Содержание газов в альвеолярном воздухе. Альвеолярные газы

Среди компонентов типичных иммунных систем различают клетки, ткани и органы. Исполнители иммунологических реакций - лимфоидные клетки, которые находятся во всех тканях организма и в циркулирующей крови. Однако образование клеток иммунной системы сосредоточено в основном в лимфоидных органах. Органы и ткани иммунной системы подразделяют на первичные, или центральные, и вторичные, или периферические. К первичным органам иммунной системы млекопитающих относят костный мозг и тимус, у птиц - тимус и фабрициеву сумку. Первичными или центральными они называются потому, что в них образуются клетки иммунной системы, которые в дальнейшем заселяют вторичные или периферические органы иммунной системы.

К вторичным лимфоидным органам относятся лимфатические узлы, селезенка и система лимфоэпителиальных образований, объединяющая диффузные или плотные скопления лимфоидной ткани в слизистых оболочках пищеварительных, дыхательных и мочеполовых органов.

К лимфоидным органам , ответственным за иммунитет, относятся костный мозг, тимус, селезенка, лимфатические узлы и организованная лимфоидная ткань желудочно-кишечного тракта, к которой относятся миндалины, пеиеровы бляшки, отдельные фолликулы, аппендикс, а у птиц, кроме того, - фабрициева сумка. В настоящее время у млекопитающих не выявлено органов, подобных фабрициевой сумке (bursa) у птиц, ответственных за созревание тимуснезависимых лимфоцитов. Предшественники В-лимфоцитов у человека и, вероятно, млекопитающих образуются из стволовой клетки в костном мозге.

В первичных лимфоидных органах происходит образование и созревание клеток иммунной системы, во вторичных - эти клетки реализуют иммунный ответ на чужеродные антигены.

Лимфоидная ткань в тимусе, селезенке и лимфатических узлах окружена соединительно-тканной капсулой и морфологически автономна (органы лимфоидной системы). Лимфоидная ткань слизистых и кожи не инкапсулирована и представлена отдельными фолликулами (пеиеровы бляшки), единичными лимфоцитами собственной пластинки (lamina propria) и подслизистого слоя, а также внутриэпителиальными лимфоцитами. Главными клетками иммунной системы являются Т- и В-лимфоциты.
Общая масса лимфоидных клеток взрослого человека, функционирующих как единое целое, достигает 1,5-2,0 кг.

Лимфоциты активно мигрируют между лимфоидными органами и нелимфоидными тканями и готовы к встрече с чужеродным антигеном. Считается, что антиген является лишь фактором отбора определенного предсуществующего клона лимфоцитов, а не выступает в качестве участника формирования специфичности.

Тимус и фабрициева сумка необходимы для обеспечения иммунологической реактивности, но сами они, вероятно, не участвуют в гуморальном или клеточном иммунном ответе организма. Особое положение в иммунной системе принадлежит костному мозгу. Он является источником самоподдерживающейся малодифференцированной популяции мультипотентных стволовых клеток лимфои миелопоэза, из которых в дальнейшем развиваются В- и Т-лимфоциты, макрофаги, моноциты и другие клетки. Лимфоциты, образовавшиеся из стволовых клеток, заселяют тимус и фабрициеву сумку, где они превращаются соответственно в Т- и В-лимфоциты. Кроме того, костный мозг играет важную роль в образовании антител . У человека и млекопитающих в процессе дальнейшего созревания в костном мозгу предшественники В-лимфоцитов превращаются в В-лимфоциты.

В результате каскадного антигеннезависимого процесса пролиферации и дифференциации клеток (лимфонеогенеза) лимфоциты приобретают распознающие структуры - рецепторы для антигенов. На основании специфичности рецепторов лимфоциты объединяются в клоны. Общее количество клонов, представляющих собой потомство одной клетки, достигает 10, численность каждого клона составляет ~105 клеток.

Большинство органов иммунной системы в эмбриогенезе образуется из энтодермы (тимус, фабрициева сумка) или мезодермы (селезенка), и ни один - из эктодермы . Стволовые клетки (предшественники лимфоцитов) покидают костный мозг и заселяют первичные лимфоидные органы, в которых происходит дифференциация и пролиферация лимфоцитов, а иммунный ответ на антигены реализуется во вторичных лимфоидных органах. Клетки, покинувшие тимус или фабрициеву сумку, полностью иммунокомпетентные.

Независимо от происхождения , эпителий является первой линией защиты организма и, если она преодолена возбудителем, в борьбу вступают лимфоциты. Они имеются в коже, в подэпителиальных слоях внутренних органов, особенно вокруг отверстий пищеварительного и дыхательного трактов, где находятся мощные скопления клеток иммунной системы. Кроме того, такими же уязвимыми для патогенов, как и наружные покровы, являются участки дыхательной и пищеварительной систем.

Не исключено, что именно лимфоциты , тесно связанные с эпителием, особенно у позвоночных, получают сигналы и действуют в других местах согласно полученным «инструкциям». Представление о такой тесной связи между эпителием и лимфоидными структурами - весьма важное для понимания развития иммунитета. В нормальных условиях лимфоциты рециркулируют по системе лимфатических и кровеносных сосудов. Однако после антигенной стимуляции антигенреактивные лимфоциты задерживаются во вторичных лимфоидных органах, где происходит их пролиферация.

Способность В- и Т-лимфоцитов перемещаться в определенных В- и Т-зависимых зонах лимфоидных органов носит название «Хоминг». Лимфоциты, синтезирующие IgA, содержатся в основном в лимфоидной ткани слизистых оболочек и превращаются в плазмоциты вблизи Lamina propria. В Lamina propria соотношение клеток - продуцентов IgA и IgG равно 20:1, тогда как в селезенке и периферических лимфоузлах 1:3.

Постоянный обмен между клетками различных лимфоидных органов обеспечивает функционирование лимфоидной ткани как единого целого, обусловливает генерализацию иммунного ответа организма. Феномен рециркуляции лимфоцитов имеет важное значение в процессах резорбции антигенов в кишечнике и обеспечении локальных факторов защиты.

Следует отметить, что функционирование лимфоцитов невозможно без участия клеток нелимфоидной природы. Они представляют антиген лимфоцитам, обеспечивают микроокружение в органах, необходимое для созревания и дифференциации лимфоцитов.

ОБЩАЯ КЛИНИЧЕСКАЯ ИММУНОЛОГИЯ ГЛАВА 1. СТРОЕНИЕ И ФУНКЦИЯ ИММУННОЙ СИСТЕМЫ

ОБЩАЯ КЛИНИЧЕСКАЯ ИММУНОЛОГИЯ ГЛАВА 1. СТРОЕНИЕ И ФУНКЦИЯ ИММУННОЙ СИСТЕМЫ

1.1. Строение иммунной системы

Иммунная система представляет собой совокупность лимфоидных органов общей массой 1-2,5 кг, не имеющую анатомической связи и вместе с тем работающую весьма согласованно за счет подвижных клеток, медиаторов, а также других факторов. Система слагается из центральных и периферических органов. К центральным относят тимус (вилочковую железу) и костный мозг. В этих органах начинается лимфопоэз: созревание зрелых лимфоцитов из стволовой кроветворной клетки.

Периферические органы включают селезенку, лимфатические узлы и различную неинкапсулированную лимфоидную ткань, расположенную в многочисленных органах и тканях организма Наиболее известными структурами являются миндалины и пейеровы бляшки.

Тимус - лимфоэпителиальный орган, размер которого меняется с возрастом человека. Достигает максимума развития к 10-12 годам, а затем подвергается регрессивным изменениям до старости. В нем происходит развитие Т-лимфоцитов, которые поступают из костного мозга в виде пре-Т-лимфоцитов, происходит их дальнейшее созревание до тимоцитов и уничтожение тех вариантов, которые высокоавидны к антигенам собственных клеток. Эпителиальные клетки тимуса вырабатывают цитокины, способствующие развитию Т-клеток. Тимус тонко реагирует на различные физиологические и патологические состояния. При беременности он временно уменьшается в 2-3 раза. Благодаря продукции многих цитокинов, участвует в регуляции и дифференцировке соматических клеток у плода. Отношение Т-лимфоцитов к остальным клеткам у эмбриона составляет 1:30, а у взрослых 1:1000. Важной особенностью тимуса является постоянно высокий уровень митозов, не зависящий от антигенного раздражения.

Кроветворный костный мозг - место рождения всех клеток иммунной системы и созревания В-лимфоцитов, поэтому у человека рассматривается также как центральный орган гуморального иммунитета. Красный костный мозг к 18-20 годам локализуется только в плоских костях и эпифизах длинных трубчатых костей.

Лимфатические узлы располагаются по ходу лимфатических сосудов. Содержат тимусзависимые (паракортикальные) и тимуснезависимые (герминативные) центры. При воздействии антигенов В-клетки в корковом слое образуют вторичные фолликулы. Строма фолликулов содержит фолликулярные дендритные клетки, создающие окружение для процесса образования антител. Здесь происходят процессы взаимодействия лимфоцитов с антигенпрезентирующими клетками, пролиферация и иммуногенез лимфоцитов.

Селезенка является самым крупным лимфоидным органом, состоящим из белой пульпы, содержащей лимфоциты, и красной пульпы, содержащей капиллярные петли, эритроциты и макрофаги. Помимо функций иммуногенеза, она очищает кровь от чужеродных антигенов и поврежденных клеток организма. Способна депонировать кровь, включая тромбоциты.

Кровь также относится к периферическим лимфоидным органам. В ней циркулируют различные популяции и субпопуляции лимфоцитов, а также моноциты, нейтрофилы и другие клетки. Общее количество циркулирующих лимфоцитов составляет 10 10 .

Небные миндалины представляют парный лимфоидный орган, расположенный в преддверии глотки, позади глоточно-щечного сужения и впереди глоточно-носового сужения. Положение этого органа, вынесенного на периферию и располагающегося на границе дыхательного и пищеварительного трактов, придает ему особую роль информационного центра об антигенах, поступающих во внутреннюю среду организма с пищей, водой, воздухом. Этому способствует огромная суммарная площадь всех крипт, равная 300 см 2 , и возможность ткани тонзилл обусловливать рецепцию антигенов. Диффузная (межузелковая) ткань небных миндалин является тимусзависимой зоной, а центры размножения лимфоидных узелков, по-видимому, составляют В-зону. Миндалины находятся в функциональной связи с тимусом, их удаление способствует более ранней инволюции вилочковой железы. В этом органе синтезируется SIgA, M, G и интерферон. Они обусловливают неспецифическую антиинфекционную резистентность.

Пейеробляшки. Аппендикулярный отросток гистоморфологически состоит из купола с короной, фолликулов, расположенных под куполом, тимусзависимой зоной и связанной с ней слизистой оболочкой в форме грибовидных выступов. Эпителий купола отличается наличием М-клеток, имеющих многочисленные микроскладки и специализирующихся на транспортировке антигенов. К ним примыкают Т-клетки фолликулов, которые также определяются в межфолликулярной зоне. Большая часть лимфоцитов представлена В-клетками фолликулов, основная функция которых заключается в продукции секреторных иммуноглобулинов классов А и Е.

1.2. Клеточные и гуморальные факторы иммунныех реакций

Главными клетками иммунной системы являются лимфоциты. В костном мозгу образуются их родоначальники - стволовые клетки. В эмбриональной печени и костном мозге развиваются предшественники Т-лимфоцитов, которые проходят обязательную стадию созревания в тимусе, после чего попадают в кровоток в виде зрелых Т-лимфоцитов. В циркуляцию из тимуса выходит лишь 0,9-8% клеток, остальные гибнут в вилочковой железе или сразу после выхода из нее. Т-клетки составляют большинство всех лимфоидных клеток - до 70%, являются долгоживущими, постоянно циркулируют, проходя десятки раз через периферические органы иммунной системы. В кровотоке и лимфатической системе они подвергаются дальнейшей дифференцировке. Этот пул периферических лимфоцитов может дифференцироваться в наивные Т-лимфоциты и клетки-памяти. Т-лимфоциты памяти - долгоживущие потомки Т-клеток являются носителями рецепторов к антигенам, полученным от Т-лимфоцитов, ранее ими сенсибилизированных. Наивные лимфоциты циркулируют до контакта с антигеном и расселяются в тимусзависимых зонах лимфоидных органов и барьерных тканях.

Т-лимфоциты ответственны за клеточный иммунитет, а также за противоопухолевую цитотоксичность, являются помощниками в продукции В-клетками иммуноглобулинов. Т-клетки по экспрессии маркерных антигенов CD подразделяются на ряд субпопуляций, выполняющих строго специфические функции.

CD4 или Т-хелперы (помощники), относятся к регуляторным клеткам и подразделяются на Тх1, Тх2 и Тх3.

Клетки Тх1 - при взаимодействии с антигенпрезентирующими клетками распознают антиген, после взаимодействия с цитотоксичес-

кими Т-лимфоцитами обусловливают клеточный иммунный ответ. Тх1 клетки секретируют ИЛ-2, γ-интерферон, фактор некроза опухоли и ГМ-КСМ. Они усиливают воспалительный процесс по типу ГЗТ через активацию макрофагов, что обеспечивает уничтожение внутриклеточных патогенов.

Клетки Тх3 -лимфоциты, регулирующие иммунный ответ посредством цитокина - трансформирующего фактора роста - ТФР-β. ТФР-β - противовоспалительный цитокин, опосредущий иммуносупрессорную активность регуляторных лимфоцитов, играет существенную роль в подавлении противоопухолевого иммунитета и ограничении иммунного ответа при аутоиммунных заболеваниях. Вместе с тем эти клетки не имеют четких специфических маркеров и могут быть выявлены только по функциональной активности.

Фенотипические особенности другой субпопуляции регуляторных клеток - Т-клеток с фенотипом Foxp3CD4CD25 изучены достаточно подробно. Являются естественными регуляторными клетками, выделяют цитокины ИЛ-10, ТФР-β, которые оказывают ингибирующее действие на эффекторные Т-клетки.

Другая важная субпопуляция Т-клеток - Тх17-клетки, характеризующиеся способностью выделять ИЛ-17 - нейтрофил-мобилизующий цитокин в ответ на стимуляцию ИЛ-23, синтезируемым антигенпрезентирующими клетками. Ранняя фаза дифференцировки Тх17-клеток связана с воздействием на наивные CD4 лимфоциты ТФР-β и ИЛ-6. Тх-17 - субпопуляция лимфоцитов играет уникальную роль в интеграции врожденного и адаптивного иммунитета.

Цитотоксические Т-лимфоциты (ЦТЛ) имеют антигенраспознающий рецептор и корецептор CD8 и способны после распознавания антиген-пептида дифференцироваться в клоны цитоксических Т- лимфоцитов, способных к уничтожению клеток-мишеней.

Предшественники В-лимфоцитов дифференцируются в красном костном мозге и после негативной и позитивной селекции покида-

ют костный мозг, рециркулируют по периферическим лимфоидным органам, заселяя В-зависимые зоны в периферических лимфоидных органах. Количество и продолжительность жизни у них существенно меньше, чем у Т-клеток, кроме В-лимфоцитовпамяти. CD27-В-лим- фоциты памяти - это долгоживущие клетки, которые несут на своей мембране IgG и IgA и после стимуляции антигеном мигрируют в костный мозг, где превращаются в плазматические клетки.

В-лимфоциты являются прямыми предшественниками антителообразующих клеток. В норме они продуцируют антитела в небольших количествах. Специфичность их настолько многообразна, что они могут связываться практически с любым чужеродным белком, даже синтетическим, не встречающимся в природе.

Под влиянием специфического антигена В-лимфоциты дифференцируются в плазмобласты, юные и зрелые плазмоциты. Антитела выходят на поверхность лимфоидной клетки и постепенно сползают с нее в кровь. В процессе синтеза может произойти смена классов продуцируемых антител, однако с сохранением их специфичности. Плазмоциты продуцируют специфические АТ со скоростью 50 000 молекул в час.

Известны пять основных классов иммунных глобулинов: IgM, IgG, IgA, IgD, IgE, имеющих следующие характеристики.

IgM являются тяжелыми иммуноглобулинами. Различают 2 субкласса этих белков IgM1 и IgM2 - низкоактивные, которые появляются первыми после антигенного раздражения. Период их полураспада у человека составляет 5 дней. Имеют 10 валентностей, составляя 10% всех классов иммунных глобулинов.

IgG - высокоактивные, синтезируются позднее IgM. В основном образуются при повторной иммунизации. Имеют 4 субкласса - IgG1,G2,G3,G4, двувалентны. Период полураспада достигает 23 дней. Составляют примерно 75% всех иммунных глобулинов.

Также высокоактивны. Известны 2 субкласса - IgA1 и IgA2. Образуются при антигенном раздражении. Составляют от 15 до 30% всех иммуноглобулинов. Имеют период полураспада около 6 суток.

Различают 3 типа IgA: 1 - сывороточный мономерный IgA, составляющий до 80% всех IgA сыворотки, 2 - сывороточный димерный IgА, 3 - секреторный SIgA.

SIgA - высокоактивны. Представляют собой димер из двух мономеров, соединенных секреторным компонентом, образуемым эпителиальными клетками, с помощью которого он может прикреп-

ляться к слизистой оболочке. Эти иммуноглобулины находятся в слюне, пищеварительных соках, секретах бронхов, женском молоке. Они относительно независимы от сывороточной системы, подавляют прикрепление микробов к слизистым оболочкам, обладают мощной противовирусной активностью.

IgD - функция их изучена недостаточно. Встречаются у больных с множественной миеломой и хроническим воспалением. Имеют период полураспада 3 дня. Общее их содержание не превышает 1%. Повидимому, играют важную роль как Ig-рецептор в дифференцировке В-лимфоцитов.

IgE выполняют функцию реагинов. Обусловливают аллергические реакции немедленного типа. Период полураспада 2,5 дня.

Принято считать, что наиболее активно связываются антигенами иммуноглобулины класса G. Однако авидность белков зависит не только от класса, но и характера антигена. Так, IgM более авидны при связывании с крупными антигенами (эритроцитами, фагами, вирусами), а IgG успешнее связываются с более простыми белковыми антигенами.

В 1973 г. были открыты так называемые нулевые клетки, не имеющие маркеров, Т-, В-лимфоцитов. Их популяция является весьма разнородной, она включает естественные киллеры (NK-клетки), составляющие до 10% всех лимфоцитов крови. Типичным маркером клеток-киллеров является низкоаффинный рецептор Fc-фрагмента IgG (CD16) и молекула адгезии СD56. Эти клетки играют важную роль в механизмах врожденного иммунитета, уничтожая злокачественные клетки, инфицированные вирусами, и чужеродные клетки.

Часть нулевых клеток является антителозависимой популяцией с киллерными функциями и свойствами естественных или нормальных (натуральных) киллеров. Антителозависимые киллеры (К- клетки) встречаются в периферической крови человека в количестве 1,5-2,5%. Предназначены для уничтожения злокачественных клеток, трансплантатов с помощью антител класса G, выполняющих роль связующего элемента между мишенью и киллером, а также имеют некоторые другие качества.

1.3. Иммунологические феномены

Основной функцией системы является индукция иммунитета - способа защиты организма от живых тел и веществ, несущих на себе признаки чужеродной информации (Р.В. Петров). Эта функция реа-

лизуется в два этапа: на первом происходит распознавание, на втором - деструкция чужеродных тканей и их выведение.

Помимо указанных субпопуляций, цитотоксической способностью наделены и другие клетки - NK-Т-клетки, несущие на своей поверхности маркеры двух субпопуляций. Они находятся в печени, барьерных органах и элиминируют возбудителей туберкулеза и оппортунистических инфекций. Описаны цитотоксические эффекты и для нелимфоидных элементов: моноцитов, макрофагов, нейтрофилов, эозинофилов, имеющих на своей поверхности рецепторы к Fc-фрагменту. Блокада этих рецепторов иммунными комплексами приводит к утрате цитотоксичности.

Фактически иммунная система обусловливает защиту от инфекционных агентов, элиминирует чужеродные, злокачественные ауто-, модифицированные, стареющие клетки, обеспечивает процесс оплодотворения, освобождение от рудиментарных органов, способствует началу родового акта, реализует программу старения.

Для этого развертывается ряд иммунных феноменов и реакций.

Сущность видового (наследственного) иммунитета обусловлена биологическими особенностями данного вида животных и человека. Он неспецифичен, устойчив, передается по наследству. Зависит от температурного режима, наличия или отсутствия рецепторов для микроорганизмов и их токсинов, метаболитов, необходимых для роста и жизнедеятельности.

Местный иммунитет обеспечивает защиту покровов организма, непосредственно сообщающихся с внешней средой: мочеполовых органов, бронхолегочной системы, желудочно-кишечного тракта. Местный иммунитет является элементом общего. Он обусловлен нормальной микрофлорой, лизоцимом, комплементом, макрофагами, секреторными иммунными глобулинами и другими факторами врожденного иммунитета.

Иммунитет слизистых оболочек представляет один из наиболее изученных компонентов местного иммунитета. Он обусловлен антибактериальными неспецифическими защитными факторами, входящими в слизь (лизоцим, лактоферрин, дефенсины, миелопероксидаза, низкомолекулярные катионные белки, компоненты комплемента и др.); иммуноглобулинами классов А, М, G, продуцируемыми местными мелкими железами, расположенными в подслизистой оболочке; мукоцилиарным клиренсом, связанным с работой ресничек эпителиоцитов; нейтрофилами и макрофагами, мигрирующими из

кровеносного русла, продуцирующими активные формы кислорода и оксида азота; цитотоксическими CD8+ и хелперными CD4+ Т-лимфоцитами, естественными киллерами, расположенными в подслизистой.

Врожденный иммунитет представлен генетически закрепленными механизмами резистентности. Он обусловливает первичную воспалительную реакцию организма на антиген, к его компонентам относят как механические и физиологические факторы, так и клеточные и гуморальные факторы защиты. Он является основой для развития специфических иммунных механизмов.

Приобретенный иммунитет является ненаследственным, специфичным, образуется в процессе жизни индивида. Известны следующие формы приобретенного иммунитета:

естественный активный появляется после перенесенной инфекции, продолжается месяцы, годы или всю жизнь; естественный пассивный возникает вслед за получением материнских антител через плаценту, с молозивом, исчезает после периода лактации, беременности; искусственный активный формируется под влиянием вакцин на многие месяцы или несколько лет; искусственный пассивный обусловливается инъекцией готовых антител. Его продолжительность определяется периодом полураспада введенных γ-глобулинов.

Противовирусный иммунитет обусловлен неспецифическими и специфическими механизмами.

Неспецифические:

мукозальный иммунитет (защитная функция кожи и слизистых оболочек), включая цитокины; система интерферона (α-,β-, γ-); система естественных киллеров, обусловливающих элиминацию патогена без участия антител; базовая воспалительная реакция, обеспечивающая локализацию проникшего в организм патогенна; макрофаги; цитокины.

Специфические:

Т-зависимые эффекторные механизмы защиты, носители маркера CD8+; антителозависимые киллерные клетки; цитотоксические антитела классов IgG и А (секретины).

Механизмы иммунитета, обусловленные антителами

Гуморальные антитела при участии компонентов комплемента реализуют бактерицидный эффект, способствуют фагоцитозу (опсонизации). Активны против внеклеточных патогенов, реаги

руют с активными группировками экзотоксинов, обезвреживая их. Образование антител может продолжаться до нескольких лет.

Механизмы иммунитета, обусловленные клетками

Антителообразоваие

Обусловливается В-системой иммунитета. В-лимфоциты распознают тимусзависимые антигены с помощью макрофагов, представляющих фагоцитированные и переработанные антигены. Далее Т-хелперы получают от фагоцитов два сигнала - специфический и неспецифический (инструкцию для синтеза определенных антител), взаимодействуют с В-клеткой, которая вступает в дифференцировку с конечным образованием плазматических клеток, продуцирующих специфические антитела.

Первичный иммунный ответ

Возникает при первичном контакте Т-, В-клеток с антигеном, сопровождается пролиферацией иммунокомпетентных лимфоцитов, вызывает образование иммунных глобулинов М, формирует иммунную память и другие феномены. Реакция развивается в течение 5-10 дней и более после стимула.

Вторичный иммунный ответ

Формируется при повторном контакте с антигеном, обусловлен дерепрессией клеток иммунной памяти, не требует кооперации с макрофагами, характеризуется продукцией IgG в ранние сроки после «раздражения» (до 3 дней).

Иммунная неотвечаемость (толерантность)

Специфическая иммунная реакция, обратная иммунному ответу. Выражается в неспособности развивать специфические иммунные механизмы на повторно введенный чужеродный стимул. Иммунная толерантность характеризуется полным отсутствием формирования иммунных реакций и долговременна.

Иммунный паралич

Состояние, индуцируемое в организме при введении больших доз антигенов. Характеризуется снижением силы иммунного ответа, устраняется после элиминации факторов из организма. Обусловлен

блокированием распознающих рецепторов лимфоцитов избытком антигена.

Трансплантационный иммунитет

Его сущность проявляется в отторжении пересаженных чужеродных органов (тканей), клеток при несовместимости антигенов системы HLA донора и реципиента. Обусловливается Т-киллерами, цитотоксическими иммунными глобулинами класса М и G, другими механизмами.

Реакция трансплантат против хозяина

Феномен, обратный трансплантационному иммунитету. В его основе лежат агрессивные иммунные реакции трансплантата против хозяина. РТПХ формируется при следующих условиях:

Когда наборы антигенов HLA донора и реципиента отличаются друг от друга;

Когда в пересаженном объекте находятся зрелые лимфоидные элементы;

Когда иммунная система реципиента ослаблена.

Иммунное усиление

Суть эффекта заключается в том, что если перед трансплантацией организм реципиента активно проиммунизировать или пассивно ввести ему аллотипические антитела, то в большинстве случаев происходит не замедление, а ускорение роста пересаженного органа. Иммунное усиление может быть активным и пассивным. Механизмами феномена являются афферентная блокада рецепторов трансплантата нетоксическими антителами, центральная блокада пролиферативных процессов в организме реципиента, эфферентная блокада - маскировка специфическими антителами трансплантационных антигенов, что приводит к недоступности их для цитотоксических клеток.

Противоопухолевый иммунитет (иммунный надзор) направлен против опухолевых клеток. Реализуется в основном клеточными механизмами.

1.4. МЕХАНИЗМЫ ИНДУКЦИИ И РЕГУЛЯЦИИ ИММУННЫХ РЕАКЦИЙ

Теория Бернета постулирует непрерывную высокочастотную мутацию лимфоидных клеток, продуцирующих практически любые виды антител. Роль антигена сводится к селекции и клонированию соот-

ветствующих лимфоцитов, синтезирующих специфические иммунные глобулины. С этого момента организм становится готовым запустить антителогенез против любого антигена.

Кроме указанного, существует ряд других возможных механизмов индукции специфических иммунных реакций.

1. Синтез антител после перенесенных инфекций и бактериносительство.

2. Продукция антител, индуцированная перекрестно-регулирующими антигенами представителей нормальной микрофлоры кишечника, других полостей и поверхностей с патогенной флорой.

3. Образование сети антиидиотипических антител, несущих «внутренний образ» антигена. Исходя из этой теории, антитела против какой-дибо антигеннной детерминанты способны индуцировать образование антиидиотипических антител, взаимодействующих как с антителом-индуктором, так и с антиген-связывающими рецепторами. При определенной конценрации такие антидиотипические антитела без ввведения извне причинного антигена, могут обеспечить специфический антительный иммунный ответ.

4. Высвобождение депонированных в организме антигенов при повышении проницаемости мембран клеток, их содержащих, в результате действия эндо- и экзотоксинов, кортикостероидов, низкомолекулярных нуклеиновых кислот, облучения и других факторов. Редепонированные таким образом антигены способны при определенных условиях запустить специфический иммунный ответ.

Существует ряд неспецифических механизмов регуляции иммунных реакций.

1. Диета. Установлено, что пищевой рацион без животных белков снижает образование иммунных глобулинов. Исключение из питания нуклеиновых кислот даже при сохранении достаточной калорийности вызывает торможение клеточного иммунитета. Такой же эффект обусловливается дефицитом витаминов. Недостаток цинка вызывает вторичную иммунологическую недостаточность по главным звеньям иммунитета. Продолжительное голодание способствует резкому понижению иммунологической реактивности и общей сопротивляемости к инфекциям.

2. Кровопускания. Этот способ лечения имеет многовековую историю, однако иммунологические эффекты воздействия установлены недавно, физиологические по дозе кровопускания обусловливают стимуляцию антителогенеза к широкому спектру антигенов. Более

значительные кровопускания вызывают образование фактора, тормозящего активность макромолекулярных антител, т.е. реализуют регуляцию этого механизма защиты. Таким образом, реализуется способ временноого снижения активности циркулирующих антител без блокирования процесса их образования.

Кроме перечисленных механизмов, существуют также внутренние регуляторы иммуногенеза.

3. Иммуноглобулины и продукты их деградации. Накопление в организме или IgM с одновременным поступлением антигена неспецифически стимулируют иммунный ответ на него, IgCl, напротив, наделены способностью тормозить образование специфических антител в таких условиях. Однако при образовании комплекса антигенантитело в избытке иммунного глобулина наблюдается эффект стимуляции иммунного ответа, особенно вторичного, в тот период, когда содержание антител после первичной иммунизации резко снижено, но следовая их концентрация еще определяется. Следует отметить, что продукты катаболического разрушения этих белков также обладают высокой биологической активностью. F(ab)2 фрагменты гомологического IgO способны неспецифически усиливать иммуногенез. Продукты расщепления Fc-фрагмента иммуноглобулинов различных классов усиливают миграцию и жизнеспособность полиморфноядерных лейкоцитов, презентировавние антигена А-клетками, благоприятствуют активации Т-хелперов, повышают иммунную реакцию на тимусзависимые антигены.

4. Интерлейкины. К интерлейкинам (ИЛ) относятся факторы полипептидной природы, не относящиеся к иммуноглобулинам, синтезируемые лимфоидными и нелимфоидными клетками, обусловливающими прямое действие на функциональную активность иммунокомпентентных клеток. ИЛ не способны самостоятельно индуцировать специфический иммунный ответ. Они его регулируют. Так, ИЛ-1 в числе прочих эффектов, активизирует пролиферацию сенсибилизированных антигеном Т- и В-лимфоцитов, ИЛ-2 усиливает пролиферацию и функциональную активность В-клеток, как, впрочем и Т-лимфоцитов, их субпопуляций, НК-клеток, макрофагов, ИЛ-3 является ростовым фактором стволовых и ранних предшественников гемопоэтических клеток, ИЛ-4 повышает функцию Т-хелперов, реализует пролиферацию активированных В-клеток. Кроме того, ИЛ- 1,2,4 в той или иной степени регулируют функцию макрофагов. ИЛ-5 способствует пролиферации и дифференцировке стимулированных

Рис 1. Классификация имунитета

В-лимфоцитов, регулирует передачу хелперного сигнала с Т- на В- лимфоциты, способствует созреванию антителообразующих клеток, вызывает активацию эозинофилов. ИЛ-6 стимулирует пролиферацию тимоцитов, В-лимфоцитов, селезеночных клеток и дифференцировку Т-лимфоцитов в цитотоксические, активирует пролиферацию предшественников гранулоцитов и макрофагов. ИЛ-7 является ростовым фактором пре-В- и пре-Т-лимфоцитов, ИЛ-8 выполняет роль индуктора острой воспалительной реакции, стимулирует адгезивные свойства нейтрофилов. ИЛ-9 стимулирует пролиферацию и рост Т- лимфоцитов, модулирует синтез IgE, IgD В-лимфоцитами, активированными ИЛ-4. ИЛ-10 подавляет секрецию гамма-интерферона, синтез макрофагами фактора некроза опухоли, ИЛ-1, -3, -12; хемокинов. ИЛ-11 практически идентичен по биологическим потенциям с ИЛ-6, регулирует предшественников гемопоэза, стимулирует эритропорез, колониеобразование мегакариоцитов, индуцирует острофазовые белки. ИЛ-12 активизирует нормальные киллеры, дифференцировку Т-хелперов (Тх0 и Тх1) и Т-супрессоров в зрелые цитоксические Т- лимфоциты. ИЛ-13 подавляет функцию мононуклеарных фагоцитов. ИЛ-15 сходен по действию на Т-лимфоциты с ИЛ-12, активизирует нормальные киллерные клетки. Недавно выделен ИЛ-18, образуемый активированными макрофагами и стимулирующий синтез Т-лимфоцитами интерферонов (Инф), а макрофагами - ИЛ-1, -8 и ТНФ. Таким образом, Ил способны влиять на основные компоненты иммунологических реакций на всех этапах их развертывания. Следует, однако, заметить, что группа интерлейкинов входит в состав более широкой группы цитокинов - белковых молекул, образуемых и секретируемых клетками иммунной системы. В настоящее время они подразделяются на интерлейкины, колониестимулирующие факторы (КСФ), факторы некроза опухоли (ФНО), интерфероны (Инф), трансформирующие факторы роста (ТФР). Функции их чрезвычайно разнообразны. Например, воспалительные процессы регулируются противовоспалительными (ИЛ-1, -6, -12, ТНФ, Инф) и противовоспалительными цитокинами (ИЛ-4, -10, ТФР), специфические иммунологические реакции - ИЛ-1, -2, -4, -5, -6, -7, -9, -10, -12, -13, -14, -15, ТФР, Инф; миеломоноцитопоэз и лимфопоэз - Г-КСФ, М-КСФ, ГМ-КСФ, ИЛ-3, -5, -6, -7, -9, ТФР.

5. Интерферон. Как уже говорилось, к числу регуляторов иммуногенеза относятся интерфероны. Это белки с молекулярной массой от 16000 до 25000 дальтон, они продуцируются различными клетками,

реализуют не только противовирусный эффект, но и регулируют иммунологические реакции. Известны три типа интерферонов: α- лейкоцитарный интерферон образуется нулевыми клетками, фагоцитами, его индукторами являются клетки злокачественных опухолей, ксеногенные клетки, вирусы, митогены В-лимфоцитов; β-фибробластный интерферон вырабатывается фибробластами и эпителиальными клетками, индуцируется двуспиральной вирусной РНК и другими, в том числе естественными, нуклеиновыми кислотами, многими патогенными и сапрофитными микроорганизмами; γ-иммунный интерферон, его производителями служат Т-и В-лимфоциты, макрофаги, а индукторами - антигены и митогены Т-клеток; γ-интерферон высокоактивен, наделен специфичностью эффектов против определенных агентов.

Интерферон, индуцируемый иммунокомпетентными клетками, при определенных условиях проявляет иммуностимулирующие свойства. В частности, α-интерферон увеличивает продукцию иммуноглобулинов, усиливает ответ В-лимфоцитов на специфический хелперный фактор. Однако при увеличении концентрации интерферона или его синтезе до иммунизации отмечается подавление антителогенеза на тимусзависимые и тимуснезависимыые антигены. Действие интерферона на реакции клеточного иммунитета также носит модулирующий характер. В периоде до развертывания ГЗТ интерферон ее подавляет, в момент ее индукции - стимулирует. По-видимому, непосредственная регуляция иммунного ответа реализуется через усиление экспрессии мембранных белков лимфоцитами. Особенно это качество выражено у α-интерферона.

6. Система комплемента состоит примерно из 20 сывороточных белков крови, некоторые из них представлены в плазме в форме проферментов, которые могут активизироваться другими ранее активизированными компонентами системы или иными ферментами, например, плазмином. Имеются также и специфические ингибиторы ферментативной и неферментативной природы. Тот факт, что активаторами системы комплемента могут быть иммуноглобулины, иммунные комплексы и другие участники иммунных реакций, а также то, что клетки иммунной системы (лимфоциты, макрофаги) имеют рецепторы для компонентов системы, обосновывает ее регулирующую роль в иммуногенезе.

Существуют два пути активации системы комплемента - классический и альтернативный. Индукторами классического пути явля-

ются JgG1, G2, G3, JgM, входящие в состав иммунных комплексов, а также некоторые другие вещества. Альтернативный путь индуцируется различными агентами (агрегированными теплом IgA, M, G) и некоторыми другими соединениями. Этот процесс сливается с классическим в один общий каскад на стадии фиксации компонента С3. Данная разновидность активации требует присутствия Mg 2+ .

Видимо, функция комплемента in vivo состоит в предотвращении формирования больших иммунных комплексов. Поэтому в здоровом организме их возникновение достаточно затруднено. Запуск каскада активации комплемента формирующимися иммунными комплексами приводит к образованию его различных фрагментов, обуславливающих в организме процессы, нормальный ход которых нередко изменяется при нарушениях в системе комплемента. Так, у людей, дефицитных по каким-либо компонентам комплемента, часто возникает волчаночноподобный синдром или болезни иммунных комплексов.

В процессе активации комплемента образуются ряд факторов с иммуннотропным действием. Так, фрагменты С3а, С5а, С5В67 обладают хемотактическим эффектом, способствуя направленной аккумуляции клеток. Взаимодействие фрагмента с С3-рецепторами на В-лимфоцитах индуцирует активацию этих клеток митогенами и антигенами. С другой стороны, некоторые В-митогены и Т-независимые антигены индуцируют альтернативный путь активации комплемента.

7. Миелопептиды. Миелопептиды в процессе нормального метаболизма синтезируются клетками костного мозга различного вида животных и человека, не имеют аллогенного и ксеногенного ограничения. Представляют собой комплекс пептидов, не способных индуцировать иммунный ответ, но обладающих иммунорегуляторными свойствами. Они способны стимулировать антителообразование на пике иммунного ответа, в том числе при дефиците количества антителообразующих клеток или использовании слабоиммунногенных антигенов. Мишенями для модуляторов являются Т- и В-лимфоциты, а также макрофаги. Они переводят клетки иммунологической памяти в антителообразующие без деления, инактивируют Т-супрессоры, положительно влияют на дифференцировку предшественников цитолитических лимфоцитов и пролиферацию и дифференцировку столовых клеток, увеличивают содержание общих Т-лимфоцитов, Т-хелперов, интенсифицируют РБТЛ Т-клеток на ФГА и В-клеток на PWM. Кроме иммуннорегуляторных потенций, миелопептиды обла-

дают опиатноподобной активностью, вызывают налоксонзависимый аналгетический эффект, связываются с опиатными рецепторами мембраны лимфоцитов и нейронов, участвуя, таким образом, в нейроиммунном взаимодействии.

МП-2 обладает противоопухолевой активностью, отменяя ингибиторное действие лейкозных клеток на функциональную активность Т- лимфоцитов; он модифицирует экспрессию на них CD3- и CD4-анти- генов, нарушенную растворимыми продуктами опухолевых клеток.

8. Пептиды тимуса. Особенностью модуляторов тимического происхождения является то, что они синтезируются вилочковой железой постоянно, а не в ответ на антигенный стимул. К настоящему времени из тимуса получен ряд ииммунологически активных факторов: Т-активин, тималин, тимопоэтины, тимоптин и др. Молекулярная масса модуляторов составляет в среднем от 1200 до 6000 дальтон. Некоторые исследователи называют их тимусными гормонами. Все эти препараты близки по своему действию на иммунную систему. При сниженных показателях иммунного статуса тимусные модуляторы способны повышать качество Т-лимфоцитов и их функциональную активность, способствуют трансформации незрелых Т-клеток в зрелые, стимулируют распознавание тимусзависимых антигенов, хелперную и киллерную активность. Одновремкнно они активизируют продукцию антител и могут способствовать отмене иммунологической толерантности к некоторым антигенам, повышают выработку α- и γ-интерферонов, интенсифицируют фагоцитоз нейтрофилов, и макрофагов, активизируют факторы неспецифической антиинфекционной резистентности и процессы регенерации тканей.

9. Эндокринная система. Уже давно установлено, что важнейшими регуляторами иммунологического гомеостаза являются эндогенные гормоны. В спектре действия этих соединений находятся неспецифическая стимуляция и ингибиция специфических иммунных реакций, запущенных конкретными антигенами. Сами гормоны индукторами иммунного ответа быть не могут. Следует сразу отметить, что гормоны действуют в тесной связи друг с другом, когда одни вещества инициирууют секрецию других. Существует также четкая зависимость дозы-эффекта. Низкие концентрации, как правило, активируют, а высокие супрессируют иммунологические механизмы.

Кортизол относится к глюкортикоидам, регулирует углеводный обмен и одновременно супрессирует клеточные и гуморальные иммунные реакции. Отмечается подавление антителообразования

при первичном и вторичном иммунном ответах. В принципе за счет лизиса лимфоидных клеток обусловленных кортизолом, возможен выход антител и развитие таким образом анамнестической антительной реакции.

Минералокортикоиды (дезоксикортикостерон и альдостерон) играют важную роль в электролитном обмене. Они задерживают в организме натрий и увеличивают выход калия. Оба гормона усиливают воспалительную реакцию, продукцию иммунных глобулинов.

Установлено, что почти все гормоны аденогипофиза (СТГ, АКТГ, гонадотропные) влияют на иммунокомопетентные клетки. Например, АКТГ стимулирует секрецию коры надпочечников и таким образом воспроизводит эффекты кортизона, т.е. подавляет иммунологические реакции.

Соматотропный гормон, напротив, стимулирует воспаление, пролиферацию плазматических клеток, интенсифицирует клеточные механизмы.

Тиреотропный гормон восстанавливает подавленную различными факторами пролиферацию клеток. Околощитовидные железы, регулирующие содержание Са 2+ в плазме, изменяют митотическую активность клеток костного мозга и тимуса. Гормон нейрогипофиза - вазопрессин, стимулирует дифференцировку Т-лимфоцитов. Пролактин ингибирует РБТЛ на ФГА и увеличивает дифференцировку Т-лимфоцитов. Эстрогены (эстрадиол и эстрон) усиливают функцию фагоцитов, образование γ-глобулинов. Эстрогены, способны отменить иммуносупрессорный эффект кортикостероидов. Подобные эффекты установлены у фоллитропина, пролактина, лютропина. Однако в больших концентрациях указанные гормоны подавляли иммунологические реакции. Наконец, андрогены оказались наделенными в основном иммуносупрессорнными свойствами, ориентированными главным образом против гуморального звена иммунитета.

10. Метаболические процессы в организме активно влияют на состояние иммунной системы. Накопление в организме продуктов перекисного окисления липидов, бета-липопротеидов, холестерина, биогенных аминов, снижение пула циркулирующих низкомолекулярных нуклеиновых кислот, супрессия антиоксидантной системы обусловливают также угнетение иммунологической реактивности.

При этом продукты ПОЛ отрицательно зависят от АОС, содержания Т-клеток (CD3+), их регуляторных субпопуляций (CD4+, CD8+), положительно - от концентрации ЦИК, биогенных аминов, острофа-

зовых белков и т.д. Антиоксидантная система находится с биогенными аминами в обратной зависимости.

В целом, развитие патологии сопровождается активацией процессов перекисного окисления липидов, что приводит к увеличению уровня холестерина, β-липопротеидов, сопровождаясь снижением активности антиоксидантной защиты, накоплением биогенных аминов. Указанные изменения происходят на фоне формирования у больных диснуклеотидоза, нарушения белково-синтетических процессов, реализуемых по схеме ДНК-РНК-белок. Это приводит, с одной стороны, к угнетению выраженности иммунных, особенно клеточных реакций, дисбалансу регуляторных субпопуляций, с другой - к провокации развития аллергии, с третьей - к функциональным и деструктивным изменениям клеток различных систем организма, с четвертой - к расстройствам, тесно связанным с иммунной нейроэндокринной регуляции гомеостаза.

Таким образом, если специфичность иммунных реакций определяется характеристикой причинного антигена, то их выраженность зависит от множества причин. Она может быть недостаточной или слишком сильной, кратковременной или избыточно пролонгированной. Эти обстоятельства диктуют необходимость коррекции выраженности иммунологических реакций. В естественных условиях функционирование лимфоидных клеток с одной стороны подвержено стимулирующему действию тимусных факторов, а с другой - тормозному влиянию эндогенных кортикостероидов. Нерациональное вмешательство в деятельность иммунной системы с целью стимуляции или супрессии ее звеньев может расстроить этот баланс и привести к иммунопатологии.

Центральными органами иммун­ной системы являются костный мозг и тимус.

Костный мозг – орган кро­ветворения и центральный орган иммунной системы. Выделяют крас­ный костный мозг, который у взросло­го человека располагается в ячейках губчатого вещества плоских и ко­ротких костей, а также в эпифизах трубчатых костей, и желтый костный мозг, заполняющий полости в диафизах трубчатых костей. В детском возрасте все костномозговые полости заполнены красным костным мозгом. Общая масса костного мозга состав­ляет 2,5 – 3 кг (от 4 до 5% массы тела). Красный костный мозг состоит из миелоидной (кровеобразующей) и лимфоидной ткани. В красном костном мозге находятся также ство­ловые клетки – родоначальники всех видов клеток крови и иммунной системы, обладающие способностью к многократному (до 100 раз) деле­нию.

Тимус располагается позади тела грудины. Он состоит из двух удлиненных асимметричных по вели­чине правой и левой долей. Каждая доля разделена на многочисленные дольки размером от 1 до 10 мм. Пери­ферию долек образует более темное корковое вещество, а центральную часть – более светлое мозговое ве­щество. Строма тимуса образована многоотросчатыми эпителиоретикулоцитами, формирующими сеть, в петлях которой располагаются Т-лимфоциты и их предшественники. Эпителиоретикулоциты вырабатыва­ют биологически активные вещества (тимозин, тимопоэтин), которые ока­зывают влияние на дифференцировку Т-лимфоцитов. В мозговом веществе Эпителиоретикулоциты образуют сло­истые структуры – химические тель­ца (тельца Гассаля). Образование Т-лимфоцитов происходит преимуще­ственно в корковом веществе, откуда они перемещаются в мозговое веще­ство и мигрируют в кровеносное русло.

К периферическим орга­нам иммунной системы отно­сят нёбные, трубные, глоточную и язычную миндалины, которые обра­зуют глоточное лимфоидное кольцо Пирогова - Вальдейера. Миндалины представляют собой скопление лимфоидной ткани, в которой располага­ются небольших размеров структуры (0,2 – 1 мм) с плотно расположенны­ми в них лимфоцитами – лимфоидные узелки.

Нёбная миндалина (парная) – самая крупная. Она расположена с обеих сторон зева. На свободной поверхности миндалин, обращенной в сторону зева и покрытой многослой­ным плоским эпителием, видны мел­кие, точечной величины миндалиновые отверстия миндалиновых крипт. Стенки многочисленных миндалиновых крипт существенно увеличивают площадь поверхности миндалин, со­прикасающейся с проходящей в глот­ку пищей и вдыхаемым воздухом.

Трубная миндалина (парная) представляет собой скопление лимфоидной ткани в слизистой оболочке вокруг глоточного отверстия слухо­вой трубы. Глоточная миндалина (непарная) располагается в слизи­стой оболочке верхней стенки глотки против хоан, сообщающих полость носа с носоглоткой. Язычная минда­лина (непарная) находится в слизи­стой оболочке корня языка.

Вес шесть миндалин окружают вход в глотку из полости рта и из носовой полости. Именно здесь, на поверхности миндалин, происходит первая встреча лимфоцитов с чуже­родными веществами и микроорга­низмами, оказавшимися в проглаты­ваемой пище или во вдыхаемом воздухе.

Одиночные лимфоидные узелки, располагающиеся в слизистой обо­лочке органов пищеварительной, ды­хательной систем и мочевыводящих путей, представляют собой плотные скопления лимфоцитов, образующие структуры шаровидной или яйце­видной формы. Залегая под эпители­ем слизистой оболочки на близком расстоянии друг от друга, лимфо­идные узелки, как сторожевые посты, защищают слизистую оболочку и ор­ганизм в целом от проникновения в нее генетически чужеродных частиц и микроорганизмов. Внутри многих лимфоидных узелков образуются собственные центры размножения. В случае антигенной опасности начи­нается быстрое размножение лимфо­цитов в лимфоидных узелках.

В слизистой оболочке тонкой кишки расположены лимфоидные бляшки, представляющие собой скоп­ления лимфоидных узелков. Лимфо­идные бляшки, как правило, имеют овальную форму и чуть-чуть выступа­ют в просвет кишки. На месте лимфоидных бляшек ворсинки слизи­стой оболочки отсутствуют. Лимфо­идные бляшки в тонкой кишке, где происходит основное всасывание про­дуктов переваривания пищи, препят­ствуют проникновению в кровеносное и лимфатическое русло чужеродных веществ.

Рис. 92. Строение лимфатического узла:

1 – капсула, 2 – капсулярная трабекула, 3 – приносящий лимфатический сосуд, 4 – подкапсулярный (краевой) синус, 5 – корковое вещество, 6 – паракортикальная (тимусзависимая) зона (околокорковое вещество), 7 – лимфоидный узелок, 8 – центр размножения, 9 – вокругузелковый корковый синус, 10 – мозговое вещество (мякотные тяжи), 11 – мозговые синусы, 12 – воротный синус, 13 – выносящий лимфатический сосуд, 14 – ворота, 15 – кровеносные сосуды

Червеобразный отросток – ап­пендикс также является органом иммунной системы. В его стенках имеется огромное количество лимфо­идных узелков (до 550), плотно прилежащих друг к другу. Аппендикс расположен на границе между тон­кой и толстой кишкой, является важным органом в функциях иммун­ной защиты организма.

Лимфатические узлы расположе­ны на путях тока лимфы от органов и тканей к лимфатическим стволам и протокам. В лимфатических узлах задерживаются и уничтожаются чу­жеродные частицы, микробные тела, собственные погибшие клетки, попав­шие в просвет лимфатических сосу­дов в момент всасывания в них тканевой жидкости. Лимфатические узлы располагаются группами, состо­ящими из двух и более узлов.

Каждый лимфатический узел име­ет соединительнотканную капсулу, от которой внутрь узла отходят пучки соединительной ткани – трабекулы (рис. 92).

В паренхиме лимфатиче­ского узла выделяют корковое и моз­говое вещество. Корковое вещество занимает периферические отделы уз­ла. В корковом веществе расположе­ны лимфоидные узелки.

В центральных отделах лимфати­ческого узла находится мозговое вещество. Паренхима мозгового ве­щества представлена тяжами лимфоидной ткани – мякотными тяжами, которые простираются от внутренних отделов коркового вещества до ворот лимфатического узла. Пограничная с мозговым веществом часть корково­го вещества получила название паракортикальной или тимусзависимой зоны.

Под капсулой лимфатического узла, а также вдоль соединительнотканных трабекул и мякотных тяжей лежат узкие щели – лимфати­ческие синусы, внутри которых нахо­дятся мелкоячеистые сети, образо­ванные ретикулярными волокнами. По этим синусам течет лимфа от приносящих сосудов к выносящим лимфатическим сосудам. Во время тока лимфы по синусам сквозь сети из ретикулярных волокон задержива­ются погибшие клетки, микробные тела и другие чужеродные вещества, присутствующие в лимфе. Все эти чужеродные вещества распознаются и уничтожаются лимфоцитами, про­никающими внутрь синусов из лимфоидной паренхимы.

Таким образом, лимфатические узлы задерживают любые чужерод­ные частицы, которые попали в орга­низм, и препятствуют их проникнове­нию из органов и тканей в ток крови.

Селезенка располагается в брюш­ной полости в левом подреберье. Это единственный орган, контролирую­щий состав крови. Масса селезенки составляет 150 – 200 г. Снаружи она имеет соединительнотканную капсу­лу, от которой внутрь органа отходят трабекулы. Между трабекулами на­ходится мякоть селезенки, ее пульпа. Выделяют белую и красную пульпы, в которых разветвляются артериаль­ные сосуды – пульпарные артерии. Белая пульпа представлена типичной лимфоидной тканью, включает распо­ложенные вокруг пульпарных арте­рий периартериальные лимфоидные муфты, лимфоидные узелки и эллип­соиды, окружающие кровеносные ка­пилляры. Красная пульпа, занимаю­щая до 78% всего объема селезенки, состоит из ретикулярной стромы, в петлях которой находятся лимфо­циты, лейкоциты, макрофаги, погиб­шие эритроциты и другие клетки.

Образованные этими клетками тяжи располагаются между селе­зеночными венозными синусами. Протекающая по пульпарным арте­риям кровь контролируется лимфоидными клетками периартериальных лимфоидных муфт, эллипсоидов и лимфоидных узелков. Распознанные чужеродные элементы в синусах селезенки захватываются макрофа­гами, которые переносят их в крас­ную пульпу. Здесь они уничтожа­ются. Продукты уничтожения чуже­родных веществ поступают по во­ротной вене с кровью в печень, где они утилизируются.


Похожая информация.


Иммунная система представляет собой самый важнейший защитный механизм организма. Все ее компоненты оберегают вверенные территориальные границы человеческого тела. Иммунная система – это собирательное понятие, которое включает в себя множество образований, выполняющих иммунную роль. Все эти образования имеют в своем составе лимфоидную ткань – специализированную и в анатомическом смысле обособленную. На всю лимфоидную ткань организма приходится примерно 1-2 % от массы тела.

Функциональная организация

Эти тканевые составляющие не сосредоточены в одной точке, они разбросаны по организму. Но где бы они не располагались, их обязанность одинакова и заключается в функциях иммунитета по контролю за постоянством во внутренней среде организма. Структура и функции иммунной системы включают много компонентов, которые взаимосвязаны между собой и работают сообща на благо одной цели – защиты организма от непрошенных вредителей.

Основная функция иммунной системы – это предотвращение заражения и очистка организма от случившегося заражения. Это возможно благодаря наличию компонентов иммунитета - биологически активных веществ (БАВ), иммунных клеток и органов иммунитета. К БАВ относятся:

  • Иммунные медиаторы, такие как интерлейкин;
  • такие как интерферон, фибробластные, гранулоцитарные и колониестимулирующие; Гормоны, такие как пиелопептид и миелопептид.

Выделяют следующие клетки иммунитета:

  • Т- и В-лимфоцитарные; Цитотоксические, направленные на уничтожение; Единые предшественники всех иммунных клеток - стволовые.

Строение органов

Строение и функции иммунной системы тесно взаимосвязаны. Именно структурно обеспеченная слаженность в работе органов иммунитета позволяет ей выполнять свою работу своевременно и качественно. В зависимости от степени влияния на формирование иммунной системы, лимфоидные органы подразделяют на центральные и периферические. К центральным относят тимус и костный мозг. Остальные причисляют к периферическим.

Основной ролью центральных органов является образование, дифференцировка и отбор полноценных лимфатических клеток для периферической системы, в которой они будут дозревать и накапливаться, превращаясь в высокоспециализированное войско по захвату. С течением времени центральным органам придется испытать некие изменения в связи с инволюцией, то есть обратным развитием, нормальным для всех стареющих организмов.

Тогда работа лимфоидной ткани будет нарушена и лимфоцитарные клетки уже не будут соответствовать запросам организма. Своим количеством, качеством или многими факторами сразу. Это является причиной пониженного уровня иммунитета у пожилых. Если такой орган удалить в молодом возрасте, то строение иммунной системы нарушится и иммунный ответ будет снижен.

К лимфоидным относятся следующие образования:

  • Тимус, другое название которого вилочковая железа. Этот орган закладывается еще во время первого месяца внутри утробы матери и растет с ростом ребенка. К 15 годам она достигает своего пика и весит 30 г, после чего происходит ее обратное развитие. Участвует в выработке главной для иммунитета составляющей в виде веществ, таких как гормоны и БАВ. К ним можно отнести тимозин и тимопоэтин, тимический гормон, гипокальциемический и убивикин. При заболеваниях тимуса у пациентов наблюдается иммунологическая недостаточность, которая проявляется сниженным уровнем иммунитета;
  • Костный мозг начинает развиваться в тебе малыша еще на 12 неделе внутриутробного развития. Этот орган снабжает организм стволовыми клетками – едиными предшественниками всего, позже из которых развиваются Т- и В-лимфоциты и другие клетки иммунной системы, такие как моноциты и макрофаги;
  • Селезенка – это кладбище эритроцитов, красных кровяных телец. Она обеспечивает уничтожение старых клеток крови, а также участвует в дифференцировке лимфоцитов и образовании антител. Помимо прочего, селезенка вырабатывает тафтсин – биологически активное вещество, стимулирующее иммунные клетки к образованию и дифференцировке;
  • Различные группы лимфатических узлов – миндалины, подмышечные и паховые узлы. Лимфатические узлы – это биологические фильтры организма, которые осуществляют регионарную защиту против антигенов. Если иммунная система человека находится в нормальном состоянии, узлы недоступны при осмотре, они не ощущаются. При заболеваниях иммунитета узлы увеличиваются, что говорит о проблеме в иммунном звене;
  • Лимфоцитарные клетки, рассеянные по кровеносному руслу.

Структура на уровне клеток

Функциональная нагрузка системы иммунитета состоит в специфической защите от чужеродных микроорганизмов, то есть антигенов, посредством выслеживания, запоминания и обезвреживания, а также неспецифической, которая направлена на обеспечение целостности организма без возможности проникновения антигенов. Основной структурной и функциональной единицей иммунного ответа является лимфоцит – белая клетка крови.

Лимфоциты делятся на два больших класса - Т- и В, а те в свою очередь имеют также немало подвидов. Всего в человеческом организме насчитывается около 1012 лимфоцитарных клеток. Они часто гибнут и потому часто обновляются. В среднем срок жизни Т-лимфоцита составляет несколько месяцев, а В-лимфоцита несколько недель. Изначально Т и В-клетки имеют одного предшественника, одну общую клетку, образующуюся в костном мозге, и лишь достигнув зрелости, происходит разделение лимфоцитов по группам.

Появление многочисленных антигенов в организме служит сигналом к усиленному делению. В-лимфоцитарные клетки, дозревая, становятся плазматическими и начинают выделять антитела – иммуноглобулины, вещества, способные уничтожать антигены. Такая линия поведения относится к специфической. Помимо своей основной деятельности, Т - и В-лимфоциты выделяют неспецифические , которые объединены общим понятием гормоны и медиаторы иммунной системы - биологически активных веществ. К медиаторам лимфоцитов относят цитокины – вещества, которые регулируют иммунный ответ.

Т-лимфоциты образуют клеточный иммунитет. Это такой вид иммунного ответа, который при появлении антигена, начинает атаковать его своими клетками, а также вызывать подкрепление в виде других Т-клеток. Т-клеточным иммунитетом в основном защищаются от опухолевых образований и вирусных частиц. Выделяют 3 вида Т-клеток, роль каждой из которых важна для защитных механизмов:

  • Т-киллеры - это профессиональные убийцы антигенов. Посредством выделения специального белка они убивают микробные частицы;
  • Т-супрессоры подавляют активность всех видов лимфоцитов, чтобы предотвратить массовое уничтожение своих клеток, которые случайно попадают под обстрел. Другими словами, эти клетки выполняют роль иммунных стабилизаторов;
  • Т-хелперы – это помощники и союзники других лимфоцитов.

В-лимфоциты создают , который базируется на выделении в кровь антител – античастиц, нейтрализующих токсины микроорганизмов. Также они участвуют в помощи другим иммунным клеткам в их деятельности, стимулируют и регулируют работу. Антитела – это белковые вещества, носящие название иммуноглобулинов (Ig). Всего выделяют 5 видов Ig:

Основная задача гуморального иммунного ответа сводится к защите против бактерий и токсинов.

Развитие иммунной системы

Находясь, в материнской утробе, ребенок защищен всеми возможными средствами. От механических воздействий его защищает живот, от проникновения чужеродных веществ материнские антитела. Мама, являясь взрослым человеком, выделяет достаточное количество полноценных антител. Иммунная система ребенка еще недостаточно развита, чтобы также продуцировать свои защитные клетки. Поэтому сквозь плаценту мама делится со своим малышом иммунными клетками и защищает его от вредоносных микроорганизмов.

Попав в окружающий мир после рождения, ребенок сталкивается с целой ордой неизвестных и невиданных микробов, которые готовы захватить его неокрепший организм. Он практически беззащитен перед ними, и лишь мамы спасают его. Этот период новорожденности относят к первым критическим периодам в развитии иммунной системы. Поступающие новые дозы антител при грудном вскармливании иммунологический фон. При искусственном этого не происходит.

К возрасту 2-4 месяцев антитела мамы выводятся из организма и разрушаются. Своя система иммунного ответа еще недостаточно зрелая, ребенок оказывается в уязвимом положении. Этот этап относят ко второму критическому периоду развития иммунной системы. И хотя лимфоцитарные клетки в достаточном количестве присутствуют в организме малыша, и даже превышают количество у взрослых, их активность и незрелость не позволяет выполнять свои функциональные обязанности.

Ввиду сниженного количества иммунных клеток, детки часто болеют воспалительными заболеваниями и получают аллергию на пищу. К 7 годикам иммуноглобулины малышей соответствуют по количеству и качеству взрослых, но барьерные функции слизистых оболочек оставляют желать лучшего. Дети по-прежнему уязвимы. После подросткового возраста и гормональных сбоев иммунитет снова пошатывается. И лишь потом наступает стабилизация в системе иммунного ответа.

Оценка

Оценивать людей по способны лишь точные анализы. Опытный врач может предположить состояние иммунитета довольно достоверно, однако конкретные результаты предоставит лишь иммунограмма. Это тест, состоящий из исследования основных показателей иммунного ответа. Он базируется на определении количественного состава и функциональной активности иммунных клеток, их соотношения. Для проведения процедуры у пациента берут венозную кровь.

Нежелательно в период менструаций и острых инфекционных болезней при высокой температуре тела, а также после обильного употребления пищи. Результатом исследования будет являться подсчет уровня лейкоцитов, Т-и В-лимфоцитов, антител и их соотношения. Этих сведений вполне достаточно для определения состояния иммунной системы человека, в иммунную систему человека не стоит вмешиваться без повода и причин, бесконтрольно и необоснованно употреблять антибиотики, которые вызывают дисбаланс в ее работе.

Люди, чьи показатели оказались снижены, могут войти в число лиц со сниженным иммунитетом или находящихся в группе риска, в зависимости от уровня снижения. Причиной пониженного уровня иммунитета могут быть нарушения строения органов иммунной системы, их патологии. Причиной нарушений могут быть не только изменения в строении и функции . Список достаточно велик. Туда могут входить и воздействие неблагоприятных факторов среды, и генетическая природа проблемы.

Только квалифицированный специалист может найти причину понижения иммунного фона и назначить соответствующее лечение. Своевременное выявление и лечение помогут избежать срыва функции здоровья. Следить за состоянием иммунитета – прямой путь к здоровой и счастливой жизни!