Почему линии напряженности и эквипотенциальные поверхности перпендикулярны. Эквипотенциальные поверхности и силовые линии электростатического поля

Направление силовой линии (линии напряженности) в каждой точке совпадает с направлением . Отсюда следует, что напряженность равна разности потенциалов U на единицу длины силовой линии .

Именно вдоль силовой линии происходит максимальное изменение потенциала. Поэтому всегда можно определитьмежду двумя точками, измеряя U между ними, причем тем точнее, чем ближе точки. В однородном электрическом поле силовые линии – прямые. Поэтому здесь определить наиболее просто:

Графическое изображение силовых линий и эквипотенциальных поверхностей показано на рисунке 3.4.

При перемещении по этой поверхности на dl потенциал не изменится:

Отсюда следует, что проекция вектора на dl равнанулю, то есть Следовательно, в каждой точке направлена по нормали к эквипотенциальной поверхности.

Эквипотенциальных поверхностей можно провести сколько угодно много. По густоте эквипотенциальных поверхностей можно судить о величине , это будет при условии, что разность потенциалов между двумя соседними эквипотенциальными поверхностями равна постоянной величине.

Формула выражает связь потенциала с напряженностью и позволяет по известным значениям φ найти напряженность поля в каждой точке. Можно решить и обратную задачу, т.е. по известным значениям в каждой точке поля найти разность потенциаловмежду двумя произвольными точками поля. Для этого воспользуемся тем, что работа, совершаемая силами поля над зарядом q при перемещении его из точки 1 в точку 2, может быть, вычислена как:

С другой стороны работу можно представить в виде:

, тогда

Интеграл можно брать по любой линии, соединяющие точку 1 и точку 2, ибо работа сил поля не зависит от пути. Для обхода по замкнутому контуру получим:

т.е. пришли к известной нам теореме о циркуляции вектора напряженности: циркуляция вектора напряженности электростатического поля вдоль любого замкнутого контура равна нулю.

Поле, обладающее этим свойством, называется потенциальным.

Из обращения в нуль циркуляции вектора следует, что линии электростатического поля не могут быть замкнутыми:они начинаются на положительных зарядах (истоки) и на отрицательных зарядах заканчиваются (стоки) или уходят в бесконечность (рис. 3.4).

Это соотношение верно только для электростатического поля. Впоследствии мы с вами выясним, что поле движущихся зарядов не является потенциальным, и для него это соотношение не выполняется.

Связь между напряженностью и потенциалом.

Для потенциального поля, между потенциальной (консервативной) силой и потенциальной энергией существует связь

где ("набла") - оператор Гамильтона.

Поскольку то

Знак минус показывает, что вектор Е направлен в сторону убывания потенциала.

Для графического изображения распределения потенциала используются эквипотенциальные поверхности - поверхности во всех точках которых потенциал имеет одно и то же значение.

Эквипотенциальные поверхности обычно проводят так, чтобы разности потенциалов между двумя соседними эквипотенциальными поверхностями были одинаковы. Тогда густота эквипотенциальных поверхностей наглядно характеризует напряженность поля в разных точках. Там, где эти поверхности расположены гуще, напряженность поля больше. На рисунке пунктиром изображены силовые линии, сплошными линиями - сечения эквипотенциальных поверхностей для: положительного точечного заряда (а), диполя (б), двух одноименных зарядов (в), заряженного металлического проводника сложной конфигурации (г).

Для точечного заряда потенциал поэтому эквипотенциальные поверхности - концентрические сферы. С другой стороны, линии напряженности - радиальные прямые. Следовательно, линии напряженности перпендикулярны эквипотенциальным поверхностям.

Можно показать, что во всех случаях вектор Е перпендикулярен эквипотенциальным поверхностям и всегда направлен в сторону убывания потенциала.

Примеры расчета наиболее важных симметричных электростатических полей в вакууме.

1. Электростатическое поле электрического диполя в вакууме.

Электрическим диполем (или двойным электрическим полюсом) называется система двух равных по модулю разноименных точечных зарядов (+q,-q), расстояние l между которыми значительно меньше расстояния до рассматриваемых точек поля (l<< r).

Плечо диполя l - вектор, направленный по оси диполя от отрицательного заряда к положительному и равный расстоянию между ними.

Электрический момент диполя ре - вектор, совпадающий по направлению с плечом диполя и равный произведению модуля заряда |q| на плечо I:

Пусть r - расстояние до точки А от середины оси диполя. Тогда, учитывая что

2)Напряженность поля в точке В на перпендикуляре, восстановленном к оси диполя из его середины при

Точка В равноудалена от зарядов +q и -q диполя, поэтому потенциал поля в точке В равен нулю. Вектор Ёв направлен противоположно вектору l .

3)Во внешнем электрическом поле на концы диполя действует пара сил, которая стремится повернуть диполь таким образом, чтобы электрический момент ре диполя развернулся вдоль направления поля Ё (рис.(а)).



Во внешнем однородном поле момент пары сил равен M = qElsin а или Во внешнем неоднородном поле (рис.(в)) силы, действующие на концы диполя, неодинаковы и их результирующая стремится передвинуть диполь в область поля с большей напряженностью - диполь втягивается в область более сильного поля.

2. Поле равномерно заряженной бесконечной плоскости.

Бесконечная плоскость заряжена с постоянной поверхностной плотностью Линии напряженности перпендикулярны рассматриваемой плоскости и направлены от нее в обе стороны.

В качестве Гауссовой поверхности примем поверхность цилиндра, образующие которого перпендикулярны заряженной плоскости, а основания параллельны заряженной плоскости и лежат по разные стороны от нее на одинаковых расстояниях.

Так как образующие цилиндра параллельны линиям напряженности, то поток вектора напряженности через боковую поверхность цилиндра равен нулю, а полный поток сквозь цилиндр равен сумме потоков сквозь его основания 2ES. Заряд, заключенный внутри цилиндра, равен . По теореме Гаусса откуда:

Е не зависит от длины цилиндра, т.е. напряженность поля на любых расстояниях одинакова по модулю. Такое поле называется однородным.

Разность потенциалов между точками, лежащими на расстояниях х1 и х2 от плоскости, равна

3.Поле двух бесконечных параллельных разноименно заряженных плоскостей с равными по абсолютному значению поверхностными плотностями зарядов σ>0 и - σ.

Из предыдущего примера следует, что векторы напряженности Е 1 и E 2 первой и второй плоскостей равны по модулю и всюду направлены перпендикулярно плоскостям. Поэтому в пространстве вне плоскостей они компенсируют друг друга, а в пространстве между плоскостями суммарная напряженность . Поэтому между плоскостями

(в диэлектрике. ).

Поле между плоскостями однородное. Разность потенциалов между плоскостями.
(в диэлектрике ).

4.Поле равномерно заряженной сферической поверхности.

Сферическая поверхность радиуса R с общим зарядом q заряжена равномерно с поверхностной плотностью

Поскольку система зарядов и, следовательно, само поле центрально-симметрично относительно центра сферы, то линии напряженности направлены радиально.

В качестве Гауссовой поверхности выберем сферу радиуса r, имеющую общий центр с заряженной сферой. Если r>R, то внутрь поверхности попадает весь заряд q. По теореме Гаусса , откуда

При r<=R замкнутая поверхность не содержит внутри зарядов, поэтому внутри равномерно заряженной сферы Е = 0.

Разность потенциалов между двумя точками, лежащими на расстояниях r 1 и r 2 от центра сферы

(r1 >R,r2 >R), равна

Вне заряженной сферы поле такое же, как поле точечного заряда q, находящегося в центре сферы. Внутри заряженной сферы поля нет, поэтому потенциал всюду одинаков и такой же, как на поверхности

Графическое изображение полей, можно составить не только с линиями напряженности, но и с помощью разности потенциалов. Если объединить в электрическом поле точки с равными потенциалами, то мы получим поверхности равного потенциала или как еще их называют эквипотенциальные поверхности. В пересечении с плоскостью чертежа эквипотенциальные поверхности дают эквипотенциальные линии. Изображая эквипотенциальные линии, которые соответствуют различным значениям потенциала, мы получаем наглядную картину, которая отражает, как изменяется потенциал конкретного поля. Перемещение вдоль эквипотенциальной поверхности заряда работы не требует, так как все точки поля по такой поверхности имеют равный потенциал и сила, которая действует на заряд, всегда перпендикулярна перемещению.

Следовательно, линии напряженности всегда перпендикулярны поверхностям с равными потенциалами.

Наиболее наглядная картина поля будет представлена, если изображать эквипотенциальные линии с равными изменениями потенциала, например в 10 В, 20В, 30 В и т.д. В таком случае скорость изменения потенциала будет обратно пропорциональна расстоянию между соседними эквипотенциальными линиями. То есть густота эквипотенциальных линий пропорциональна напряженности поля (чем выше напряженность поля, тем теснее изображаются линии). Зная эквипотенциальные линии, можно построить линии напряженности рассматриваемого поля и наоборот.

Следовательно, изображения полей с помощью эквипотенциальных линий и линий напряженности равнозначны.

Нумерация эквипотенциальных линий на чертеже

Довольно часто эквипотенциальные линии на чертеже нумеруют. Для того, чтобы указать разность потенциалов на чертеже, произвольную линию обозначают цифрой 0, возле всех остальных линий расставляют цифры 1,2,3 и т.д. Эти цифры указывают разность потенциалов в вольтах избранной эквипотенциальной линии и линии, которую выбрали нулевой. При этом отмечаем, что выбор нулевой линии не важен, так как физический смысл имеет только разность потенциалов для двух поверхностей, и она не зависит от выбора нуля.

Поле точечного заряда с положительным зарядом

Рассмотрим как пример поле точечного заряда, который имеет положительный заряд. Линиями поля точечного заряда являются радиальные прямые, следовательно, эквипотенциальные поверхности - это система концентрических сфер. Линии поля перпендикуляры поверхностям сфер в каждой точке поля. Эквипотенциальными линиями же служат концентрические окружности. Для положительного заряда рисунок 1 представляет эквипотенциальные линии. Для отрицательного заряда рисунок 2 представляет эквипотенциальные линии.

Что очевидно из формулы, которая определяет потенциал поля точечного заряда при нормировке потенциала на бесконечность ($\varphi \left(\infty \right)=0$):

\[\varphi =\frac{1}{4\pi \varepsilon {\varepsilon }_0}\frac{q}{r}\left(1\right).\]

Система параллельных плоскостей, которые находятся на равных расстояниях друг от друга, является эквипотенциальными поверхностями однородного электрического поля.

Пример 1

Задание: Потенциал поля, создаваемый системой зарядов, имеет вид:

\[\varphi =a\left(x^2+y^2\right)+bz^2,\]

где $a,b$ -- постоянные больше нуля. Какова форма имеют эквипотенциальных поверхностей?

Эквипотенциальные поверхности, как мы знаем, -- это поверхности, в которых в любых точках потенциалы равны. Зная вышесказанное, изучим уравнение, которое предложено в условиях задачи. Разделим правую и левую части уравнения $=a\left(x^2+y^2\right)+bz^2,$ на $\varphi $, получим:

\[{\frac{a}{\varphi }x}^2+{\frac{a}{\varphi }y}^2+\frac{b}{\varphi }z^2=1\ \left(1.1\right).\]

Запишем уравнение (1.1) в каноническом виде:

\[\frac{x^2}{{\left(\sqrt{\frac{\varphi }{a}}\right)}^2}+\frac{y^2}{{\left(\sqrt{\frac{\varphi }{a}}\right)}^2}+\frac{z^2}{{\left(\sqrt{\frac{\varphi }{b}}\right)}^2}=1\ (1.2)\]

Из уравнения $(1.2)\ $ видно, что заданной фигурой является эллипсоид вращения. Его полуоси

\[\sqrt{\frac{\varphi }{a}},\ \sqrt{\frac{\varphi}{a}},\ \sqrt{\frac{\varphi}{b}}.\]

Ответ: Эквипотенциальная поверхность заданного поля -- эллипсоид вращения с полуосями ($\sqrt{\frac{\varphi }{a}},\ \sqrt{\frac{\varphi }{a}},\ \sqrt{\frac{\varphi }{b}}$).

Пример 2

Задание: Потенциал поля, имеет вид:

\[\varphi =a\left(x^2+y^2\right)-bz^2,\]

где $a,b$ -- $const$ больше нуля. Что представляют собой эквипотенциальные поверхности?

Рассмотрим случай при $\varphi >0$. Приведем уравнение, заданное в условиях задачи к каноническому виду, для этого разделим обе части уравнения на $\varphi ,$ получим:

\[\frac{a}{\varphi }x^2+{\frac{a}{\varphi }y}^2-\frac{b}{\varphi }z^2=1\ \left(2.1\right).\]

\[\frac{x^2}{\frac{\varphi }{a}}+\frac{y^2}{\frac{\varphi }{a}}-\frac{z^2}{\frac{\varphi }{b}}=1\ \left(2.2\right).\]

В (2.2) мы получили каноническое уравнение однополостного гиперболоида. Его полуоси равны ($\sqrt{\frac{\varphi }{a}}\left(действительная\ полуось\right),\ \sqrt{\frac{\varphi }{a}}\left(действительная\ полуось\right),\ \sqrt{\frac{\varphi }{b}}(мнимая\ полуось)$).

Рассмотрим случай, когда $\varphi

Представим $\varphi =-\left|\varphi \right|$ Приведем уравнение, заданное в условиях задачи к каноническому виду, для этого разделим обе части уравнения на минус модуль $\varphi ,$ получим:

\[-\frac{a}{\left|\varphi \right|}x^2-{\frac{a}{\left|\varphi \right|}y}^2+\frac{b}{\left|\varphi \right|}z^2=1\ \left(2.3\right).\]

Перепишем уравнение (1.1) в виде:

\[-\frac{x^2}{\frac{\left|\varphi \right|}{a}}-\frac{y^2}{\frac{\left|\varphi \right|}{a}}+\frac{z^2}{\frac{\left|\varphi \right|}{b}}=1\ \left(2.4\right).\]

Мы получили каноническое уравнение двуполостного гиперболоида, его полуоси:

($\sqrt{\frac{\left|\varphi \right|}{a}}\left(мнимая\ полуось\right),\ \sqrt{\frac{\left|\varphi \right|}{a}}\left(мнимая\ полуось\right),\ \sqrt{\frac{\left|\varphi \right|}{b}}(\ действительная\ полуось)$).

Рассмотрим случай, когда $\varphi =0.$ Тогда уравнение поля имеет вид:

Перепишем уравнение (2.5) в виде:

\[\frac{x^2}{{\left(\frac{1}{\sqrt{a}}\right)}^2}+\frac{y^2}{{\left(\frac{1}{\sqrt{a}}\right)}^2}-\frac{z^2}{{\left(\frac{1}{\sqrt{b}}\right)}^2}=0\left(2.6\right).\]

Мы получили каноническое уравнение прямого круглого конуса, который опирается на эллипс с полуосями $(\frac{\sqrt{b}}{\sqrt{a}}$;$\ \frac{\sqrt{b}}{\sqrt{a}}$).

Ответ: В качестве эквипотенциальных поверхностей для заданного уравнения потенциала мы получили: при $\varphi >0$ -- однополостной гиперболоид, при $\varphi

Электростатическое поле можно охарактеризовать совокупностью силовых и эквипотенциальных линий.

Силовая линия – это мысленно проведенная в поле линия, начинающаяся на положительно заряженном теле и заканчивающаяся на отрицательно заряженном теле, проведенная таким образом, что касательная к ней в любой точке поля дает направление напряженности в этой точке.

Силовые линии замыкаются на положительных и отрицательных зарядах и не могут замыкаться сами на себя.

Под эквипотенциальной поверхностью понимают совокупность точек поля, имеющих один и тот же потенциал ().

Если рассечь электростатическое поле секущей плоскостью, то в сечении будут видны следы пересечения плоскости с эквипотенциальными поверхностями. Эти следы называют эквипотенциальными линиями.

Эквипотенциальные линии являются замкнутыми сами на себя.

Силовые линии и эквипотенциальные линии пересекаются под прямым углом.

Р
ассмотрим эквипотенциальную поверхность:

(так как точки лежат на эквипотенциальной поверхности).

– скалярное произведение

Линии напряженности электростатического поля пронизывают эквипотенциальную поверхность под углом 90 0 , тогда угол между векторами
равен 90 градусам, а их скалярное произведение равно 0.

Уравнение эквипотенциальной линии

Рассмотрим силовую линию:

Н
апряженность электростатического поля направлена по касательной к силовой линии (см. определение силовой линии), также направлен и элемент пути, поэтому угол между этими двумя векторами равен нулю.

или

Уравнение силовой линии

Градиент потенциала

Градиент потенциала – это скорость возрастания потенциала в направлении кротчайшем между двумя точками.

Между двумя точками имеется некоторая разность потенциалов. Если эту разность разделить на кратчайшее расстояние между взятыми точками, то полученное значение будет характеризовать скорость изменения потенциала в направлении кратчайшего расстояния между точками.

Градиент потенциала показывает направление наибольшего возрастания потенциала, численно равен модулю напряженности и отрицательно направлен по отношению к нему.

В определении градиента существенны два положения:

    Направление, в котором берутся две близлежащие точки, должно быть таким, чтобы скорость изменения была максимальной.

    Направление таково, что скалярная функция в этом направлении возрастает.

Для декартовой системы координат:

Скорость изменения потенциала в направлении оси Х, Y, Z:

;
;

Два вектора равны только тогда, когда равны друг другу их проекции. Проекция вектора напряженности на ось Х равна проекции скорости изменения потенциала вдоль оси Х , взятой с обратным знаком. Аналогично для осей Y и Z .

;
;
.

В цилиндрической системе координат выражение градиента потенциала будет иметь следующий вид.

Найдем взаимосвязь между напряженностью электростатического поля, являющейся его силовой характеристикой, и потенциалом - энергетической характеристикой поля. Работа по перемещению единичного точечного положительного заряда из одной точки поля в другую вдоль оси х при условии, что точки расположены бесконечно близко друг к другу и x 1 – x 2 = dx, равна E x dx. Та же работа равна j 1 -j 2 = dj. Приравняв оба выражения, можем записать

где символ частной производной подчеркивает, что дифференцирование производится только по х. Повторив аналогичные рассуждения для осей y и z, можем найти вектор Е:

где i, j, k - единичные векторы координатных осей х, у, z.

Из определения градиента (12.4) и (12.6). следует, что

т. е. напряженность Е поля равна градиенту потенциала со знаком минус. Знак минус определяется тем, что вектор напряженности Е поля направлен в сторону убывания потенциала.

Для графического изображения распределения потенциала электростатического поля, как и в случае поля тяготения (см. § 25), пользуются эквипотенциальными поверхностями - поверхностями, во всех точках которых потенциал jимеет одно и то же значение.

Если поле создается точечным зарядом, то его потенциал, согласно (84.5),

Таким образом, эквипотенциальные поверхности в данном случае - концентрические сферы. С другой стороны, линии напряженности в случае точечного заряда - радиальные прямые. Следовательно, линии напряженности в случае точечного заряда перпендикулярны эквипотенциальным поверхностям.

Линии напряженности всегда нормальны к эквипотенциальным поверхностям. Действительно, все точки эквипотенциальной поверхности имеют одинаковый потенциал, поэтому работа по перемещению заряда вдоль этой поверхности равна нулю, т. е. электростатические силы, действующие на заряд, всегда направлены по нормалям к эквипотенциальным поверхностям. Следовательно, вектор Е всегда нормален к эквипотенциальным поверхностям, а поэтому линии вектора Е ортогональны этим поверхностям.

Эквипотенциальных поверхностей вокруг каждого заряда и каждой системы зарядов можно провести бесчисленное множество. Однако их обычно проводят так, чтобы разности потенциалов между любыми двумя соседними эквипотенциальными поверхностями были одинаковы. Тогда густота эквипотенциальных поверхностей наглядно характеризует напряженность поля в разных точках. Там, где эти поверхности рас положены гуще, напряженность поля больше.

Итак, зная расположение линий напряженности электростатического поля, можно построить эквипотенциальные поверхности и, наоборот, по известному расположению эквипотенциальных поверхностей можно определить в каждой точке поля модуль и направление напряженности поля. На рис. 133 для примера показан вид линий напряженности (штриховые линии) и эквипотенциальных поверхностей (сплошные линии) полей положительного точечного заряда (а) и заряженного металлического цилиндра, имеющего на одном конце выступ, а на другом - впадину (б).