращении винта) статор двигателя стремится повернуться в направлении противоположном вращению ротора. При этом прикрепленный к статору жесткий рычаг 11 деформирует пластинчатую пружину 12. Индикатор 13, имея силовое замыкание с пружиной, показывает величину прогиба пружины от воздействия реактивного момента равного моменту на винте 7. Рабочий цикл (ход гайки вверх и перемещение вниз в исходное положение), включение и выключение двигателя совершаются нажатием специальной кнопки 14 при подключенном с помощью тумблера 15 электропитании. Кнопка и тумблер помещены на специальном щитке установки вверху справа (рис.1). При движении гайки вверх механизм работает в тяговом режиме, в течение которого необходимо снять показания индикатора 13.

К.п.д. винтовой пары определяется при различных осевых нагрузках, создаваемых набором грузов. Момент на винте определяется с помощью тарировочного графика.

Порядок выполнения работы

1. Составить схему установки. Записать исходные данные: вид резьбы, шаг резьбы, число заходов резьбы, материал винта, материалы гаек.

2. Тумблером подключить питание.

3. При Q =0 нажатием на кнопку «Пуск» включить двигатель. За время движения гайки вверх два - три раза снять отсчеты по шкале индикатора и занести их в таблицу. Эти показания индикатора используются для определения момента холостого хода М х.х. на винте.

4. Установить величину силы полезного сопротивления Q разновесками весом от 5 до 50 Н. Для каждого значения силы Q нажатием кнопки «Пуск» включать двигатель на цикл работы и при движении гайки вверх снять отсчеты по шкале индикатора.

5. Вычислить средние показания стрелки индикатора для каждого значения силы полезного сопротивления. По тарировочному графику определить моменты на винте (моменты на входном звене).

6. Определить работу движущих сил за один оборот винта

где М – значение крутящего момента на винте.

7. Вычислить полезную работу за один оборот винта

где Q – величина силы полезного сопротивления (осевая нагрузка); P h – ход гайки за один оборот винта.

8. Определить значения к.п.д. для различных значений силы полезного сопротивления по формуле:

9. Определить момент на винте М Q без учета момента холостого хода М х.х . . Рассчитать уточненные значения к.п.д. винтовой пары. Результаты расчетов занести в таблицу. По уточненным значениям найти средний к.п.д .

Показания

индикатора

Момент на винте М

А пс =P h Q

Момент на винте без учета М х.х .

М Q =М -М х.х .

m 1

m 2

m c р

мм

мм

мм

Нмм

Нмм

Нмм

Нмм

Нмм

Q =0

Q 1

М хх =

Определение

Математически определение КПД может быть записано в виде:

η = A Q , {\displaystyle \eta ={\frac {A}{Q}},}

где А - полезная работа (энергия), а Q - затраченная энергия.

Если КПД выражается в процентах, то он вычисляется по формуле:

η = A Q × 100 % {\displaystyle \eta ={\frac {A}{Q}}\times 100\%} ε X = Q X / A {\displaystyle \varepsilon _{\mathrm {X} }=Q_{\mathrm {X} }/A} ,

где Q X {\displaystyle Q_{\mathrm {X} }} - тепло, отбираемое от холодного конца (в холодильных машинах холодопроизводительность); A {\displaystyle A}

Для тепловых насосов используют термин коэффициент трансформации

ε Γ = Q Γ / A {\displaystyle \varepsilon _{\Gamma }=Q_{\Gamma }/A} ,

где Q Γ {\displaystyle Q_{\Gamma }} - тепло конденсации, передаваемое теплоносителю; A {\displaystyle A} - затрачиваемая на этот процесс работа (или электроэнергия).

В идеальной машине Q Γ = Q X + A {\displaystyle Q_{\Gamma }=Q_{\mathrm {X} }+A} , отсюда для идеальной машины ε Γ = ε X + 1 {\displaystyle \varepsilon _{\Gamma }=\varepsilon _{\mathrm {X} }+1}

Наилучшими показателями производительности для холодильных машин обладает обратный цикл Карно : в нём холодильный коэффициент

ε = T X T Γ − T X {\displaystyle \varepsilon ={T_{\mathrm {X} } \over {T_{\Gamma }-T_{\mathrm {X} }}}} ,

где T Γ {\displaystyle T_{\Gamma }} , T X {\displaystyle T_{\mathrm {X} }} -

В жизни человек сталкивается с проблемой и необходимостью превращения разных видов энергии. Устройства, которые предназначены для преобразований энергии, называют энергетическими машинами (механизмами). К энергетическим машинам, например, можно отнести: электрогенератор, двигатель внутреннего сгорания, электрический двигатель, паровую машину и др.

В теории любой вид энергии может полностью превратиться в другой вид энергии. Но на практике помимо преобразований энергии в машинах происходят превращения энергии, которые названы потерями. Совершенство энергетических машин определяет коэффициент полезного действия (КПД).

ОПРЕДЕЛЕНИЕ

Коэффициентом полезного действия механизма (машины) называют отношение полезной энергии () к суммарной энергии (W), которая подводится к механизму. Обычно коэффициент полезного действия обозначают буквой (эта). В математическом виде определение КПД запишется так:

Коэффициент полезного действия можно определить через работу, как отношение (полезная работа) к A (полная работа):

Кроме того, можно найти как отношение мощностей:

где — мощность, которую подводят механизму; — мощность, которую получает потребитель от механизма. Выражение (3) можно записать иначе:

где — часть мощности, которая теряется в механизме.

Из определений КПД очевидно, что он не может быть более 100% (или не моет быть больше единицы). Интервал в котором находится КПД: .

Коэффициент полезного действия используют не только в оценке уровня совершенства машины, но и определения эффективности любого сложного механизма и всякого рода приспособлений, которые являются потребителями энергии.

Любой механизм стараются сделать так, чтобы бесполезные потери энергии были минимальны (). С этой целью пытаются уменьшить силы трения (разного рода сопротивления).

КПД соединений механизмов

При рассмотрении конструктивно сложного механизма (устройства), вычисляют КПД всей конструкции и коэффициенты полезного действия всех его узлов и механизмов, которые потребляют и преобразуют энергию.

Если мы имеем n механизмов, которые соединены последовательно, то результирующий КПД системы находят как произведение КПД каждой части:

При параллельном соединении механизмов (рис.1) (один двигатель приводит в действие несколько механизмов), полезная работа является суммой полезных работ на выходе из каждой отдельной части системы. Если работу затрачиваемую двигателем обозначить как , то КПД в данном случае найдем как:

Единицы измерения КПД

В большинстве случаев КПД выражают в процентах

Примеры решения задач

ПРИМЕР 1

Задание Какова мощность механизма, который поднимает n раз в секунду молот, имеющий массу m на высоту h, если КПД машины равен ?
Решение Мощность (N) можно найти исходя из ее определения как:

Так как в условии задана частота () (молот поднимается n раз в секунду), то время найдем как:

Работа будет найдена как:

В таком случае (принимая во внимание (1.2) и (1.3)) выражение (1.1) преобразуется к виду:

Так как КПД системы равен , то запишем:

где — искомая мощность, тогда:

Ответ

ПРИМЕР 2

Задание Каким будет КПД наклонной плоскости, если ее длина , высота h? Коэффициент трения при движении тела о данную плоскость равен .
Решение Сделаем рисунок.

В качестве основы для решения задачи примем формулу для вычисления КПД в виде:

Полезной работой будет работа по подъему груза на высоту h:

Произведенную работу, при доставке груза путем перемещения его по данной плоскости можно найти как:

где — сила тяги, которую найдем из второго закона Ньютона, рассмотрев силы, которые приложены к телу (рис.1):