Нормального распределения хи квадрат критерий расчет. Как интерпретировать значение критерия хи-квадрат Пирсона

В практике биологических исследований часто бывает необ­ходимо проверить ту или иную гипотезу, т. е. выяснить, насколь­ко полученный экспериментатором фактический материал под­тверждает теоретическое предположение, насколько анализиру­емые данные совпадают с теоретически ожидаемыми. Возника­ет задача статистической оценки разницы между фактическими данными и теоретическим ожиданием, установления того, в ка­ких случаях и с какой степенью вероятности можно считать эту разницу достоверной и, наоборот, когда ее следует считать не­существенной, незначимой, находящейся в пределах случайнос­ти. В последнем случае сохраняется гипотеза, на основе кото­рой рассчитаны теоретически ожидаемые данные или показа­тели. Таким вариационно-статистическим приемом проверки гипо­тезы служит метод хи-квадрат (χ 2). Этот показатель часто на­зывают «критерием соответствия» или «критерием согласия» Пирсона. С его помощью можно с той или иной вероятностью судить о степени соответствия эмпирически полученных данных теоретически ожидаемым.

С формальных позиций сравниваются два вариационных ряда, две совокупности: одна – эмпирическое распределение, другая представляет собой выборку с теми же параметрами (n , M , S и др.), что и эмпирическая, но ее частотное распределение построено в точном соответствии с выбранным теоретическим законом (нормальным, Пуассона, биномиальным и др.), которому предположительно подчиняется поведение изучаемой случайной величины.

В общем виде формула критерия соответствия может быть записана следующим образом:

где a – фактическая частота наблюдений,

A – теоретически ожидаемая частота для данного класса.

Нулевая гипотеза предполагает, что достоверных различий между сравниваемыми распределениями нет. Для оценки существенности этих различий следует обра­титься к специальной таблице критических значений хи-квад­рат (табл. 9П ) и, сравнив вычисленную величину χ 2 с табличной, решить, достоверно или не достоверно отклоня­ется эмпирическое распределение от теоретического. Тем самым гипотеза об отсутствии этих различий будет либо опровергнута, либо оставлена в силе. Если вычисленная величина χ 2 равна или превышает табличную χ ² (α , df ) , решают, что эмпирическое распределение от теоретического отличается достоверно. Тем самым гипотеза об отсутствии этих различий будет опровергнута. Если же χ ² < χ ² (α , df ) , нулевая гипотеза остается в силе. Обычно принято считать допустимым уро­вень значимости α = 0.05, т. к. в этом случае остается только 5% шансов, что нулевая гипотеза правильна и, следовательно, есть достаточно оснований (95%), чтобы от нее отказаться.


Определенную проблему составляет правильное определение числа степеней свободы (df ), для которых из таблицы берут значения критерия. Для определения числа степеней свободы из общего числа классов k нужно вычесть число ограничений (т. е. число параметров, использованных для расчета теоретических частот).

В зависимости от типа распределения изучаемого признака формула для расчета числа степеней свободы будет меняться. Для альтернативного распределения (k = 2) в расчетах участвует только один параметр (объем выборки), следовательно, число степеней свободы составляет df = k −1=2−1=1. Для полиномиального распределения формула аналогична: df = k −1. Для проверки соответствия вариационного ряда распределению Пуассона используются уже два параметра – объем выборки и среднее значение (числен­но совпадающее с дисперсией); число степеней свободы df = k −2. При проверке соответ­ствия эмпирического распределения вариант нормальному или биномиальному закону число степеней свободы берется как число фактических классов минус три условия построения рядов – объем выборки, сред­няя и дисперсия, df = k −3. Сразу стоит отметить, что критерий χ² работает только для выборок объемом не менее 25 вариант , а частоты отдельных классов должны быть не ниже 4 .

Вначале проиллюстрируем применение критерия хи-квадрат на примере анали­за альтернативной изменчивости . В одном из опытов по изуче­нию наследственности у томатов было обнаружено 3629 крас­ных и 1176 желтых плодов. Теоретическое соотношение частот при расщеплении признаков во втором гибридном поколении должно быть 3:1 (75% к 25%). Выполняется ли оно? Иными словами, взята ли данная выборка из той генеральной совокупности, в которой соотношение частот 3:1 или 0.75:0.25?

Сформируем таблицу (табл. 4), заполнив значениями эмпирических частот и результатами расчета теоретических частот по формуле:

А = n∙p,

где p – теоретические частости (доли вариант данного типа),

n – объем выборки.

Например, A 2 = n∙p 2 = 4805∙0.25 = 1201.25 ≈ 1201.

Рассмотрим Распределение ХИ-квадрат. С помощью функции MS EXCEL ХИ2.РАСП() построим графики функции распределения и плотности вероятности, поясним применение этого распределения для целей математической статистики.

Распределение ХИ-квадрат (Х 2 , ХИ2, англ. Chi - squared distribution ) применяется в различных методах математической статистики:

  • при построении ;
  • при ;
  • при (согласуются ли эмпирические данные с нашим предположением о теоретической функции распределения или нет, англ. Goodness-of-fit)
  • при (используется для определения связи между двумя категориальными переменными, англ. Chi-square test of association).

Определение : Если x 1 , x 2 , …, x n независимые случайные величины, распределенные по N(0;1), то распределение случайной величины Y=x 1 2 + x 2 2 +…+ x n 2 имеет распределение Х 2 с n степенями свободы.

Распределение Х 2 зависит от одного параметра, который называется степенью свободы (df , degrees of freedom ). Например, при построении число степеней свободы равно df=n-1, где n – размер выборки .

Плотность распределения Х 2 выражается формулой:

Графики функций

Распределение Х 2 имеет несимметричную форму, равно n, равна 2n.

В файле примера на листе График приведены графики плотности распределения вероятности и интегральной функции распределения .

Полезное свойство ХИ2-распределения

Пусть x 1 , x 2 , …, x n независимые случайные величины, распределенные по нормальному закону с одинаковыми параметрами μ и σ, а X cр является арифметическим средним этих величин x.
Тогда случайная величина y равная

Имеет Х 2 -распределение с n-1 степенью свободы. Используя определение вышеуказанное выражение можно переписать следующим образом:

Следовательно, выборочное распределение статистики y, при выборке из нормального распределения , имеет Х 2 -распределение с n-1 степенью свободы.

Это свойство нам потребуется при . Т.к. дисперсия может быть только положительным числом, а Х 2 -распределение используется для его оценки, то y д.б. >0, как и указано в определении.

ХИ2-распределение в MS EXCEL

В MS EXCEL, начиная с версии 2010, для Х 2 -распределения имеется специальная функция ХИ2.РАСП() , английское название – CHISQ.DIST(), которая позволяет вычислить плотность вероятности (см. формулу выше) и (вероятность, что случайная величина Х, имеющая ХИ2 -распределение , примет значение меньше или равное х, P{X <= x}).

Примечание : Т.к. ХИ2-распределение является частным случаем , то формула =ГАММА.РАСП(x;n/2;2;ИСТИНА) для целого положительного n возвращает тот же результат, что и формула =ХИ2.РАСП(x;n; ИСТИНА) или =1-ХИ2.РАСП.ПХ(x;n) . А формула =ГАММА.РАСП(x;n/2;2;ЛОЖЬ) возвращает тот же результат, что и формула =ХИ2.РАСП(x;n; ЛОЖЬ) , т.е. плотность вероятности ХИ2-распределения.

Функция ХИ2.РАСП.ПХ() возвращает функцию распределения , точнее - правостороннюю вероятность, т.е. P{X > x}. Очевидно, что справедливо равенство
=ХИ2.РАСП.ПХ(x;n)+ ХИ2.РАСП(x;n;ИСТИНА)=1
т.к. первое слагаемое вычисляет вероятность P{X > x}, а второе P{X <= x}.

До MS EXCEL 2010 в EXCEL была только функция ХИ2РАСП() , которая позволяет вычислить правостороннюю вероятность, т.е. P{X > x}. Возможности новых функций MS EXCEL 2010 ХИ2.РАСП() и ХИ2.РАСП.ПХ() перекрывают возможности этой функции. Функция ХИ2РАСП() оставлена в MS EXCEL 2010 для совместимости.

ХИ2.РАСП() является единственной функцией, которая возвращает плотность вероятности ХИ2-распределения (третий аргумент должен быть равным ЛОЖЬ). Остальные функции возвращают интегральную функцию распределения , т.е. вероятность того, что случайная величина примет значение из указанного диапазона: P{X <= x}.

Вышеуказанные функции MS EXCEL приведены в .

Примеры

Найдем вероятность, что случайная величина Х примет значение меньше или равное заданного x : P{X <= x}. Это можно сделать несколькими функциями:

ХИ2.РАСП(x; n; ИСТИНА)
=1-ХИ2.РАСП.ПХ(x; n)
=1-ХИ2РАСП(x; n)

Функция ХИ2.РАСП.ПХ() возвращает вероятность P{X > x}, так называемую правостороннюю вероятность, поэтому, чтобы найти P{X <= x}, необходимо вычесть ее результат от 1.

Найдем вероятность, что случайная величина Х примет значение больше заданного x : P{X > x}. Это можно сделать несколькими функциями:

1-ХИ2.РАСП(x; n; ИСТИНА)
=ХИ2.РАСП.ПХ(x; n)
=ХИ2РАСП(x; n)

Обратная функция ХИ2-распределения

Обратная функция используется для вычисления альфа - , т.е. для вычисления значений x при заданной вероятности альфа , причем х должен удовлетворять выражению P{X <= x}=альфа .

Функция ХИ2.ОБР() используется для вычисления доверительных интервалов дисперсии нормального распределения .

Функция ХИ2.ОБР.ПХ() используется для вычисления , т.е. если в качестве аргумента функции указан уровень значимости, например 0,05, то функция вернет такое значение случайной величины х, для которого P{X>x}=0,05. В качестве сравнения: функция ХИ2.ОБР() вернет такое значение случайной величины х, для которого P{X<=x}=0,05.

В MS EXCEL 2007 и ранее вместо ХИ2.ОБР.ПХ() использовалась функция ХИ2ОБР() .

Вышеуказанные функции можно взаимозаменять, т.к. следующие формулы возвращают один и тот же результат:
=ХИ.ОБР(альфа;n)
=ХИ2.ОБР.ПХ(1-альфа;n)
=ХИ2ОБР(1- альфа;n)

Некоторые примеры расчетов приведены в файле примера на листе Функции .

Функции MS EXCEL, использующие ХИ2-распределение

Ниже приведено соответствие русских и английских названий функций:
ХИ2.РАСП.ПХ() - англ. название CHISQ.DIST.RT, т.е. CHI-SQuared DISTribution Right Tail, the right-tailed Chi-square(d) distribution
ХИ2.ОБР() - англ. название CHISQ.INV, т.е. CHI-SQuared distribution INVerse
ХИ2.ПХ.ОБР() - англ. название CHISQ.INV.RT, т.е. CHI-SQuared distribution INVerse Right Tail
ХИ2РАСП() - англ. название CHIDIST, функция эквивалентна CHISQ.DIST.RT
ХИ2ОБР() - англ. название CHIINV, т.е. CHI-SQuared distribution INVerse

Оценка параметров распределения

Т.к. обычно ХИ2-распределение используется для целей математической статистики (вычисление доверительных интервалов, проверки гипотез и др.), и практически никогда для построения моделей реальных величин, то для этого распределения обсуждение оценки параметров распределения здесь не производится.

Приближение ХИ2-распределения нормальным распределением

При числе степеней свободы n>30 распределение Х 2 хорошо аппроксимируется нормальным распределением со средним значением μ=n и дисперсией σ =2*n (см. файл примера лист Приближение ).

Министерство образования и науки Российской Федерации

Федеральное агентство по образованию города Иркутска

Байкальский государственный университет экономики и права

Кафедра Информатики и Кибернетики

Распределение "хи-квадрат" и его применение

Колмыкова Анна Андреевна

студентка 2 курса

группы ИС-09-1

Иркутск 2010

Введение

1. Распределение "хи-квадрат"

Приложение

Заключение

Список используемой литературы

Введение

Как подходы, идеи и результаты теории вероятностей используются в нашей жизни?

Базой является вероятностная модель реального явления или процесса, т.е. математическая модель, в которой объективные соотношения выражены в терминах теории вероятностей. Вероятности используются, прежде всего, для описания неопределенностей, которые необходимо учитывать при принятии решений. Имеются в виду, как нежелательные возможности (риски), так и привлекательные ("счастливый случай"). Иногда случайность вносится в ситуацию сознательно, например, при жеребьевке, случайном отборе единиц для контроля, проведении лотерей или опросов потребителей.

Теория вероятностей позволяет по одним вероятностям рассчитать другие, интересующие исследователя.

Вероятностная модель явления или процесса является фундаментом математической статистики. Используются два параллельных ряда понятий – относящиеся к теории (вероятностной модели) и относящиеся к практике (выборке результатов наблюдений). Например, теоретической вероятности соответствует частота, найденная по выборке. Математическому ожиданию (теоретический ряд) соответствует выборочное среднее арифметическое (практический ряд). Как правило, выборочные характеристики являются оценками теоретических. При этом величины, относящиеся к теоретическому ряду, "находятся в головах исследователей", относятся к миру идей (по древнегреческому философу Платону), недоступны для непосредственного измерения. Исследователи располагают лишь выборочными данными, с помощью которых они стараются установить интересующие их свойства теоретической вероятностной модели.

Зачем же нужна вероятностная модель? Дело в том, что только с ее помощью можно перенести свойства, установленные по результатам анализа конкретной выборки, на другие выборки, а также на всю так называемую генеральную совокупность. Термин "генеральная совокупность" используется, когда речь идет о большой, но конечной совокупности изучаемых единиц. Например, о совокупности всех жителей России или совокупности всех потребителей растворимого кофе в Москве. Цель маркетинговых или социологических опросов состоит в том, чтобы утверждения, полученные по выборке из сотен или тысяч человек, перенести на генеральные совокупности в несколько миллионов человек. При контроле качества в роли генеральной совокупности выступает партия продукции.

Чтобы перенести выводы с выборки на более обширную совокупность, необходимы те или иные предположения о связи выборочных характеристик с характеристиками этой более обширной совокупности. Эти предположения основаны на соответствующей вероятностной модели.

Конечно, можно обрабатывать выборочные данные, не используя ту или иную вероятностную модель. Например, можно рассчитывать выборочное среднее арифметическое, подсчитывать частоту выполнения тех или иных условий и т.п. Однако результаты расчетов будут относиться только к конкретной выборке, перенос полученных с их помощью выводов на какую-либо иную совокупность некорректен. Иногда подобную деятельность называют "анализ данных". По сравнению с вероятностно-статистическими методами анализ данных имеет ограниченную познавательную ценность.

Итак, использование вероятностных моделей на основе оценивания и проверки гипотез с помощью выборочных характеристик – вот суть вероятностно-статистических методов принятия решений.

Распределение "хи-квадрат"

С помощью нормального распределения определяются три распределения, которые в настоящее время часто используются при статистической обработке данных. Это распределения Пирсона ("хи – квадрат"), Стьюдента и Фишера.

Мы остановимся на распределении

("хи – квадрат"). Впервые это распределение было исследовано астрономом Ф.Хельмертом в 1876 году. В связи с гауссовской теорией ошибок он исследовал суммы квадратов n независимых стандартно нормально распределенных случайных величин. Позднее Карл Пирсон (Karl Pearson) дал имя данной функции распределения "хи – квадрат". И сейчас распределение носит его имя.

Благодаря тесной связи с нормальным распределением, χ2-распределение играет важную роль в теории вероятностей и математической статистике. χ2-распределение, и многие другие распределения, которые определяются посредством χ2-распределения (например - распределение Стьюдента), описывают выборочные распределения различных функций от нормально распределенных результатов наблюдений и используются для построения доверительных интервалов и статистических критериев.

Распределение Пирсона

(хи - квадрат) – распределение случайной величиныгде X1, X2,…, Xn - нормальные независимые случайные величины, причем математическое ожидание каждой из них равно нулю, а среднее квадратическое отклонение - единице.

Сумма квадратов


распределена по закону

("хи – квадрат").

При этом число слагаемых, т.е. n, называется "числом степеней свободы" распределения хи – квадрат. C увеличением числа степеней свободы распределение медленно приближается к нормальному.

Плотность этого распределения


Итак, распределение χ2 зависит от одного параметра n – числа степеней свободы.

Функция распределения χ2 имеет вид:


если χ2≥0. (2.7.)

На Рисунок 1 изображен график плотности вероятности и функции χ2 – распределения для разных степеней свободы.

Рисунок 1 Зависимость плотности вероятности φ (x) в распределении χ2 (хи – квадрат) при разном числе степеней свободы.

Моменты распределения "хи-квадрат":

Распределение "хи-квадрат" используют при оценивании дисперсии (с помощью доверительного интервала), при проверке гипотез согласия, однородности, независимости, прежде всего для качественных (категоризованных) переменных, принимающих конечное число значений, и во многих других задачах статистического анализа данных.

2. "Хи-квадрат" в задачах статистического анализа данных

Статистические методы анализа данных применяются практически во всех областях деятельности человека. Их используют всегда, когда необходимо получить и обосновать какие-либо суждения о группе (объектов или субъектов) с некоторой внутренней неоднородностью.

Современный этап развития статистических методов можно отсчитывать с 1900 г., когда англичанин К. Пирсон основал журнал "Biometrika". Первая треть ХХ в. прошла под знаком параметрической статистики. Изучались методы, основанные на анализе данных из параметрических семейств распределений, описываемых кривыми семейства Пирсона. Наиболее популярным было нормальное распределение. Для проверки гипотез использовались критерии Пирсона, Стьюдента, Фишера. Были предложены метод максимального правдоподобия, дисперсионный анализ, сформулированы основные идеи планирования эксперимента.

Распределение "хи-квадрат" является одним из наиболее широко используемых в статистике для проверки статистических гипотез. На основе распределения "хи-квадрат" построен один из наиболее мощных критериев согласия – критерий "хи-квадрата" Пирсона.

Критерием согласия называют критерий проверки гипотезы о предполагаемом законе неизвестного распределения.

Критерий χ2 ("хи-квадрат") используется для проверки гипотезы различных распределений. В этом заключается его достоинство.

Расчетная формула критерия равна

где m и m’ - соответственно эмпирические и теоретические частоты

рассматриваемого распределения;

n - число степеней свободы.

Для проверки нам необходимо сравнивать эмпирические (наблюдаемые) и теоретические (вычисленные в предположении нормального распределения) частоты.

При полном совпадении эмпирических частот с частотами, вычисленными или ожидаемыми S (Э – Т) = 0 и критерий χ2 тоже будет равен нулю. Если же S (Э – Т) не равно нулю это укажет на несоответствие вычисленных частот эмпирическим частотам ряда. В таких случаях необходимо оценить значимость критерия χ2, который теоретически может изменяться от нуля до бесконечности. Это производится путем сравнения фактически полученной величины χ2ф с его критическим значением (χ2st).Нулевая гипотеза, т. е. предположение, что расхождение между эмпирическими и теоретическими или ожидаемыми частотами носит случайный характер, опровергается, если χ2ф больше или равно χ2st для принятого уровня значимости (a) и числа степеней свободы (n).

Рассмотрим применение в MS EXCEL критерия хи-квадрат Пирсона для проверки простых гипотез.

После получения экспериментальных данных (т.е. когда имеется некая выборка ) обычно производится выбор закона распределения, наиболее хорошо описывающего случайную величину, представленную данной выборкой . Проверка того, насколько хорошо экспериментальные данные описываются выбранным теоретическим законом распределения, осуществляется с использованием критериев согласия . Нулевой гипотезой , обычно выступает гипотеза о равенстве распределения случайной величины некоторому теоретическому закону.

Сначала рассмотрим применение критерия согласия Пирсона Х 2 (хи-квадрат) в отношении простых гипотез (параметры теоретического распределения считаются известными). Затем - , когда задается только форма распределения, а параметры этого распределения и значение статистики Х 2 оцениваются/рассчитываются на основании одной и той же выборки .

Примечание : В англоязычной литературе процедура применения критерия согласия Пирсона Х 2 имеет название The chi-square goodness of fit test .

Напомним процедуру проверки гипотез:

  • на основе выборки вычисляется значение статистики , которая соответствует типу проверяемой гипотезы. Например, для используется t -статистика (если не известно);
  • при условии истинности нулевой гипотезы , распределение этой статистики известно и может быть использовано для вычисления вероятностей (например, для t -статистики это );
  • вычисленное на основе выборки значение статистики сравнивается с критическим для заданного значением ();
  • нулевую гипотезу отвергают, если значение статистики больше критического (или если вероятность получить это значение статистики () меньше уровня значимости , что является эквивалентным подходом).

Проведем проверку гипотез для различных распределений.

Дискретный случай

Предположим, что два человека играют в кости. У каждого игрока свой набор костей. Игроки по очереди кидают сразу по 3 кубика. Каждый раунд выигрывает тот, кто выкинет за раз больше шестерок. Результаты записываются. У одного из игроков после 100 раундов возникло подозрение, что кости его соперника – несимметричные, т.к. тот часто выигрывает (часто выбрасывает шестерки). Он решил проанализировать насколько вероятно такое количество исходов противника.

Примечание : Т.к. кубиков 3, то за раз можно выкинуть 0; 1; 2 или 3 шестерки, т.е. случайная величина может принимать 4 значения.

Из теории вероятности нам известно, что если кубики симметричные, то вероятность выпадения шестерок подчиняется . Поэтому, после 100 раундов частоты выпадения шестерок могут быть вычислены с помощью формулы
=БИНОМ.РАСП(A7;3;1/6;ЛОЖЬ)*100

В формуле предполагается, что в ячейке А7 содержится соответствующее количество выпавших шестерок в одном раунде.

Примечание : Расчеты приведены в файле примера на листе Дискретное .

Для сравнения наблюденных (Observed) и теоретических частот (Expected) удобно пользоваться .

При значительном отклонении наблюденных частот от теоретического распределения, нулевая гипотеза о распределении случайной величины по теоретическому закону, должна быть отклонена. Т.е., если игральные кости соперника несимметричны, то наблюденные частоты будут «существенно отличаться» от биномиального распределения .

В нашем случае на первый взгляд частоты достаточно близки и без вычислений сложно сделать однозначный вывод. Применим критерий согласия Пирсона Х 2 , чтобы вместо субъективного высказывания «существенно отличаться», которое можно сделать на основании сравнения гистограмм , использовать математически корректное утверждение.

Используем тот факт, что в силу закона больших чисел наблюденная частота (Observed) с ростом объема выборки n стремится к вероятности, соответствующей теоретическому закону (в нашем случае, биномиальному закону ). В нашем случае объем выборки n равен 100.

Введем тестовую статистику , которую обозначим Х 2:

где O l – это наблюденная частота событий, что случайная величина приняла определенные допустимые значения, E l – это соответствующая теоретическая частота (Expected). L – это количество значений, которые может принимать случайная величина (в нашем случае равна 4).

Как видно из формулы, эта статистика является мерой близости наблюденных частот к теоретическим, т.е. с помощью нее можно оценить «расстояния» между этими частотами. Если сумма этих «расстояний» «слишком велика», то эти частоты «существенно отличаются». Понятно, что если наш кубик симметричный (т.е. применим биномиальный закон ), то вероятность того, что сумма «расстояний» будет «слишком велика» будет малой. Чтобы вычислить эту вероятность нам необходимо знать распределение статистики Х 2 (статистика Х 2 вычислена на основе случайной выборки , поэтому она является случайной величиной и, следовательно, имеет свое распределение вероятностей ).

Из многомерного аналога интегральной теоремы Муавра-Лапласа известно, что при n->∞ наша случайная величина Х 2 асимптотически с L - 1 степенями свободы.

Итак, если вычисленное значение статистики Х 2 (сумма «расстояний» между частотами) будет больше чем некое предельное значение, то у нас будет основание отвергнуть нулевую гипотезу . Как и при проверке параметрических гипотез , предельное значение задается через уровень значимости . Если вероятность того, что статистика Х 2 примет значение меньше или равное вычисленному (p -значение ), будет меньше уровня значимости , то нулевую гипотезу можно отвергнуть.

В нашем случае, значение статистики равно 22,757. Вероятность, что статистика Х 2 примет значение больше или равное 22,757 очень мала (0,000045) и может быть вычислена по формулам
=ХИ2.РАСП.ПХ(22,757;4-1) или
=ХИ2.ТЕСТ(Observed; Expected)

Примечание : Функция ХИ2.ТЕСТ() специально создана для проверки связи между двумя категориальными переменными (см. ).

Вероятность 0,000045 существенно меньше обычного уровня значимости 0,05. Так что, у игрока есть все основания подозревать своего противника в нечестности (нулевая гипотеза о его честности отвергается).

При применении критерия Х 2 необходимо следить за тем, чтобы объем выборки n был достаточно большой, иначе будет неправомочна аппроксимация распределения статистики Х 2 . Обычно считается, что для этого достаточно, чтобы наблюденные частоты (Observed) были больше 5. Если это не так, то малые частоты объединяются в одно или присоединяются к другим частотам, причем объединенному значению приписывается суммарная вероятность и, соответственно, уменьшается число степеней свободы Х 2 -распределения .

Для того чтобы улучшить качество применения критерия Х 2 (), необходимо уменьшать интервалы разбиения (увеличивать L и, соответственно, увеличивать количество степеней свободы ), однако этому препятствует ограничение на количество попавших в каждый интервал наблюдений (д.б.>5).

Непрерывный случай

Критерий согласия Пирсона Х 2 можно применить так же в случае .

Рассмотрим некую выборку , состоящую из 200 значений. Нулевая гипотеза утверждает, что выборка сделана из .

Примечание : Cлучайные величины в файле примера на листе Непрерывное сгенерированы с помощью формулы =НОРМ.СТ.ОБР(СЛЧИС()) . Поэтому, новые значения выборки генерируются при каждом пересчете листа.

Соответствует ли имеющийся набор данных можно визуально оценить .

Как видно из диаграммы, значения выборки довольно хорошо укладываются вдоль прямой. Однако, как и в для проверки гипотезы применим Критерий согласия Пирсона Х 2 .

Для этого разобьем диапазон изменения случайной величины на интервалы с шагом 0,5 . Вычислим наблюденные и теоретические частоты. Наблюденные частоты вычислим с помощью функции ЧАСТОТА() , а теоретические – с помощью функции НОРМ.СТ.РАСП() .

Примечание : Как и для дискретного случая , необходимо следить, чтобы выборка была достаточно большая, а в интервал попадало >5 значений.

Вычислим статистику Х 2 и сравним ее с критическим значением для заданного уровня значимости (0,05). Т.к. мы разбили диапазон изменения случайной величины на 10 интервалов, то число степеней свободы равно 9. Критическое значение можно вычислить по формуле
=ХИ2.ОБР.ПХ(0,05;9) или
=ХИ2.ОБР(1-0,05;9)

На диаграмме выше видно, что значение статистики равно 8,19, что существенно выше критического значения нулевая гипотеза не отвергается.

Ниже приведена , на которой выборка приняла маловероятное значение и на основании критерия согласия Пирсона Х 2 нулевая гипотеза была отклонена (не смотря на то, что случайные значения были сгенерированы с помощью формулы =НОРМ.СТ.ОБР(СЛЧИС()) , обеспечивающей выборку из стандартного нормального распределения ).

Нулевая гипотеза отклонена, хотя визуально данные располагаются довольно близко к прямой линии.

В качестве примера также возьмем выборку из U(-3; 3). В этом случае, даже из графика очевидно, что нулевая гипотеза должна быть отклонена.

Критерий согласия Пирсона Х 2 также подтверждает, что нулевая гипотеза должна быть отклонена.

В том случае, если полученное значение критерия χ 2 больше критического, делаем вывод о наличии статистической взаимосвязи между изучаемым фактором риска и исходом при соответствующем уровне значимости.

Пример расчета критерия хи-квадрат Пирсона

Определим статистическую значимость влияния фактора курения на частоту случаев артериальной гипертонии по рассмотренной выше таблице:

1. Рассчитываем ожидаемые значения для каждой ячейки:

2. Находим значение критерия хи-квадрат Пирсона:

χ 2 = (40-33.6) 2 /33.6 + (30-36.4) 2 /36.4 + (32-38.4) 2 /38.4 + (48-41.6) 2 /41.6 = 4.396.

3. Число степеней свободы f = (2-1)*(2-1) = 1. Находим по таблице критическое значение критерия хи-квадрат Пирсона, которое при уровне значимости p=0.05 и числе степеней свободы 1 составляет 3.841.

4. Сравниваем полученное значение критерия хи-квадрат с критическим: 4.396 > 3.841, следовательно зависимость частоты случаев артериальной гипертонии от наличия курения - статистически значима. Уровень значимости данной взаимосвязи соответствует p<0.05.

Также критерий хи-квадрат Пирсона вычисляется по формуле

Но для таблицы 2х2 более точные результаты дает критерий с поправкой Йетса

Если то Н(0) принимается,

В случае принимается Н(1)

Когда число наблюдений невелико и в клетках таблицы встречается частота меньше 5, критерий хи-квадрат неприменим и для проверки гипотез используется точный критерий Фишера . Процедура вычисления этого критерия достаточно трудоемка и в этом случае лучше воспользоваться компьютерными программами статанализа.

По таблице сопряженности можно вычислить меру связи между двумя качественными признаками – ею является коэффициент ассоциации Юла Q (аналог коэффициента корреляции)

Q лежит в пределах от 0 до 1. Близкий к единице коэффициент свидетельствует о сильной связи между признаками. При равенстве его нулю – связь отсутствует.

Аналогично используется коэффициент фи-квадрат (φ 2)

ЗАДАЧА-ЭТАЛОН

В таблице описывается связь между частотой мутации у групп дрозофил с подкормкой и без подкормки



Анализ таблицы сопряженности

Для анализа таблицы сопряженности выдвигается Н 0 - гипотеза.т.е.отсуствие влияния изучаемого признака на результат исследования.Для этого рассчитывается ожидаемая частота,и строится таблица ожидания.

Таблица ожидания

группы Чило культур Всего
Давшие мутации Не давшие мутации
Фактическая частота Ожидаемая частота Фактическая частота Ожидаемая частота
С подкормкой
Без подкормкой
всего

Метод №1

Определяем частоту ожидания:

2756 – Х ;

2. 3561 – 3124

Если число наблюдении в группах мало, при применении Х 2, в случае сопоставления фактических и ожидаемых частот при дискретных распределениях сопряжено с некоторой неточностью.Для уменьшения неточности применяют поправку Йейтса.