Земной магнетизм и его элементы. Магнитные направления

Земной магнетизм - это свойство Земли (как космического тела), обусловливающее существование вокруг нее магнитного поля. Из других планет доказательства существования магнитного поля имеются для Юпитера. Измерения на американском космическом аппарате «Маринер-4» показали, что дипольный магнитный момент Марса меньше 3 1O -4 магнитного момента Земли. На Венере и Луне магнитные поля отсутствуют. В 1912 г. было обнаружено магнитное поле Солнца, а в 1947 г. и других звезд.

По данным космических измерений на больших расстояниях магнитное поле Земли (магнитосфера) простирается за пределы планеты на несколько земных радиусов, причем на освещенной Солнцем стороне Земли оно значительно сжато.

На расстоянии 10 земных радиусов близ линии, соединяющей Солнце и Землю, регулярное магнитное поле Земли переходит в нерегулярное, или хаотическое, поле. Граница между регулярным и хаотическим полем называется магнитопаузой. Она, по-видимому, стабильна относительно потока солнечного ветра. Хаотическое поле представляет собой переходную область между магнитопаузой и невозмущенным межпланетным полем, расположенным на расстоянии около 14 земных радиусов (также близ линии Солнце - Земля). Напряженность магнитного поля Земли изменяется обратно пропорционально кубу расстояния.

С захватом магнитным полем Земли заряженных частиц (электронов и протонов) связано наличие двух радиационных поясов, обнаруженных с помощью счетчика Гейгера во время многочисленных зондирований, выполненных на космических кораблях и спутниках.

В связи с дипольным характером геомагнитного ноля радиационные пояса имеют вид рогов полумесяца (точнее, тороидальную форму вследствие дрейфа частиц по долготе, обусловленного неоднородностью магнитного поля). Внутренний радиационный пояс, по-видимому, стабилен во времени, внешний подвержен сильным изменениям, в частности во время магнитных бурь.

Нагляднее всего магнитное поле Земли проявляется своим действием на магнитную стрелку, которая в любой точке земной поверхности устанавливается в определенном направлении (на этом основано устройство компаса) при различных склонениях и наклонениях.

Склонение - угол отклонения магнитной стрелки от географического меридиана данного места. Склонение может быть восточным и западным, причем величина его меняется в разных районах. Линии, соединяющие на картах точки с одинаковым склонением, называются изогонами. Наклонение - угол наклона магнитной стрелки к горизонту. В северном полушарии вниз опущен северный конец стрелки, в южном - южный. Линии, соединяющие точки одинакового наклонения, называются изоклинами. Изоклина, на которой наклонение равно нулю, называется магнитным экватором. Магнитный экватор пересекает географический экватор на 169° в. д. и на 23° з. д. и отступает от него к югу в западном полушарии и к северу - в восточном. По направлению к северу и к югу наклонение увеличивается и достигает 90° в точках, называемых магнитными полюсами. В магнитных полюсах сходятся и все изогоны.

Магнитные полюса меняют свое положение из года в год. В их положении отмечаются также небольшие периодические суточные колебания. В 1970 г. положение Северного полюса определялось 78° 31" с. ш. и 70в01" з. д., а Южного - 78°31" ю. ш. и 109°59" в. д. Точно так же вековые, годичные и суточные колебания отмечаются и в магнитном склонении, причем вековые колебания достигают 30°. Кроме склонения и наклонения магнитное поле Земли характеризуется напряженностью, различной в разных участках и меняющейся во времени. Линии, соединяющие точки равной напряженности, называются изодинамами.

Напряженность магнитного поля увеличивается от магнитного экватора (0,4 э) (Э рстед (э) - единица измерения напряженности магнитного поля. Это - напряженность магнитного поля на расстоянии 2 см от бесконечно длинного прямолинейного проводника, по которому протекает ток силой в одну абсолютную электромагнитную единицу тока) к магнитным полюсам (0,7 э). Горизонтальная составляющая магнитного поля Земли H достигает наибольшей величины на магнитном экваторе (0,4 э) и убывает до нуля на магнитных полюсах. Вертикальная составляющая Z меняется от 0,7 э на магнитных полюсах до нуля на магнитном экваторе. Такое распределение элементов магнитного поля сближает его с полем однородно намагниченного шара, точнее, с полем магнитного диполя, расположенного в центре Земли, ось которого отклонена от оси вращения Земли на 11,5°.

Однако наблюдаемое магнитное поле Земли заметно отличается от дипольного наличием наложенных на него внешнего и недипольного полей. Внешнее поле связано с движением электрических зарядов в ионосфере и меняется в результате атмосферных приливов и солнечной деятельности (солнечных пятен). Среднеалгебраическая интенсивность его очень мала, хотя во время магнитных бурь может составлять несколько процентов от общего суммарного магнитного поля. Недипольная компонента определяется

при вычитании из наблюдаемого поля дипольной и внешней компонент. Недипольное поле состоит из неравномерно распределенных участков высокой и слабой интенсивности размером от 25 до 100°. Эти участки изменяются в размерах, и современные скорости их изменения показывают, что средний период жизни каждого из них достигает 100 лет. Недипольные элементы перемещаются по поверхности Земли к западу со скоростью 0,5° географической долготы в год.

Неустойчивое положение магнитных полюсов определяется влиянием неоднородного, быстро меняющегося недипольного поля: на магнитных полюсах недипольная горизонтальная составляющая полностью уничтожает горизонтальную составляющую дипольного поля. Точки на поверхности Земли, на которые направлен диполь, называются геомагнитными полюсами. Современные координаты северного геомагнитного полюса - 78,5° с. ш. и 69° з. д. Его положение не изменилось за период, для которого имеются измерения, тогда как положение магнитного полюса менялось относительно быстро, соответственно с изменениями недипольной составляющей.

Отклонения наблюдаемого распределения элементов земного магнетизма от среднего для данной местности называются магнитными аномалиями. По размерам аномалии делятся на региональные и местные. Региональные аномалии распространяются на огромные регионы, и действительные причины их возникновения не выяснены. Местные аномалии распространяются на области от нескольких квадратных метров до нескольких десятков тысяч квадратных километров и вызываются обычно залежами магнитных пород и руд. Крупнейшая в мире местная магнитная аномалия охватывает Курскую область и прилегающие районы.

На Курской аномалии известно несколько местных магнитных полюсов - участков, в которых магнитное наклонение равно 90°, и склонение равно нулю (стрелка компаса останавливается на любом азимуте). Значения магнитного склонения меняются от 0 до 180°, а наклонения - от 40 до 90°. Курская аномалия вызвана наличием.на некоторой глубине залежей железистых кварцитов.

Таким образом, магнитные аномалии определяются различными магнитными свойствами горных пород, в различной степени намагничивающихся в магнитном поле Земли, и, следовательно, ориентировка их намагниченности должна быть параллельна этому полю. Оказалось, однако, что горные породы часто обладают остаточной намагниченностью, которая далеко не всегда параллельна современному магнитному полю Земли и бывает сильнее современной индуцированной намагниченности.

В слабом магнитном поле Земли (0,5 э) остаточная намагниченность появляется при температуре Кюри в процессе застывания магмы и охлаждения раскаленных горных пород. Такая намагниченность называется термоостаточной. Она ориентирована параллельно силовым линиям магнитного поля Земли, существовавшего во время застывания намагниченной горной породы. Главная часть естественной остаточной намагниченности изверженных горных пород является термоостаточной намагниченностью.

При выпадении осадков ранее намагниченные ферромагнитные частицы поворачиваются в направлении магнитного поля Земли и сохраняют эту ориентировку после уплотнения осадка и превращения его в осадочную породу; т. е. и в осадочных породах остаточная намагниченность параллельна магнитному полю Земли, существовавшему во время их образования. Таким образом, направление остаточной намагниченности горных пород соответствует направлению магнитного поля Земли в момент их образования, и, зная возраст намагниченных пород, можно восстановить положение магнитного меридиана и полюсов для этого времени.

Конечно, остаточная намагниченность может образоваться и иными путями, например при ударах молний возникают сильные магнитные поля, вызывающие в горных породах изотермическую остаточную намагниченность, ориентировка которой может не совпадать с ориентировкой магнитного поля Земли. Химические изменения горных пород и минералов (например, переход гематита в магнетит) в магнитном поле Земли сопровождаются появлением остаточной намагниченности, сходной с термостатической, хотя и не столь интенсивной. Эти и некоторые другие виды намагниченности могут возникнуть значительно позднее образования горных пород, и время их появления обычно не устанавливается. Однако «намагниченности, возникающие в результате различных процессов, обладают весьма различными свойствами, которые, как правило, могут быть определены в лабораторных условиях» (А. Кокс, Р. Долл. Обзор явлений палеомагнетизма. M., 1963, с. 239).

Происхождение магнитного поля. Гипотезы, связывающие магнитное поле Земли с ее остаточной намагниченностью, встречают серьезные возражения:

1) геологические процессы в земной коре и верхней мантии протекают медленно и с ними трудно увязать большую скорость изменения недиполыюго поля и его перемещения в западном направлении со скоростями до 20 км/год;

2) для обеспечения современной интенсивности магнитного поля Земли недостаточно ферромагнитного материала, температура которого ниже точки Кюри (температура земных недр на глубине более 25 км в подавляющем большинстве случаев, вероятно, выше 750° С, и, следовательно, только внешняя оболочка планеты может обладать остаточной намагниченностью).

Поэтому в настоящее время широким признанием пользуется теория происхождения земного магнетизма, предложенная Эльзассером - Френкелем (1956 г.), согласно которой жидкое ядро во вращающейся Земле действует как самовозбуждающаяся динамо-машина. Быстрое изменение недипольного поля объясняется как результат вихревых движений жидкости у границы ядра и мантии, а перемещение его в западном направлении связывают с меньшей угловой скоростью внешней зоны ядра по сравнению с мантией. Динамометрия была успешно применена для объяснения свойств магнитных полей Солнца и некоторых звезд, была предсказана также корреляция между магнитным полем Солнца и осью его вращения. В после нее время она нашла подтверждение в отсутствии магнитного поля у медленно вращающихся планет - Венеры и Луны.

Согласно этой теории ось вращения Земли и средняя ось магнитного поля Земли должны совпадать, т. е. смещение во времени геомагнитных полюсов происходит одновременно со смещением географических полюсов - вывод чрезвычайно важный для геологии. Изучение остаточного магнетизма (палеомагнетизма) показало, что положение магнитных и близких к ним географических полюсов на протяжении геологической истории Земли менялось весьма существенно, что полностью согласуется с палеогеографическими и палеоклиматическими данными (в позднем палеозое, например, полюса находились в современной экваториальной области, где имело место мощное покровное оледенение). Мало того, определение положения полюсов одних и тех же геологических эпох, произведенное в разных точках одного материка, дает обычно хорошее совпадение. Однако данные, полученные на разных материках, систематически расходятся и расхождение увеличивается от более поздних геологических периодов к более ранним. Совмещение полюсов, определенных на разных материках, приводит к объединению этих материков в единый континентальный массив. «Так, - пишет В. Е. Хаин, - гипотеза мобилизма, совсем было уже забытая, получила неожиданное и притом весьма эффективное подтверждение» (В. Е. Хаин. «Природа», № 1, 1970, с. 7-19).

Изучение магнитных аномалий имеет большое практическое значение. Магнитометрические методы в настоящее время широко применяются в практике поисков и разведки магнитных железных руд, бокситов, полиметаллических сульфидных руд, если в них присутствуют ферромагнитные минералы, и других полезных ископаемых. Магнитометрические методы с успехом применяются также при геологической съемке для выяснения некоторых структур, подземного рельефа и др. Это наиболее дешевый и быстрый из всех геофизических методов разведки и поисков.

Первые представления о формах и размерах Земли появились в глубокой древности. Античные мыслители (Пифагор V в. до н.э., Аристотель III в. до н.э. и др.) высказывали мысль, что наша планета имеет шарообразную форму.

Земля несимметрична по отношению к экватору: южный полюс расположен ближе к экватору, чем северный. Земля является не двухосным, а трехосным эллипсоидом.

В настоящее время за фигуру Земли при расчетах принимается эллипсоид Красовского. По этим данным экваториальный радиус Земли равен 6 378,245 км, полярный радиус 6 356,863 км, полярное сжатие 1/298,25. Объем Земли составляет 1,083·10 12 км 3 , а масса 6·10 27 г. Ускорение силы тяжести на полюсе 983, на экваторе 978 см/с 2 . Площадь поверхности Земли около 510 млн. км 2 , из которых 70,8% -- Мировой океан и 29,2% суша. В распределении океанов и материков наблюдается асимметрия. В Северном полушарии это соотношение составляет 61 и 39%, в Южном 81 и 19%.

ВНУТРЕННЕЕ СТРОЕНИЕ. Особенности слоев Земли.

Земля, так же, как и многие другие планеты, имеет слоистое внутреннее строение. Наша планета состоит из трех основных слоев. Внутренний слой – это ядро, наружный – земная кора, а между ними размещена мантия.

Ядро представляет собой центральную часть Земли и расположено на глубине 3000-6000 км. Радиус ядра составляет 3500 км. По мнению ученых, ядро состоит из двух частей: внешней – вероятно, жидкой, и внутренней - твердой. Температура ядра составляет около 5000 градусов. Современные представления о ядре нашей планеты получены в ходе длительных исследований и анализа полученных данных. Так, доказано, что в ядре планеты содержание железа достигает 35%, что обусловливает его характерные сейсмические свойства. Внешняя часть ядра представлена вращающимися потоками никеля и железа, которые хорошо проводят электрический ток.

Происхождение магнитного поля Земли связано именно с этой частью ядра, так как глобальное магнитное поле создается электрическими токами, протекающими в жидком веществе внешнего ядра. Из-за очень высокой температуры внешнее ядро оказывает значительное влияние на соприкасающиеся с ним участки мантии. В некоторых местах возникают громадные тепломассопотоки, направленные к поверхности Земли. Внутреннее ядро Земли твердое, также имеет высокую температуру. Ученые полагают, что такое состояние внутренней части ядра обеспечивается очень высоким давлением в центре Земли, достигающим 3 млн. атмосфер. При увеличении расстояния от поверхности Земли повышается сжатие веществ, при этом многие из которых переходят в металлическое состояние.

Промежуточный слой – мантия – покрывает ядро. Мантия занимает около 80% объема нашей планеты, это самая большая часть Земли. Мантия расположена кверху от ядра, но не достигает поверхности Земли, снаружи она соприкасается с земной корой. В основном, вещество мантии находится в твердом состоянии, кроме верхнего вязкого слоя толщиной примерно 80 км. Это астеносфера, в переводе с греческого языка означает «слабый шар». По мнению ученых, вещество мантии непрерывно движется. При увеличении расстояния от земной коры в сторону ядра происходит переход вещества мантии в более плотное состояние.

Снаружи мантию покрывает земная кора – внешняя прочная оболочка. Ее толщина варьирует от нескольких километров под океанами до нескольких десятков километров в горных массивах. На долю земной коры приходится всего 0,5% общей массы нашей планеты. В состав коры входят оксиды кремния, железа, алюминия, щелочных металлов. Континентальная земная кора делится на три слоя: осадочный, гранитный и базальтовый. Океаническая земная кора состоит из осадочного и базальтового слоев.

Литосферу Земли формирует земная кора вместе с верхним слоем мантии. Литосфера слагается из тектонических литосферных плит, которые как будто «скользят» по астеносфере со скоростью от 20 до 75 мм в год. Двигающиеся друг относительно друга литосферные плиты различны по величине, а кинематику передвижения определяет тектоника плит.

ЗЕМНОЙ МАГНЕТИЗМ, ЕГО ЗНАЧЕНИЕ. ЭЛЕМЕНТЫ ЗЕМНОГО МАГНЕТИЗМА.

Земля представляет собой огромный магнит, имеющий северный NM и южный SM полюса. Причем магнитные полюса не только не совпадают с истинными или географическими, но и, как показывают наблюдения, их место с течением времени меняется.

Сила, с которой магнитное поле Земли действует на единицу магнитной массы, помещенную в данное поле, называется напряженностью магнитного поля и характеризуется вектором, направленным в любой точке земного магнитного поля по касательным к силовым линиям.

Силу земного магнетизма, действующую в любой точке, в общем случае можно разложить на две составляющие - горизонтальную и вертикальную.

Все элементы земного магнетизма с течением времени изменяются, поэтому карты приводят к определенному году и на них указывают годовые изменения элементов земного магнетизма.

Магнитное склонение в судовождении имеет наибольшее значение, так как его приходится принимать в расчет для определения истинных направлений в море при пользовании магнитным компасом.

Действие магнитного компаса основано на использовании магнитного поля Земли, и магнитная стрелка компаса, установленная на вертикальной оси, практически имеет одну степень свободы вокруг этой оси, и устанавливается по направлению горизонтальной составляющей земного магнетизма. Значение этой составляющей определяется выражением Н = Т cos 0 (см. рис. 12), и оно характеризует величину силы, которая удерживает стрелку компаса в плоскости магнитного меридиана.

Элементы земного магнетизма

Земля в целом представляет собой огромный шаровой магнит. В любой точке пространства, окружающего Землю, и ее поверхности обнаруживается действие магнитных силовых линий. Иными словами, в пространстве, окружающем Землю, создается магнитное поле, силовые линии которого изображены на рисунок 19.1. Северный магнитный полюс находится у южного географического, а южный магнитный – у северного. Магнитное поле Земли на экваторе направлено горизонтально, а у магнитных полюсов вертикально. В остальных точках земной поверхности магнитное поле Земли направлено под некоторым углом.

Существование магнитного поля в любой точке Земли можно установить с помощью магнитной стрелки. Если подвесить магнитную стрелку NS на нити L (рис. 19.2) так, чтобы точка подвеса совпадала с центром тяжести стрелки, то стрелка установится по направлению касательной к силовой линии магнитного поля Земли. В северном полушарии южный конец будет наклонен к Земле и ось стрелки составит с горизонтом угол наклонения q (на магнитном экваторе наклонение равно 0). Вертикальная плоскость, в которой расположится ось стрелки, называется плоскостью магнитного меридиана. Все плоскости магнитных меридианов пересекаются по прямой NS , а следы магнитных меридианов на поверхности Земли сходятся в магнитных полюсах N и S. Так как магнитные полюса не совпадают с географическими полюсами, то ось стрелки будет отклоняться от географического меридиана.


Угол, который образует вертикальная плоскость, проходящая через ось магнитной стрелки (магнитный меридиан) с географическим меридианом, называется магнитным склонением a (рис. 19.2). Вектор полной напряжённости магнитного поля земли можно разложить на две составляющие: горизонтальную и вертикальную (рис. 19.3). Знание углов склонения и наклонения, а также горизонтальной составляющей даст возможность определить величину и направление полной напряженности магнитного поля Земли в данной точке. Если магнитная стрелка может свободно вращаться лишь вокруг вертикальной оси, то она будет устанавливаться под действием горизонтальной составляющей магнитного поля Земли в плоскости магнитного меридиана. Горизонтальная составляющая , магнитное склонение a и наклонение q называются элементами земного магнетизма.

Магнитное поле кругового тока

Согласно теории, напряженность магнитного поля в центре О , создаваемого элементом длины dl кругового витка радиусом R , по которому протекает ток I , может быть определена по закону Био-Савара- Лапласа

и векторная запись этого закона имеет вид

В этом выражении: r – модуль радиуса-вектора , проведенного из элемента проводника dl в рассматриваемую точку поля; 1/4p - коэффициент пропорциональности для записи формулы в системе единиц СИ.

В рассматриваемом примере радиус-вектор перпендикулярен к элементу тока , а по модулю равен радиусу витка, так что

Вектор напряженности магнитного поля направлен перпендикулярно к плоскости чертежа, в которой лежат векторы и , ориентирован по правилу буравчика.

| Устройство экспериментальной установки. В данной работе применяется прибор, называемый тангенс гальванометром, который состоит из нескольких витков провода

ЗЕМНОЙ МАГНЕТИЗМ (геомагнетизм), магнитное поле Земли и околоземного космического пространства; раздел геофизики, изучающий магнитное поле Земли и связанные с ним явления (магнетизм горных пород, теллурические токи, полярные сияния, токи в ионосфере и магнитосфере Земли).

История изучения магнитного поля Земли . О существовании магнетизма было известно с глубокой древности. Считается, что первый компас появился в Китае (дата появления спорна). В конце 15 века во время плавания Х. Колумба было установлено, что склонение магнитное различно для разных точек поверхности Земли. Это открытие положило начало развитию науки о земном магнетизме. В 1581 году английский исследователь Р. Норман высказал предположение о том, что стрелку компаса разворачивают определённым образом силы, источник которых находится под поверхностью Земли. Следующим знаменательным шагом стало появление в 1600 книги У. Гильберта «О магните, магнитных телах и о большом магните - Земле», где было дано представление о причинах земного магнетизма. В 1785 начались разработки способа измерения напряжённости магнитного поля, базирующегося на методе вращающего момента, предложенном Ш. Кулоном. В 1839 К. Гаусс теоретически обосновал метод измерения горизонтальной составляющей вектора магнитного поля планеты. В начале 20 века была определена связь между магнитным полем Земли и её строением.

В результате наблюдений было установлено, что намагниченность земного шара более или менее однородна, а магнитная ось Земли близка к её оси вращения. Несмотря на относительно большой объём экспериментальных данных и многочисленные теоретические исследования, вопрос о происхождении земного магнетизма окончательно не решён. К началу 21 века наблюдаемые свойства магнитного поля Земли стали связывать с физическим механизмом гидромагнитного динамо (смотри Магнитная гидродинамика), согласно которому первоначальное магнитное поле, проникшее в ядро Земли из межпланетного пространства, может усиливаться и ослабляться в результате движения вещества в жидком ядре планеты. Для усиления поля достаточно наличия определённой асимметрии такого движения. Процесс усиления продолжается до тех пор, пока рост потерь на нагрев среды, идущий за счёт увеличения силы токов, не уравновесит приток энергии, поступающей за счёт её гидродинамического движения. Сходный эффект наблюдается при генерации электрического тока и магнитного поля в динамо-машине с самовозбуждением.

Напряжённость магнитного поля Земли. Характеристикой любого магнитного поля служит вектор его напряженности Н - величина, не зависящая от среды и численно равная магнитной индукции в вакууме. Собственное магнитное поле Земли (геомагнитное поле) является суммой полей, созданных различными источниками. Принято считать, что на поверхности планеты магнитное поле Н Т складывается из: поля, создаваемого однородной намагниченностью земного шара (дипольное поле, Н 0); поля, связанного с неоднородностью глубоких слоёв земного шара (поле мировых аномалий, Н а); поля, обусловленного намагниченностью верхних частей земной коры (Н к); поля, вызываемого внешними причинами (Н В); поля вариаций (δН), также связанных с источниками, расположенными вне земного шара: Н Т = Н о + Н к + Н а + Н в + δН. Сумма полей Н 0 + Н к образует главное магнитное поле Земли. Его вклад в поле, наблюдаемое на поверхности планеты, составляет более 95%. Аномальное поле Н а (вклад Н а в Н т около 4%) подразделяется на поле регионального характера (региональная аномалия), распространяющееся на большие площади, и поле местного характера (локальная аномалия). Сумму полей Н 0 + Н к + Н а часто называют нормальным полем (Н н). Так как Н в мало по сравнению с Н о и Н к (около 1% от Н т), нормальное поле практически совпадает с главным магнитным полем. Реально наблюдаемое поле (за вычетом поля вариаций δН) есть сумма нормального и аномального магнитных полей: Н т = Н н + Н а. Задача разделения поля на поверхности Земли на эти две части является неопределённой, так как разделение можно провести бесконечным числом способов. Для однозначности решения данной задачи необходимы сведения об источниках каждой из составляющих магнитного поля Земли. К началу 21 века установлено, что источниками аномального магнитного поля являются намагниченные горные породы, залегающие на глубинах, малых по сравнению с радиусом Земли. Источник главного магнитного поля находится на глубине больше половины радиуса Земли. Многочисленные экспериментальные данные позволяют построить математическую модель магнитного поля Земли, основанную на формальном изучении её структуры.

Элементы земного магнетизма. Для разложения вектора Н т на составляющие обычно используют прямоугольную систему координат с началом в точке измерения поля О (рисунок). В этой системе ось Ох ориентирована по направлению географического меридиана на север, ось Оу - по направлению параллели на восток, ось Oz направлена сверху вниз к центру земного шара. Проекцию Н Т на ось Ох называют северной составляющей поля, проекцию на ось Оу - восточной составляющей, проекцию на ось Oz - вертикальной составляющей; они обозначаются соответственно через Х, Y, Z. Проекцию Н т на плоскость ху обозначают как Н и называют горизонтальной составляющей поля. Вертикальная плоскость, проходящая через вектор Н т и ось Оz, называется плоскостью меридиана магнитного, а угол между географическим и магнитным меридианами - магнитным склонением, обозначаемым через D. Если вектор Н отклонён от направления оси Ох к востоку, склонение будет положительным (восточное склонение), а если к западу - отрицательным (западное склонение). Угол между векторами Н и Н т в плоскости магнитного меридиана носит название наклонения магнитного и обозначается через I. Наклонение I положительно, когда вектор Н т направлен вниз от земной поверхности, что имеет место в Северном полушарии Земли, и отрицательно, когда Н т направлен вверх, то есть в Южном полушарии. Склонение, наклонение, горизонтальная, вертикальная, северная, восточная составляющие носят название элементов земного магнетизма, которые можно рассматривать как координаты конца вектора Н т в различных системах координат (прямоугольной, цилиндрической и сферической).

Ни один из элементов земного магнетизма не остаётся постоянным во времени: их величина меняется от часа к часу и от года к году. Такие изменения получили название вариаций элементов земного магнетизма (смотри Магнитные вариации). Изменения, происходящие в течение короткого промежутка времени (около суток), носят периодический характер; их периоды, амплитуды и фазы чрезвычайно разнообразны. Изменения среднегодовых значений элементов носят монотонный характер; их периодичность выявляется лишь при очень большой длительности наблюдений (порядка многих десятков и сотен лет). Медленные вариации магнитной индукции называются вековыми; их величина составляет около 10 -8 Тл/год. Вековые вариации элементов связаны с источниками поля, лежащими внутри земного шара, и вызываются теми же причинами, что и само магнитное поле Земли. Быстротечные вариации периодического характера обусловлены электрическими токами в околоземной среде (смотри Ионосфера, Магнитосфера) и весьма различаются по амплитуде.

Современные исследования магнитного поля Земли. К началу 21 века принято выделять следующие причины, вызывающие земной магнетизм. Источник главного магнитного поля и его вековых вариаций расположен в ядре планеты. Аномальное поле обусловлено совокупностью источников в тонком верхнем слое, называемом магнитоактивной оболочкой Земли. Внешнее поле связано с источниками в околоземном пространстве. Поле внешнего происхождения называется переменным электромагнитным полем Земли, поскольку оно является не только магнитным, но и электрическим. Главное и аномальное поля часто объединяют общим условным термином «постоянное геомагнитное поле».

Основной метод изучения геомагнитного поля - непосредственное наблюдение пространственного распределения магнитного поля и его вариаций на поверхности Земли и в околоземном пространстве. Наблюдения сводятся к измерениям элементов земного магнетизма в различных точках пространства и носят название магнитных съёмок. В зависимости от места проведения съёмок их подразделяют на наземные, морские (гидромагнитные), воздушные (аэромагнитные) и спутниковые. В зависимости от размера территории, которую охватывают съёмки, выделяют глобальные, региональные и локальные съёмки. По измеряемым элементам съёмки делятся на модульные (Т-съёмки, при которых ведётся измерение модуля вектора поля) и компонентные (измеряется только одна или несколько компонент этого вектора).

Земное магнитное поле находится под воздействием потока солнечной плазмы - солнечного ветра. В результате взаимодействия солнечного ветра с магнитным полем Земли образуется внешняя граница околоземного магнитного поля (магнитопауза), ограничивающая земную магнитосферу. Форма магнитосферы постоянно меняется под воздействием солнечного ветра, часть энергии которого проникает внутрь неё и передаётся токовым системам, существующим в околоземном пространстве. Изменения магнитного поля Земли во времени, вызванные действием этих токовых систем, называются геомагнитными вариациями и различаются как по своей длительности, так и по локализации. Существует множество различных типов временных вариаций, каждый из которых имеет свою морфологию. Под действием солнечного ветра магнитное поле Земли искажается и приобретает «шлейф» в направлении от Солнца, который простирается на сотни тысяч километров, выходя за орбиту Луны.

Дипольный магнитный момент Земли составляет около 8·10 22 А·м 2 и постоянно уменьшается. Средняя индукция геомагнитного поля на поверхности планеты около 5·10 -5 Тл. Основное магнитное поле Земли (на расстоянии менее трёх радиусов Земли от её центра) по форме близко к полю эквивалентного магнитного диполя, центр которого смещён относительно центра Земли примерно на 500 км в направлении на точку с координатами 18° северной широты и 147,8° восточной долготы. Ось этого диполя наклонена к оси вращения Земли на 11,5°. На такой же угол полюсы геомагнитные отстоят от соответствующих географических полюсов. При этом южный геомагнитный полюс находится в Северном полушарии.

Широкомасштабные наблюдения за изменениями элементов земного магнетизма ведутся в магнитных обсерваториях, образующих мировую сеть. Вариации геомагнитного поля регистрируются специальными приборами, данные измерений обрабатываются и поступают в мировые центры сбора данных. Для визуального представления картины пространственного распределения элементов земного магнетизма проводится построение карт изолиний, то есть кривых, соединяющих на карте точки с одинаковыми значениями того или иного элемента земного магнетизма (смотри карты). Кривые, соединяющие точки одинаковых магнитных склонений, называются изогонами, кривые одинаковых магнитных наклонений - изоклинами, одинаковых горизонтальных или вертикальных, северных или восточных составляющих вектора Н т - изодинамами соответствующих составляющих. Линии равных изменений поля принято называть изопорами; линии равных значений поля (на картах аномального поля) - изоаномалиями.

Результаты исследований земного магнетизма применяют для изучения Земли и околоземного пространства. Измерения интенсивности и направления намагниченности горных пород позволяют судить об изменении геомагнитного поля во времени, что служит ключевой информацией для определения их возраста и развития теории литосферных плит. Данные о геомагнитных вариациях используются при магнитной разведке полезных ископаемых. В околоземном пространстве на расстоянии тысячи и более километров от поверхности Земли её магнитное поле отклоняет космические лучи, защищая всё живое на планете от жёсткой радиации.

Лит.: Яновский Б. М. Земной магнетизм. Л., 1978; Калинин Ю. Д. Вековые геомагнитные вариации. Новосиб., 1984; Колесова В. И. Аналитические методы магнитной картографии. М., 1985; Паркинсон У. Введение в геомагнетизм. М., 1986.

ЭЛЕМЕНТЫ ЗЕМНОГО МАГНЕТИЗМА - проекции полного вектора напряженности земного магнитного поля Т (см. Поле Земли магнитное) па. оси координат и горизонтальную пл., а также углы склонения и наклонения. Проекция вектора Т на горизонтальную пл. называется горизонтальной составляющей (H) - на вертикальную ось - вертикальной составляющей (Z), на ось X (направленную по географическому меридиану на С) - сев. составляющей (X) и на ось Y (направленную по географической параллели на В) - вост. составляющей (Y). Углом склонения (D) называется угол между географическим меридианом и горизонтальной составляющей H (склонение считается положительным при отклонении H к В). Углом наклонения (I) называется угол между вектором Т и горизонтальной пл. (наклонение считается положительным при отклонении Т вниз) . Напряженность магнитного поля Земли (Т, Н, X, Y, Z) измеряется в эрстедах, миллиэрстедах и гаммах. Углы склонения и наклонения измеряются в градусах. В зависимости от используемой при расчетах системы координат для полной характеристики величины и построения в пространстве вектора Т достаточно 3-х Э. з. м.: в прямоугольной системе координат - X, Y, Z; в цилиндрической - H, Z, D; в сферической - Т, D, I.

Между Э. з. м. существуют следующие соотношения: X = H cos D; Y = H sin D; Z = H tg I; Т = H sec I = Z cosec I; H 2 = X 2 + Y 2 ; Т 2 = H 2 + Z 2 = X 2 + Y 2 + Z 2 ; Э. з. м. не остаются неизмененными во времени, а непрерывно меняют свои значения (см. Вариации магнитные). Для совр. эпохи на поверхности Земли H изменяется в пределах от 0,4 э на магнитном экваторе (в р-не Зондских островов) до нуля на магнитных полюсах. Z изменяется от 0,6 э в р-не магнитных полюсов до нуля на магнитном экваторе. Склонение изменяется в пределах от нуля на экваторе до ± 180° (на магнитных и географических полюсах). Наклонение - в пределах от нуля (на экваторе) до ±90° (на магнитных полюсах). В магниторазведке используются Т, Z и Н, поскольку напряженность аномального магнитного поля функционально связана с параметрами возмущающих тел. Иногда для характеристики положения аномальной горизонтальной составляющей измеряют также и D. См. Магниторазведка. Ю. П. Тафеев.

Геологический словарь: в 2-х томах. - М.: Недра . Под редакцией К. Н. Паффенгольца и др. . 1978 .

Смотреть что такое "ЭЛЕМЕНТЫ ЗЕМНОГО МАГНЕТИЗМА" в других словарях:

    КАРТА ЭЛЕМЕНТОВ ЗЕМНОГО МАГНЕТИЗМА - магнитная карта, справочная морская карта с на несенными на нее элементами земного магнетизма, составляется в меркаторской проекции с общей карто графич. основой для всех элементов. Карта предназначена для общего изучения состояния магнитного… … Морской энциклопедический справочник

    Геомагнетизм, магнитное поле Земли и околоземного космического пространства; раздел геофизики, изучающий распределение в пространстве и изменения во времени геомагнитного поля, а также связанные с ним геофизические процессы в Земле и… … Большая советская энциклопедия

    Магнитное поле Земли, существование которого обусловлено действием постоянных источников, расположенных внутри Земли (см. Гидромагнитное динамо) и создающих основной компонент поля (99%), а также переменных источников (электрических токов) в… … Энциклопедический словарь

    1976 года. Содержание … Википедия

    Прибор для измерения магнитного поля Земли в воздухе. Устанавливается на самолете или вертолете, может входить в состав аэрогеофизической станции. Чаще всего в воздухе измеряется полный вектор напряженности земного магнитного поля Т или его… … Геологическая энциклопедия

    Географические исследования Российской империи и развитие географической науки в России. Первые географические сведения о пространстве, составляющем в настоящее время Российскую империю, мы находим у иностранных писателей. Иностранцы были и… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    - (Magnetic charts) карты, на которых указывается величина склонения в виде линий равных склонений или другие элементы земного магнетизма. Самойлов К. И. Морской словарь. М. Л.: Государственное Военно морское Издательство НКВМФ Союза ССР, 1941 … Морской словарь

    Магн. поле Земли, существование к рого обусловлено действием пост. источников, расположенных внутри Земли (см. Гидромагнитное динамо) и создающих осн. компонент поля (99%), а также переменных источников (электрич. токов) в магнитосфере и… … Естествознание. Энциклопедический словарь

    Наука о магнитном поле Земли. Г. изучает структуру и изменения во времени магнитного поля Земли, происхождение этого поля и способы его измерений. Данные Г. используются во многих науках магниторазведке, геодезии, палеомагнетизме. Син.: магнетизм … Геологическая энциклопедия

    Линии, соединяющие на географической карте точки с одинаковыми значениями магнитного склонения. Положение их на магнитных картах относится к определенной эпохе. См. Элементы земного магнетизма. Геологический словарь: в 2 х томах. М.: Недра. Под… … Геологическая энциклопедия

Книги

  • Земной магнетизм , Тарасов Л.В.. В учебно-популярной форме рассказывается о земном магнетизме. Рассматриваются как геомагнитное поле на земной поверхности (элементы земного магнетизма, магнитныекарты, дрейф и инверсия…