Если хромосомы в клетках организма. Мой маленький плод

1. Среди состояний, при которых возникает необходимость гемотрансфузии , следует назвать острую и хроническую кровопотерю и недостаточный гемопоэз. Трансфузия препаратов крови, произведенная вовремя и по строгим показаниям, может спасти жизнь больному, в то время как неоправданная гемотрансфузия подвергает больного ненужному риску.

Решение о необходимости гемотрансфузии у больных в критическом состоянии чаще основывается на относительных, чем абсолютных, показаниях. Очевидно, что при профузном кровотечении больному гемотрансфузию необходимо начинать немедленно, если в наличии имеется совместимая по системе АВО кровь. Подобная ситуация нечасто встречается в отделении интенсивной терапии; в большинстве случаев решение о необходимости гемотрансфузии основано на совокупности клинических данных и опыта врача.

Нередко ориентиром служит произвольно взятый уровень в 100 г/л гемоглобина (гематокрит 30), но здоровые индивиды переносят и более низкие значения, особенно при наличии ретикулоцитоза. В то же время у больных в критическом состоянии, больных с сопутствующей ишемической болезнью сердца и больных с заведомой гипоксемией вследствие заболевания дыхательной системы гемотрансфузия может потребоваться и при более высоких цифрах Нb. Также следует учитывать, что больные с нестабильным состоянием имеют меньше резервов для восстановления в случае резкого ухудшения состояния.

Следовательно, решение о необходимости трансфузии должно приниматься с учетом пользы и риска для каждого конкретного пациента.

2. Коагулопатия является весьма серьезным острым осложнением гемотрансфузии . Чаще всего она бывает связана с массивной трансфузией, но может быть и следствием острой гемолитической реакции. Для быстрой диагностики нужно набрать кровь в стеклянную пробирку и встряхивать ее постукиванием по стенке пробирки в течение 20 мин. Если кровь сворачивается и разделяется, коагулопатия минимальна.

Если клетки оседают, оставляя над собой неокрашенную плазму, острый гемолиз исключен. Причиной коагулопатии может быть часто встречающаяся при массивных гемотранфузиях гипотермия. Согревание больного и вводимых ему в/в жидкостей устраняет это осложнение. Другими, часто упоминаемыми в контексте массивной гемотрансфузии проблемами являются гиперкалиемия и интоксикация цитратом, хотя в действительности эти ситуации встречаются очень редко.

Цитрат быстро метаболизируется в печени, а клинические наблюдения за больными, которым производилась массивная гемотрансфузия, свидетельствуют, что более частым исходом является не повышение уровня сывороточного калия, а гипокалиемия.

3. Во время переливания крови наиболее частой причиной лихорадки и озноба у больного является реакция на саму гемотрансфузию. В то же время эти симптомы могут иметь отношение к исходно присутствовавшей инфекции. Поэтому в поиск причин лихорадки следует включать бактериологические исследования крови больного и переливаемой крови.

4. Наличие признаков острой гемолитической реакции служит показанием для стимуляции диуреза. Обычно для осмотической стимуляции диуреза вводят маннит, дополнительно вводят жидкость (в/в); достоинства гидрокарбоната как средства для ощелачивания мочи не могут считаться доказанными. Ограничение вводимых внутривенно растворов практикуется у больных с развившейся олигурической почечной недостаточностью, которая не регрессирует с увеличением объема вводимой жидкости.

5. Встречаются также поздние осложнения гемотрансфузии . Среди них следует упомянуть сенсибилизацию к малым групповым антигенам крови и инфекционные осложнения. Инфекция остается главной проблемой, так как приводит впоследствии к нетрудоспособности или даже к смерти. Чаще всего встречается заражение вирусом инфекционного гепатита или цитомегаловирусом; но в последнее время документально установленная передача вируса СПИД при гемотрансфузии привлекла повышенное внимание к этим осложнениям, которые встречаются, вероятно, гораздо чаще, чем принято считать.

Вспомните из учебника «Растения. Бактерии. Гри бы и лишайники», какие процессы характеризуют жизнедеятельность клетки. Какое строение имеет клеточное ядро? Что такое хромосомы? Какое строение имеет молекула ДНК? Что такое редупликация ДНК?

Период жизнедеятельности клетки от момента ее возникновения до смерти называют жизненным циклом клетки, или клеточным циклом. В этот период происходят рост, развитие и размножение клетки. Длительность клеточного цикла в разных клетках даже у одного и того же организма различна. Например, продолжительность этого цикла в клетках эпителиальной ткани человека составляет около 10-15 ч, а клеток печени целый год. Клеточный цикл состоит из двух разных по продолжительности интервалов: интерфазы и деления клетки (рис. 66).

Рис. 66. Жизненный цикл клетки (клеточный цикл): 1 - интерфаза; 2 - митоз

Интерфаза. Часть жизненного цикла клетки между двумя последовательными ее делениями называют интерфазой (от лат. интер - между и греч. фазис - появление). Она характеризуется активными процессами обмена веществ, биосинтезом белков, нуклеиновых кислот, углеводов и липидов. В интерфазе происходят процессы, связанные с жизнедеятельностью клетки - диссимиляция и ассимиляция. Возрастает запас энергии в клетке за счет синтеза АТФ. В ядре активно синтезируются все виды РНК, в ядрышке образуются и собираются рибосомы. Происходит интенсивный рост клетки, увеличивается количество всех ее органоидов.

Главным событием интерфазы является редупликация ДНК - ее самоудвоение. Так клетка подготавливается к делению.

Продолжительность интерфазы зависит от типа клеток и в среднем составляет не менее 90% от общего времени клеточного цикла. После окончания интерфазы клетка вступает в следующую часть цикла - деление.

Строение хромосом. Важная роль в клеточном цикле принадлежит хромосомам. Хромосома - комплекс спирализованных молекул ДНК й белков (от греч. хромо - цвет и сомо - тело). Они не только осуществляют регуляцию всех обменных процессов в клетке, но и обеспечивают передачу наследственной информации от одного поколения клеток и организмов - другим. В прокариотной клетке содержится только одна кольцевая молекула ДНК, несвязанная с белками. Поэтому ее нельзя назвать хромосомой.

Рис. 67. Нити хроматина в ннтерфазе жизненного цикла клетки

Большинство хромосом в интерфазе находятся в виде нитей хроматина, что делает их практически невидимыми (рис. 67). После редупликации каждая хромосома состоит из двух молекул ДНК, которые спирализуются, соединяются с белками и приобретают четкие формы. Две дочерние молекулы ДНК упаковываются порознь и образуют сестринские хроматиды (от греч. хрома - цвет и эйдос - вид). Сестринские хроматиды удерживаются вместе и образуют одну хромосому (рис. 68). Участок сцепления двух сестринских хроматид называется центромерой (от лат. центрум - середина и мерос - часть).

Рис. 68. Строение хромосомы после редупликации ДНК: 1 - центромера: 2 - плечи хромосомы; 3 - сестринские хроматиды; 4 - молекула ДНК: 5 - белок

Изучить форму и размеры хромосом, установить их количество в клетке можно только во время деления, когда они максимально спирализованы, плотно упакованы, хорошо окрашиваются и видны с помощью светового микроскопа.

Хромосомный набор клеток. Клетки каждого организма содержат определенный набор хромосом, который называют кариотипом (от греч. карион - ядро и типос - образец, форма). Для каждого вида организмов характерен свой кариотип. Хромосомы кариотипов различаются по форме, величине и набору генетической информации. Хромосомный набор строго индивидуален для каждого вида организма. Так, кариотип человека составляет 23 пары хромосом (рис. 69), плодовой мушки дрозофилы - 4 пары хромосом, одного из видов пшеницы - 14 пар.

Рис. 69. Хромосомный набор клеток человека: А - общая фотография; Б - 23 пары хромосом

Исследования кариотипов различных организмов показали, что в их клетках может содержаться двойной и одинарный наборы хромосом.

Двойной набор хромосом состоит всегда из парных хромосом, одинаковых по величине, форме и характеру наследственной информации. Парные хромосомы называются гомологичными (от греч. гомос- одинаковый). Так, все неполовые клетки человека содержат 23 пары хромосом, т. е. 46 хромосом представлены в виде 23 пар. У дрозофилы 8 хромосом образуют 4 пары. Парные гомологичные хромосомы внешне очень похожи. Их центромеры находятся в одних и тех же местах, а гены расположены в одинаковой последовательности.

В некоторых клетках может быть одинарный набор хромосом. Например, в клетках низших растений - одноклеточных зеленых водорослей набор хромосом одинарный, тогда как у высших растений и животных он - двойной. Половые клетки животных также имеют одинарный набор хромосом. Парные хромосомы в таком случае отсутствуют, гомологичных хромосом нет, а есть негомологичные. Так, половые клетки человека содержат 23 хромосомы. Причем хромосомный набор мужских и женских половых клеток отличается 23-ей хромосомой. Она напоминает по форме латинские буквы X или Y. В сперматозоидах может быть Х- или Y- хромосома. Яйцеклетки же всегда несут Х-хромосому.

Хромосомный набор принято обозначать латинской буквой п. Двойной набор соответственно обозначается 2п, а одинарный - п.

Упражнения по пройденному материалу

  1. Дайте определение жизненного цикла клетки (клеточного цикла).
  2. Что такое инферфаза? Какое событие является главным в интерфазе? Ответ обоснуйте.
  3. Из скольких молекул ДНК состоит хромо сома в начале интерфазы и перед делением клетки?
  4. Как определя ют число и форму хромосом у разных видов организмов?
  5. Чем двойной набор хромосом отличается от одинарного?
  6. В кариотипе кролика насчитывают 44 хромосомы. Сколько хромосом находится у кролика в неполовых и сколько в половых клетках?

Хромосомы – структуры клетки, хранящие и передающие наследственную информацию = ДНК(7) + белок (6).

Строение хромосомы лучше всего видно в метафазе митоза. Она представляет собой палочковидную структуру и состоит из двух сестринских хроматид (3) , удерживаемых центромерой (кинетохором ) в области первичной перетяжки (1) , которая делит хромосому на 2 плеча (2) . Иногда бывает вторичная перетяжка (4), в результате которой образуется спутник хромосомы (5).

Отдельные участки молекулы ДНК - гены - ответственны за каждый конкретный признак или свойство организма. Наследственная информация из клетки в клетку передается путем удвоения молекулы ДНК (репликации), транскрипции и трансляции. Главная функция хромосом - хранение и передача наследственной информации, носителем которой является молекула ДНК.

Под микроскопом видно, что хромосомы имеют поперечные полосы , которые чередуются в различных хромосомах по-разному. Распознают пары хромосом, учитывая распределение, светлых и темных полос (чередование АТ и ГЦ – пар). Поперечной исчерченностью обладают хромосомы представителей разных видов. У родственных видов, например у человека и шимпанзе, сходный характер чередования полос в хромосомах.

Во всех соматических клетках любого растительного или животного организма число хромосом одинаково. Половые клетки (гаметы) всегда содержат вдвое меньше хромосом, чем соматические клетки данного вида организмов.

В кариотипе человека 46 хромосом – 44 аутосомы и 2 половые хромосомы. Мужчины гетерогаметны (половые хромосомы ХУ), а женщины гомогаметны (половые хромосомы XX). У-хромосома отличается от Х-хромосомы отсутствием некоторых аллелей. Хромосомы одной пары называются гомологичными , они в одинаковых локусах (местах расположения) несут аллельные гены.

У всех организмов, относящихся к одному виду, число хромосом в клетках одинаково. Число хромосом не является видоспецифическим признаком. Однако хромосомный набор в целом видоспецифичен, т. е. свойствен только одному какому-то виду организмов растений или животных.

Кариотип - совокупность внешних количественных и качественных признаков хромосомного набора (число, форма, размер хромосом) соматической клетки, характерных для данного вида

Деление клеток - биологический процесс, лежащий в основе размножения и индивидуального развития всех живых организмов, процесс увеличения числа клеток путем деления исходной клетки.

Способы деления клеток :

1. амитоз - прямое (простое) деление интерфазного ядра путем перетяжки, которое происходит вне митотического цикла, т. е. не сопровождается сложной перестройкой всей клетки, а также спирализацией хромосом. Амитоз может сопровождаться делением клетки, а может ограничиваться лишь делением ядра без разделения цитоплазмы, что приводит к образованию дву- и многоядерных клеток. Клетка, претерпевшая амитоз, в дальнейшем не способна вступить в нормальный митотический цикл. По сравнению с митозом амитоз встречается довольно редко. В норме он наблюдается в высокоспециализированных тканях, клетках, которым предстоит делиться: в эпителии и печени позвоночных, зародышевых оболочках млекопитающих, клетках эндосперма семян растений. Амитоз наблюдается также при необходимости быстрого восстановления тканей (после операций и травм). Амитозом также часто делятся клетки злокачественных опухолей.

2 . митоз - непрямое деление, при котором исходно диплоидная клетка дает две дочерние, также диплоидные клетки; характерен для соматических клеток (клеток тела) всех эукариот (растений и животных); универсальный тип деления.

3. мейоз - осуществляется при образовании половых клеток у животных и спор у растений.

Жизненный цикл клетки (клеточный цикл) – время существования клетки от деления до следующего деления, или от деления до смерти. Для разных типов клеток клеточный цикл различен.

В организме млекопитающих и человека различают следующие три группы клеток, локализующиеся в разных тканях и органах:

часто делящиеся клетки (малодифференцированные клетки эпителия кишечника, базальные клетки эпидермиса и другие);

редко делящиеся клетки (клетки печени – гепатоциты);

неделящиеся клетки (нервные клетки центральной нервной системы, меланоциты и другие).

Жизненный цикл у часто делящихся клеток – это время их существования от начала деления до следующего деления. Жизненный цикл таких клеток нередко называют митотическим циклом . Такой клеточный цикл подразделяется на два основных периода :

митоз или период деления;

интерфаза – промежуток жизни клетки между двумя делениями.

Интерфаза – период между двумя делениями, когда клетка готовится к делению: удваивается количество ДНК в хромосомах, количество других органоидов, синтезируются белки, происходит рост клетки.

К концу интерфазы каждая хромосома состоит из двух хроматид, которые в процессе митоза станут самостоятельными хромосомами.

Периоды интерфазы:

1. Пресинтетический период (G 1) - период подготовки к синтезу ДНК после завершения митоза. Происходит образование РНК, белков, ферментов синтеза ДНК, увеличивается количество органоидов. Содержание хромосом (п) и ДНК (с) равно 2п2с.

2. Синтетический период (S-фаза) . Происходит репликация (удвоение, синтез ДНК). В результате работы ДНК-полимераз для каждой из хромосом хромосомный набор становится 2п4с. Так образуются двухроматидные хромосомы.

3. Постсинтетический период (G 2) - время от окончания синтеза ДНК до начала митоза. Завершается подготовка клетки к митозу, удваиваются центриоли, синтезируются белки, завершается рост клетки.

Митоз

это форма деления клеточного ядра, происходит он только в эукариотических клетках. В результате митоза каждое из образующихся дочерних ядер получает тот же набор генов, который имела родительская клетка. В митоз могут вступать как диплоидные, так и гаплоидные ядра. При митозе получаются ядра той же плоидности, что и исходное.

Открыт с помощью светового микроскопа в 1874 г. русским ученым И. Д. Чистяковым в растительных клетках.

В 1878 г. В. Флеммингом и русским ученым П. П. Перемежко этот про­цесс обнаружен в животных клетках. У животных клеток митоз длится 30-60 мин, у растительных - 2-3 ч.

Митоз состоит из четырех фаз :

1. профаза - двухроматидные хромосомы спирализуются и становятся заметными, ядрышко и ядерная оболочка распадаются, образуются нити веретена деле­ния. Клеточный центр делится на две центриоли, расходящиеся к полюсам.

2 . метафаза - фаза скопления хромосом на экваторе клетки: нити веретена деления идут от полюсов и присоединяются к центромерам хромосом: к каждой хромосоме подходят две нити, идущие от двух полюсов.

3 . анафаза - фаза расхождения хромосом, в которой центромеры делятся, а однохроматидные хромосомы растягиваются нитями веретена деления к полюсам клетки; самая короткая фаза митоза.

4 . т елофаза - окончание деления, движение хромосом заканчивается, и происходит их деспирализация (раскручивание в тонкие нити), формируется ядрышко, восстанавливается ядерная оболочка, на экваторе закладывается перегородка (у растительных кле­ток) или перетяжка (у животных клеток), нити веретена деле­ния растворяются.

Цитокинез – процесс разделения цитоплазмы. Клеточная мембрана в центральной части клетки втягивается внутрь. Образуется борозда деления, по мере углубления которой клетка раздваивается.

В результате митоза образуются два новых ядра с идентичными наборами хромосом, точно копирующими генетическую информацию материнского ядра.

В опухолевых клетках ход митоза нарушается.

В результате митоза из одной диплоидной клетки, имеющей двухроматидные хромосомы и удвоенное ко­личество ДНК (2n4с), образуются две дочерние диплоидные клетки с однохроматидными хромосомами и одинарным коли­чеством ДНК (2n2с), которые затем вступают интерфазу. Так образуются соматические клетки (клетки тела) организма расте­ния, животного или человека.

Фаза митоза, набор хромосом

(n-хромосомы,

с - ДНК)

Рисунок

Профаза

Демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления, “исчезновение” ядрышек, конденсация двухроматидных хромосом.

Метафаза

Выстраивание максимально конденсированных двухроматидных хромосом в экваториальной плоскости клетки (метафазная пластинка), прикрепление нитей веретена деления одним концом к центриолям, другим – к центромерам хромосом.

Анафаза

Деление двухроматидных хромосом на хроматиды и расхождение этих сестринских хроматид к противоположным полюсам клетки (при этом хроматиды становятся самостоятельными однохроматидными хромосомами).

Телофаза

Деконденсация хромосом, образование вокруг каждой группы хромосом ядерных мембран, распад нитей веретена деления, появление ядрышка, деление цитоплазмы (цитотомия). Цитотомия в животных клетках происходит за счёт борозды деления, в растительных клетках – за счёт клеточной пластинки.

Тематические задания

А1. Хромосомы состоят из

1) ДНК и белка

2) РНК и белка

3) ДНК и РНК

4) ДНК и АТФ

А2. Сколько хромосом содержит клетка печени человека?

А3. Сколько нитей ДНК имеет удвоенная хромосома

А4. Если в зиготе человека содержится 46 хромосом, то сколько хромосом содержится в яйцеклетке человека?

А5. В чем заключается биологический смысл удвоения хромосом в интерфазе митоза?

1) В процессе удвоения изменяется наследственная информация

2) Удвоенные хромосомы лучше видны

3) В результате удвоения хромосом наследственная информация новых клеток сохраняется неизменной

4) В результате удвоения хромосом новые клетки содержат вдвое больше информации

А6. В какой из фаз митоза происходит расхождение хроматид к полюсам клетки? В:

1) профазе

2) метафазе

3) анафазе

4) телофазе

А7. Укажите процессы, происходящие в интерфазе

1) расхождение хромосом к полюсам клетки

2) синтез белков, репликация ДНК, рост клетки

3) формирование новых ядер, органоидов клетки

4) деспирализация хромосом, формирование веретена деления

А8. В результате митоза возникает

1) генетическое разнообразие видов

2) образование гамет

3) перекрест хромосом

4) прорастание спор мха

А9. Сколько хроматид имеет каждая хромосома до ее удвоения?

А10. В результате митоза образуются

1) зигота у сфагнума

2) сперматозоиды у мухи

3) почки у дуба

4) яйцеклетки у подсолнечника

В1. Выберите процессы, происходящие в интерфазе митоза

1) синтез белков

2) уменьшение количества ДНК

3) рост клетки

4) удвоение хромосом

5) расхождение хромосом

6) деление ядра

В2. Укажите процессы, в основе которых лежит митоз

1) мутации

3) дробление зиготы

4) образование спермиев

5) регенерация тканей

6) оплодотворение

ВЗ. Установите правильную последовательность фаз жизненного цикла клетки

А) анафаза

Б) интерфаза

В) телофаза

Г) профаза

Д) метафаза

Е) цитокинез

Мейоз

это процесс деления клеточных ядер, приводящий к уменьшению числа хромосом вдвое и образованию гамет, при этом происходит обмен гомологичными участками парных (гомологичных) хромосом, а, следовательно, и ДНК, прежде чем они разойдутся в дочерние клетки.

В результате мейоза из одной диплоидной клетки (2n) образуется четыре гаплоидные клетки (n).

Открыт в 1882 г. В. Флеммингом у животных, в 1888 г. Э. Страсбургером у растений.

Мейозу предше­ствует интерфаза , поэтому вступают в мейоз хромосомы двухроматидные (2n4с).

Мейоз проходит в два этапа :

1. редукционное деление - наиболее сложный и важный процесс. Он подразделяется на фазы:

А) профаза I : парные хромосомы диплоидной клетки подходят друг к другу, перекрещиваются, образуя мостики (хиазмы), затем обменива­ются участками (кроссинговер), при этом осуществляется пере­комбинация генов, после чего хромосомы расходятся

Б) в метафазе I эти парные хромосомы располагаются по экватору клетки, к каждой из них присоединяется нить веретена деления: к одной хромосоме от одного полюса, ко второй - от другого

В) в анафазе I к полюсам клетки расходятся двухроматидные хромосомы; од­на из каждой пары к одному полюсу, вторая - к другому. При этом число хромосом у полюсов становится вдвое меньше, чем в материнской клетке, но они остаются двухроматидными (n2с)

Г) затем проходит телофаза I, которая сразу же переходит в профа­зу II второго этапа деления мейоза, идущего по типу митоза:

2. эквационное деление . Ин­терфазы в данном случае нет, так как хромосомы двухроматид­ные, молекулы ДНК удвоены.

А) профаза II

Б) в метафазе II двухроматидные хромосомы располагаются по экватору, при этом деление происходит сразу в двух дочерних клетках

В) в анафазе II к полю­сам отходят уже однохроматидные хромосомы

Г) в телофазе II в четырех дочерних клетках формируются ядра и перегородки между клетками.

Таким образом, в результате мейоза получаются четыре гаплоидные клетки с однохроматидными хромосомами (nc): это либо половые клетки (гаметы) животных, либо споры растений.

Фаза мейоза,

набор хромосом

хромосомы,
с - ДНК)

Рисунок

Характеристика фазы, расположение хромосом

Профаза 1
2n4c

Демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления, “исчезновение” ядрышек, конденсация двухроматидных хромосом, конъюгация гомологичных хромосом и кроссинговер.

Метафаза 1
2n4c

Выстраивание бивалентов в экваториальной плоскости клетки, прикрепление нитей веретена деления одним концом к центриолям, другим – к центромерам хромосом.

Анафаза 1
2n4c

Случайное независимое расхождение двухроматидных хромосом к противоположным полюсам клетки (из каждой пары гомологичных хромосом одна хромосома отходит к одному полюсу, другая – к другому), перекомбинация хромосом.

Телофаза 1
в обеих клетках по 1n2c

Образование ядерных мембран вокруг групп двухроматидных хромосом, деление цитоплазмы.

Профаза 2
1n2c

Демонтаж ядерных мембран, расхождение центриолей к разным полюсам клетки, формирование нитей веретена деления.

Метафаза 2
1n2c

Выстраивание двухроматидных хромосом в экваториальной плоскости клетки (метафазная пластинка), прикрепление нитей веретена деления одним концом к центриолям, другим – к центромерам хромосом.

Анафаза 2
2n2c

Деление двухроматидных хромосом на хроматиды и расхождение этих сестринских хроматид к противоположным полюсам клетки (при этом хроматиды становятся самостоятельными однохроматидными хромосомами), перекомбинация хромосом.

Телофаза 2
в обеих клетках по 1n1c

Всего
4 по 1n1c

Деконденсация хромосом, образование вокруг каждой группы хромосом ядерных мембран, распад нитей веретена деления, появление ядрышка, деление цитоплазмы (цитотомия) с образованием двух, а в итоге обоих мейотических делений – четырех гаплоидных клеток.

Биологическое значение мейоза заключается в том, что уменьшение числа хромосом необходимо при образовании половых клеток, поскольку при оплодотворении ядра гамет сливаются.

Если бы указанной редукции не происходило, то в зиготе (следовательно, и во всех клетках дочернего организма) хромосом становилось бы вдвое больше.

Однако это противоречит правилу постоянства числа хромосом.

Развитие половых клеток.

Процесс формирования половых клеток называется гаметогенезом . У многоклеточных организмов различают сперматогенез – формирование мужских половых клеток и овогенез – формирование женских половых клеток.

Рассмотрим гаметогенез, происходящий в половых железах животных – семенниках и яичниках.

Сперматогенез – процесс превращения диплоидных предшественников половых клеток – сперматогониев в сперматозоиды.

1. Сперматогонии делятся митозом на две дочерние клетки – сперматоциты первого порядка.

2. Сперматоциты первого порядка делятся мейозом (1-е деление) на две дочерние клетки – сперматоциты второго порядка.

3. Сперматоциты второго порядка приступают ко второму мейотическому делению, в результате которого образуются 4 гаплоидные сперматиды.

4. Сперматиды после дифференцировки превращаются в зрелые сперматозоиды.

Сперматозоид состоит из головки, шейки и хвоста. Он подвижен и благодаря этому вероятность встречи его с гаметами увеличивается.

У мхов и папоротников спермии развиваются в антеридиях, у покрытосеменных растений они образуются в пыльцевых трубках.

Овогенез – образование яйцеклеток у особей женского пола. У животных он происходит в яичниках. В зоне размножения находятся овогонии – первичные половые клетки, размножающиеся митозом.

Из овогониев после первого мейотического деления образуются овоциты первого порядка.

После второго мейотического деления образуются овоциты второго порядка, из которых формируется одна яйцеклетка и три направительных тельца, которые затем гибнут. Яйцеклетки неподвижны, имеют шаровидную форму. Они крупнее других клеток и содержат запас питательных веществ для развития зародыша.

У мхов и папоротников яйцеклетки развиваются в архегониях, у цветковых растений – в семяпочках, локализованных в завязи цветка.

Развитие половых клеток и двойное оплодотворение у цветковых растений.

Схема жизненного цикла цветкового растения.

Взрослая особь диплоидна. В жизненном цикле преобладает спорофит (С > Г).

Взрослое растение здесь является спорофитом, образующим макро (женские ) и микроспоры (мужские) , которые развиваются соответственно в зародышевый мешок и зрелое пыльцевое зерно , являющиеся гаметофитами.

Женский гаметофит у растений – зародышевый мешок.

Мужской гаметофит у растений – пыльцевое зерно.

Чашечка + венчик = ОКОЛОЦВЕТНИК

Тычинка и пестик – репродуктивные органы цветка

Мужские половые клетки созревают в пыльнике (пыльцевом мешке или микроспорангии), расположенном на тычинке.

В нем содержится множество диплоидных клеток, каждая из которых делится путем мейоза и образует 4 гаплоидных пыльцевых зерна (микроспоры), из всех них затем развивается мужской гаметофит .

Каждое пыльцевое зерно делится путем митоза и образует 2 клетки - вегетативную и генеративную . Генеративная клетка еще раз делится путем митоза и образует 2 спермия.

Таким образом, пыльца (проросшая микроспора, созревшее пыльцевое зерно) содержит три клетки - 1 вегетативную и 2 спермия , покрытых оболочкой.

Женские половые клетки развиваются в семязачатке (семяпочке или мегаспорангии), располагающемся в завязи пестика.

Одна из ее диплоидных клеток делится путем мейоза и образует 4 гаплоидных клетки. Из них только одна гаплоидная клетка (мегаспора) трижды делится путем митоза и прорастает в зародышевый мешок (женский гаметофит ),

три другие гаплоидные клетки отмирают.

В результате деления мегаспоры образуются 8 гаплоидных ядер зародышевого мешка, в котором 4 ядра располагаются на одном полюсе, а 4- на противоположном.

Затем от каждого полюса в центр зародышевого мешка мигрирует по одному ядру, сливаясь, они образуют центральное диплоидное ядро зародышевого мешка.

Одна из трех гаплоидных клеток, расположенных у пыльцевхода, является крупной яйцеклеткой, 2 другие - вспомогательные клетки-синергиды.

Опыление - перенос пыльцы с пыльников на рыльце пестика.

Оплодотворение - это процесс слияния яйцеклетки и сперматозоида, в результате чего образуется зигота – зародышевая клетка или первая клетка нового организма

При оплодотворении пыльцевое зерно, попав на рыльце пестика, прорастает по направлению к семязачаткам, расположенным в завязи, за счет своей вегетативной клетки, образующей пыльцевую трубку. На переднем конце пыльцевой трубки находятся 2 спермия (спермии сами двигаться не могут, поэтому продвигаются за счет роста пыльцевой трубки). Проникая в зародышевый мешок через канал в покровах - пыльцевход (микропиле), один спермий оплодотворяет яйцеклетку, а второй сливается с 2n центральной клеткой (диплоидным ядром зародышевого мешка) с образованием 3n триплоидного ядра. Этот процесс получил название двойного оплодотворения , был открыт С.Г. Навашиным в 1898 г. у лилейных. В дальнейшем из оплодотворенной яйцеклетки - зиготы развивается зародыш семени, а из триплоидного ядра - питательная ткань - эндосперм . Так, из семязачатка образуется семя, а из его покровов - семенная кожура. Вокруг семени из завязи и других частей цветка формируется плод .

Тематические задания

А1. Мейозом называется процесс

1) изменения числа хромосом в клетке

2) удвоения числа хромосом в клетке

3) образования гамет

4) конъюгации хромосом

А2. В основе изменения наследственной информации детей

по сравнению с родительской информацией лежат процессы

1) удвоения числа хромосом

2) уменьшения количества хромосом вдвое

3) удвоения количества ДНК в клетках

4) конъюгации и кроссинговера

А3. Первое деление мейоза заканчивается образованием:

2) клеток с гаплоидным набором хромосом

3) диплоидных клеток

4) клеток разной плоидности

А4. В результате мейоза образуются:

1) споры папоротников

2) клетки стенок антеридия папоротника

3) клетки стенок архегония папоротника

4) соматические клетки трутней пчел

А5. Метафазу мейоза от метафазы митоза можно отличить по

1) расположению бивалентов в плоскости экватора

2) удвоению хромосом и их скрученности

3) формированию гаплоидных клеток

4) расхождению хроматид к полюсам

А6. Телофазу второго деления мейоза можно узнать по

1) формированию двух диплоидных ядер

2) расхождению хромосом к полюсам клетки

3) формированию четырех гаплоидных ядер

4) увеличению числа хроматид в клетке вдвое

А7. Сколько хроматид будет содержаться в ядре сперматозоидов крысы, если известно, что в ядрах ее соматических клеток содержится 42 хромосомы

А8. В гаметы, образовавшиеся в результате мейоза попадают

1) копии полного набора родительских хромосом

2) копии половинного набора родительских хромосом

3) полный набор рекомбинированных родительских хромосомы

4) половина рекомбинированного набора родительских хромосом

В1. Установите правильную последовательность процессов, происходящих в мейозе

A) Расположение бивалентов в плоскости экватора

Б) Образование бивалентов и кроссинговер

B) Расхождение гомологичных хромосом к полюсам клетки

Г) формирование четырех гаплоидных ядер

Д) формирование двух гаплоидных ядер, содержащих по две хроматиды

Специальность 060101– Лечебное дело

Специальность 060103 – Педиатрия

Специальность 060105 - Стоматология


Ситуационные задачи по теме «Биология клетки»

1. Постоянный препарат изучен на малом увеличении, однако при переводе на большое увеличение объект не виден, даже при коррекции макро- и микрометрическим винтами и достаточном освещении. Необходимо определить, с чем это может быть связано?

Ответ : Причина может быть связана с тем, что препарат помещен на предметный столик неправильно: покровным стеклом вниз, а при работе на большом увеличении толщина предметного стекла не позволяет добиться точной наводки на фокус.

2. Препарат помещен на предметный столик микроскопа, имеющего в основании лапки штатива зеркало. В аудитории слабый искусственный свет. Объект хорошо виден на малом увеличении, однако при попытке его рассмотреть при увеличении объектива х40, в поле зрения объект не просматривается, видно темное пятно. Необходимо определить, с чем это может быть связано?

Ответ : Причин может быть несколько: 1 – для исследования использована плоская сторона зеркала, а комната недостаточно ярко освещена, поэтому объект при большом увеличении недостаточно освещен и не виден в поле зрения; 2 – возможно, движение револьвера было недостаточным, не доведен до щелчка, поэтому объектив не находится против объекта исследования; 3 – посмотреть как помещен на предметный столик препарат, возможно, он помещен покровным стеклом вниз.

3. Исследуемый препарат оказался поврежден: разбито предметное и покровное стекла. Объясните, как это могло произойти?

Ответ : Причина - неправильное обращение с макрометрическим винтом. Он опускает объектив к препарату. При работе с ним необходимо смотреть не в окуляр, а сбоку, контролируя расстояние от объектива к препарату, которое составляет в среднем 0,5см.

4. Общее увеличение микроскопа составляет при работе в одном случае - 280, а в другом - 900. Объясните, какие использованы объективы и окуляры в первом и во втором случаях и, какие объекты они позволяют изучать?

Ответ: В первом случае используется окуляр х7, а объектив х40, при данном увеличении можно рассмотреть крупные микрообъекты (н-р, клетки кожицы лука, клетки крови лягушки, перекрест волос); во втором случае используется окуляр х10, а объектив х90, при данном увеличении можно рассмотреть самые мелкие микрообъекты, используя при этом иммерсионное масло (органоиды клеток, колонии бактерий, мелкие клетки простейших, клетки крови человека).

5. Как надо расположить препарат, чтобы увидеть объект в нужном виде?

Ответ: Препарат необходимо расположить на предметный столик покровным стеклом вверх, объект должен располагаться в центре отверстия предметного столика, с учетом того, что изображение в микроскопе получаем обратное.


6. При ряде врожденных лизосомных «болезнях накопления» в клетках накапливается значительное количество вакуолей, содержащих нерасщепленные вещества. Например, при болезни Помпе происходит накопление гликогена в лизосомах. Объясните с чем связано данное явление, исходя из функциональной роли данного органоида клеток.

Ответ: Лизосомы в клетке участвуют в процессах внутриклеточного переваривания, они содержат около 40 гидролитических ферментов: протеазы, нуклеазы, гликозидазы, фосфорилазы и др. В данном случае в наборе ферментов отсутствует фермент кислой а-гликозидазы, участвующий в функционировании лизосом.

7. При патологических процессах обычно в клетках значительно увеличивается количество лизосом. На основании этого возникло представление, что лизосомы могут играть активную роль при гибели клеток. Однако известно, что при разрыве мембраны лизосом, выходящие гидролазы теряют свою активность, так как в цитоплазме слабощелочная среда. Объясните, какую роль играют лизосомы в данном случае, исходя из функциональной роли этого органоида в клетке.

Ответ: Одной из функций лизосом является автолиз или аутофагия. В настоящее время склонны считать, что процесс аутофагоцитоза связан с отбором и уничтожением измененных, «сломанных» клеточных компонентов. В данном случае лизосомы выполняют роль внутриклеточных чистильщиков, контролирующих дефектные структуры. В конкретном случае накопление лизосом и связано с выполнением ферментами этой функции - автолиз погибших клеток.

8. Объясните какие последствия могут ожидать животную клетку, у которой в клеточном центре отсутствуют одна центриоль и лучистая сфера (астросфера).

Центросомы обязательны для клеток животных, они принимают участие в формировании веретена деления и располагаются на полюсах, в неделящихся клетках определяют полярность клеток. При отсутствии данного органоида такая клетка не способна к пролиферации.

9. Обычно, если клеточная патология связана с отсутствием в клетках печени и почек пероксисом, то организм с таким заболеванием нежизнеспособен. Дайте объяснение этому факту, исходя из функциональной роли этого органоида в клетке.

Ответ: Микротельца или пероксисомы играют важную роль в метаболизме перекиси водорода, которая является сильнейшим внутриклеточным ядом и разрушает клеточные мембраны. В пероксисомах печени фермент каталаза составляет до 40% всех белков и выполняет защитную функцию. Вероятно, отсутствие данных ферментов, приводит к необратимым изменениям на уровне функционирования клеток, тканей и органов.

10. Объясните, почему у зимних спящих сурков и зимующих летучих мышей число митохондрий в клетках сердечной мышцы резко снижено.

Ответ: Количество митохондрий в клетках сердечной мышцы зависит от функциональной нагрузки на сердце и расхода энергии, которая вырабатывается и накапливается в макроэргических связях АТВ в «энергетических станциях» клеток, которыми являются митохондрии. В период спячки в организме животных процессы метаболизма замедленны и нагрузка на сердце минимальная.

11. Известно, что у позвоночных животных кровь красная, а у некоторых беспозвоночных (головоногих моллюсков) голубая. Объясните с присутствием, каких микроэлементов связан определенный цвет крови у этих животных?

Ответ: Кровь этих животных голубая т.к. в ее состав входит гемоцианин, содержащий медь (Си).

12.Зерна пшеницы и семена подсолнечника богаты органическими веществами. Объясните, почему качество муки связано с содержанием клейковины в ней, какие органические вещества находятся в клейковине пшеничной муки. Какие органические вещества находятся в семенах подсолнечника?

Ответ: Клейковина – это та часть муки, в которой содержится белковый компонент, благодаря которому качество муки ценится выше. В семенах подсолнечника наряду с белками и углеводами в значительном количестве находятся растительные жиры.

13. Восковидные липофусцинозы нейронов могут проявляться в разном возрасте (детском, юношеском и зрелом), относятся к истинным болезням накопления, связанным с нарушением функций органоидов мембранного строения, содержащих большое количество гидролитических ферментов. Симптоматика включает признаки поражения центральной нервной системы с атрофией головного мозга, присоединяются судорожные припадки. Диагноз ставится при электронной микроскопии - в этих органоидах клеток очень многих тканей обнаруживаются патологические включения. Объясните, в каком органоиде в клетках нарушена функция?

Ответ: у людей с данной патологией нарушена функция лизосом, возможно, какие-то ферменты отсутствуют или не включаются, поэтому в лизосомах обнаруживаются недорасщепленные структуры.

14. У больного выявлена редкая болезни накопления гликопротеинов, связанная с недостаточностью гидролаз, расщепляющих полисахаридные связи эти аномалии характеризуются неврологическими нарушениями и разнообразными соматическими проявлениями. Фукозидоз и маннозидоз чаще всего приводят к смерти в детском возрасте, тогда как аспартилглюкозаминурия проявляется как болезнь накопления с поздним началом, выраженной психической отсталостью и более продолжительным течением.

Объясните, в каком органоиде в клетках нарушена функция?

Ответ: у людей с данной патологией нарушена функция лизосом, отсутствуют ферменты, расщепляющие гликопротеины, поэтому в лизосомах обнаруживаются недорасщепленные структуры.

15. Выявлено наследственное заболевание, связанное с дефектами в функционирования органоида клетки приводящее к нарушениям энергетических функций в клетках - нарушению тканевого дыхания, синтеза специфических белков. Данное заболевание передается только по материнской линии к детям обеих полов. Объясните, в каком органоиде произошли изменения. Ответ обоснуйте.

Ответ: произошел дефект митохондриальной ДНК, идет неправильное считывание информации, нарушается синтез специфических белков, проявляются дефекты в различных звеньях цикла Кребса, в дыхательной цепи, что привело к развитию редкого митохондриального заболевания.

16.Ядро яйцеклетки и ядро сперматозоида имеет равное количество хромосом, но у яйцеклетки объём цитоплазмы и количество цитоплазматических органоидов больше, чем у сперматозоида. Одинаково ли содержание в этих клетках ДНК?

Ответ: У яйцеклетки содержание ДНК больше, за счёт наличия митохондриальный ДНК.

17. Гены, которые должны были включиться в работу в периоде G 2 , остались неактивными. Отразится ли это на ходе митоза?

Ответ: В период G 2 синтезируются белки, необходимые для образования нитей веретена деления. При их отсутствии расхождение хроматид в анафазу митоза нарушится или вообще не произойдёт.

18. В митоз вступила двуядерная клетка с диплоидными ядрами (2n=46). Какое количество наследственного материала будет иметь клетка в метафазе при формировании единого веретена деления, а также дочерние ядра по окончании митоза?

Ответ: В каждом из двух ядер, вступивших в митоз, хромосомы диплоидного набора уже содержат удвоенное количество генетического материала. Объем генетической информации в каждом ядре - 2n4с. В метафазе при формировании единого веретена деления эти наборы объединятся, и объем генетической информации составит, следовательно - 4n8с (тетраплоидный набор самоудвоенных или реплицированных хромосом).

В анафазе митоза этой клетки к полюсам дочерних клеток разойдутся хроматиды. По окончании митоза ядра дочерних клеток будут содержать объем генетической информации = 4n4с.

19. После оплодотворения образовалась зигота 46,ХХ, из которой должен сформироваться женский организм. Однако в ходе первого митотического деления (дробления) этой зиготы на два бластомера сестринские хроматиды одной из Х-хромосом, отделившись друг от друга, не разошлись по 2-м полюсам, а обе отошли к одному полюсу.

Расхождение хроматид другой Х-хромосомы произошло нормально. Все последующие митотические деления клеток в ходе эмбриогенеза протекали без нарушений механизма митоза, не внося дополнительных изменений, но и не исправляя изменённые наборы хромосом.

Каким будет хромосомный набор клеток индивида, развившегося из этой зиготы? Предположите, какими могут быть фенотипические особенности этого организма?

Ответ: Набор неполовых хромосом (аутосом) в обоих бластомерах будет нормальным и представлен диплоидным числом = 44 несамоудвоенных (нереплицированных) хромосом – бывших хроматид метафазных хромосом зиготы.

В результате клетки организма, развившегося из этой зиготы, будут иметь разный набор хромосом, то есть будет иметь место мозаицизм кариотипа: 45,Х / 47,ХХХ примерно в равных пропорциях.

Фенотипически это женщины, у которых наблюдаются признаки синдрома Шерешевского-Тернера с неярким клиническим проявлением.

20. После оплодотворения образовалась зигота 46,ХY, из которой должен сформироваться мужской организм. Однако в ходе первого митотического деления (дробления) этой зиготы на два бластомера сестринские хроматиды Y-хромосомы не разделились и вся эта самоудвоенная (реплицированная) метафазная хромосома отошла к одному из полюсов дочерних клеток (бластомеров).

Расхождение хроматид Х-хромосомы произошло нормально. Все последующие митотические деления клеток в ходе эмбриогенеза протекали без нарушений механизма митоза, не внося дополнительных изменений, но и не исправляя изменённые наборы хромосом.

Каким будет хромосомный набор клеток индивида, развившегося из этой зиготы? Предположите, какой фенотип может иметь этот индивид?

Ответ: Мозаицизм кариотипа: 45,Х / 46,ХY (сокращенно – Х0/ХY) примерно в равных пропорциях. Фенотипические варианты при этом типе мозаицизма - 45,Х / 46,ХY разнообразны. Такой индивид внешне может быть как мужского, так и женского пола. Описаны случаи гермафродитизма у лиц с мозаицизмом 45,Х / 46,ХY, когда внешне организм был женского пола, но с правой стороны обнаруживалось яичко (семенник), над влагалищем – половой член и уретральное отверстие.

1) Какие функции выполняет хромосома?

2) Что представляет собой ген?

3) В кариотипе дрозофилы насчитывают 8 хромосом. Сколько хромосом находится у насекомого в половых и сколько – в неполовых клетках?


ГЕНЫ И ХРОМОСОМЫ

Клетки живых организмов содержат генетический материал в виде гигантских молекул, которые называются нуклеиновыми кислотами. С их помощью генетическая информация передаётся из поколения в поколение. Кроме того, они регулируют большинство клеточных процессов, управляя синтезом белков.

Существует два типа нуклеиновых кислот: ДНК и РНК. Они состоят из нуклеотидов, чередование которых позволяет кодировать наследственную информацию о самых различных признаках организмов разных видов. ДНК «упакована» в хромосомы. Она несёт информацию о структуре всех белков, которые функционируют в клетке. РНК управляет процессами, которые переводят генетический код ДНК, представляющий собой определённую последовательность нуклеотидов, в белки.

Ген – это участок молекулы ДНК, которая кодирует один определённый белок. Наследственные изменения генов, выражающиеся в замене, выпадении или перестановке нуклеотидов, называются генными мутациями. В результате мутаций могут возникнуть как полезные, так и вредные изменения признаков организма.

Хромосомы – нитевидные структуры, находящиеся в ядрах всех клеток. Они состоят из молекулы ДНК и белка. У каждого вида организмов своё определённое число и своя форма хромосом. Набор хромосом, характерный для конкретного вида, называют кариотипом.

Исследования кариотипов различных организмов показали, что в их клетках может содержаться двойной и одинарный наборы хромосом. Двойной набор хромосом состоит всегда из парных хромосом, одинаковых по величине, форме и характеру наследственной информации. Парные хромосомы называют гомологичными. Так, все неполовые клетки человека содержат 23 пары хромосом, т.е. 46 хромосом представлены в виде 23 пар.

В некоторых клетках может быть одинарный набор хромосом. Например, в половых клетках животных парные хромосомы отсутствуют, гомологичных хромосом нет, а есть негомологичные.

Каждая хромосома содержит тысячи генов, в ней хранится определённая часть наследственной информации. Мутации, изменяющие структуру хромосомы, называют хромосомными. Неправильное расхождение хромосом при образовании половых клеток может привести к серьёзным наследственным заболеваниям. Так, например, в результате такой геномной мутации, как появление в каждой клетке человека 47 хромосом вместо 46, возникает болезнь Дауна.