Сверхновые, нейтронные звезды и черные дыры. Одиночные и в парах

Для звезд с массой ниже некоторой критической гравитационное сжатие останавливается на стадии так называемого «белого карлика».

Плотность белого карлика больше 10 7 г/см 3 , температура поверхности ~ 10 4 K. При столь высокой температуре атомы должны быть полностью ионизованы и внутри звезды ядра должны быть погружены в море электронов, образующих вырожденный электронный газ. Давление этого газа препятствует дальнейшему гравитационному коллапсу звезды.

Давление вырожденного электронного газа имеет квантовую природу. Оно возникает как следствие принципа Паули, которому подчиняются электроны.

Принцип Паули устанавливает предельный минимальный объем пространства, который может занимать каждый электрон. Внешнее давление не в состоянии этот объем уменьшить. В белом карлике все электроны достигли минимального объема и гравитационное сжатие уравновешено внутренним давлением электронного газа.

Ограничение на массу белого карлика примерно 1.5M s . Эта предельная масса и называется она пределом Чандрасекара (M s – масса Солнца, равная ~ 1,99·10 30 кг).

Обычно полагают, что максимальная масса белого карлика 1.4M s . Таким образом, давление вырождения электронов не может удержать массы большие, чем 1.4M s . Если 0.5M s < M < 1.4M s , ядро белого карлика состоит из углерода и кислорода. Если M < 0.5M s , ядро белого карлика состоит из гелия.

Плотность белого карлика с массой, близкой к чандрасекаровской – 6х10 6 г/см 3 , радиус – 5х10 3 км.

Светимость белых карликов составляет 10 -2 -10 -4 от светимости Солнца. Их излучение обеспечивается запасенной в них тепловой энергией.

Нейтронная звезда

Расчеты показывают, что при взрыве сверхновой с M ~ 25M s остается плотное нейтронное ядро (нейтронная звезда) с массой ~ 1.6M s .

В звездах с остаточной массой M > 1.4M s , не достигших стадии сверхновой, давление вырожденного электронного газа также не в состоянии уравновесить гравитационные силы и звезда сжимается до состояния ядерной плотности. Механизм этого гравитационного коллапса тот же, что и при взрыве сверхновой.

Давление и температура внутри звезды достигают таких значений, при которых электроны и протоны как бы «вдавливаются» друг в друга и в результате реакции

p + e - > n + v e

после выброса нейтрино образуются нейтроны, занимающие гораздо меньший фазовый объем, чем электроны.

Возникает так называемая нейтронная звезда, плотность которой достигает 10 14 - 10 15 г/см 3 . Характерный размер нейтронной звезды 10-15 км.

В некотором смысле нейтронная звезда представляет собой гигантское атомное ядро.

Дальнейшему гравитационному сжатию препятствует давление ядерной материи, возникающее за счет взаимодействия нейтронов. Это так же давление вырождения, как ранее в случае белого карлика, но – давление вырождения существенно более плотного нейтронного газа. Это давление в состоянии удерживать массы вплоть до 3.2M s .

Нейтрино, образующиеся в момент коллапса, довольно быстро охлаждают нейтронную звезду. Согласно теоретическим оценкам температура ее падает с 10 11 до 10 9 K за время ~ 100 с. Дальше темп остывания несколько уменьшается. Однако он достаточно высок по астрономическим масштабам. Уменьшение температуры с 10 9 до 10 8 K происходит за 100 лет и до 10 6 K – за миллион лет.

Обнаружить нейтронные звезды оптическими методами довольно сложно из-за малого размера и низкой температуры.

В 1967 г. в Кембриджском университете Хьюиш и Белл открыли космические источники периодического электромагнитного излученияпульсары . Периоды повторения импульсов большинства пульсаров лежат в интервале от 3.3·10 -2 до 4.3 с.

Согласно современным представлениям, пульсары – это вращающиеся нейтронные звезды, имеющие массу 1-3M s и диаметр 10-20 км.

Только компактные объекты, имеющие свойства нейтронных звезд, могут сохранять свою форму, не разрушаясь при таких скоростях вращения.

Сохранение углового момента и магнитного поля при образовании нейтронной звезды приводит к рождению быстро вращающихся пульсаров с сильным магнитным полем B ~ 10 12 Гс.

B – вектор магнитной индукции, основная силовая характеристика магнитного поля. Измеряется в гауссах (Гс) в системе СГС (сантиметр-грамм-секунда) и в теслах (Тл) в Международной системе единиц (СИ). 1 Тл = 10 4 Гс.

Считается, что нейтронная звезда имеет магнитное поле, ось которого не совпадает с осью вращения звезды. В этом случае излучение звезды (радиоволны и видимый свет) скользит по Земле как лучи маяка. Когда луч пересекает Землю регистрируется импульс.

Само излучение нейтронной звезды возникает за счет того, что заряженные частицы с поверхности звезды двигаются вовне по силовым линиям магнитного поля, испуская электромагнитные волны. Этот механизма радиоизлучения пульсара, впервые предложенный Голдом, показан ниже на рисунке

Если пучок излучения попадает на земного наблюдателя, то радиотелескоп фиксирует короткие импульсы радиоизлучения с периодом, равным периоду вращения нейтронной звезды.

Форма импульса может быть очень сложной, что обусловлено геометрией магнитосферы нейтронной звезды и является характерной для каждого пульсара.

Периоды вращения пульсаров строго постоянны и точности измерения этих периодов доходят до 14-значной цифры.

В настоящее время обнаружены пульсары, входящие в двойные системы. Если пульсар вращается по орбите вокруг второго компонента, то должны наблюдаться вариации периода пульсара вследствие эффекта Допплера.

Когда пульсар приближается к наблюдателю, регистрируемый период радиоимпульсов из-за допплеровского эффекта уменьшается, а когда пульсар удаляется от нас, его период увеличивается. На основе этого явления и были обнаружены пульсары, входящие в состав двойных звезд.

Для впервые обнаруженного пульсара PSR 1913 + 16, входящего в состав двойной системы, орбитальный период обращения составил 7 часов 45 мин. Собственный период обращения пульсара PSR 1913 + 16 равен 59 мс.

Излучение пульсара должно приводить к уменьшению скорости вращения нейтронной звезды. Такой эффект также был обнаружен. Нейтронная звезда, входящая в состав двойной системы, может быть и источником интенсивного рентгеновского излучения.

Образование нейтронных звезд не всегда является следствием вспышки сверхновой. Возможен и другой механизм образования нейтронных звезд в ходе эволюции белых карликов в тесных двойных звездных системах.

Перетекание вещества звезды-компаньона на белый карлик постепенно увеличивает массу белого карлика и по достижении критической массы (предела Чандрасекара) белый карлик превращается в нейтронную звезду.

В случае, когда перетекание вещества продолжается и после образования нейтронной звезды, её масса может существенно увеличиться и в результате гравитационного коллапса она может превратиться в черную дыру. Это соответствует так называемому «тихому» коллапсу.

Имеется предел для массы звезды, которая может удерживаться в равновесии плотно упакованными нейтронами. Этот предел невозможно вычислить точно, так как поведение вещества при плотностях, существенно превышающих плотность ядерной материи, недостаточно изучено.

Оценки массы звезды, которая уже не может стабилизироваться за счет вырожденных нейтронов, дают значение ~ 3M s .

Таким образом, если при взрыве сверхновой сохраняется остаток массы M > 3M s , то он не может существовать в виде устойчивой нейтронной звезды.

Ядерные силы отталкивания на малых расстояниях не в состоянии противостоять дальнейшему гравитационному сжатию звезды. Возникает необычный объект – черная дыра.

Основное свойство черной дыры состоит в том, что никакие сигналы, испускаемые ею, не могут выйти за её пределы и достигнуть внешнего наблюдателя.

Звезда массы M, коллапсируя в черную дыру, достигает сферы радиуса r g (сферы Шварцшильда):

r g = 2GM/c 2 ,

(формально к этому соотношению можно прийти, полагая в известной формуле для второй космической скорости v k2 = (2GM/R) 1/2 предельное значение этой скорости, равное скорости света).

При достижении объектом размера сферы Шварцшильда, его гравитационное поле становится столь сильным, что покинуть этот объект не может даже электромагнитное излучение. Шварцшильдовский радиус Солнца равен 3 км, Земли – 1 см.

Черная дыра Шварцшильда относится к невращающимся объектам и является остатком массивной невращающейся звезды. Вращающаяся массивная звезда коллапсирует во вращающуюся черную дыру (черную дыру Керра).

Черную дыру можно обнаружить только по косвенным признакам, в частности, если она входит в состав двойной звездной системы с видимой звездой. В этом случае черная дыра будет затягивать газ звезды. Этот газ будет нагреваться, становясь источником интенсивного рентгеновского излучения, которое может быть зарегистрировано.

В настоящее время нет прямых экспериментальных подтверждений существования черных дыр. Есть несколько космических объектов, поведение которых можно объяснить присутствием черных дыр.

Так имеется объект Лебедь XI, представляющий собой двойную систему с периодом вращения 5,6 суток. В состав системы входят голубой гигант с массой 22M s и невидимый источник пульсирующего рентгеновского излучения с массой 8M s , который возможно является черной дырой (объект такой большой массы не может быть нейтронной звездой).

Наряду с черными дырами, образовавшимися при коллапсе звезд, во Вселенной могут быть черные дыры, возникшие задолго до появления первых звезд вследствие неоднородности Большого Взрыва.

Появившиеся при этом сгустки вещества могли сжиматься до состояния черных дыр, тогда как остальная часть вещества расширялась. Черные дыры, образовавшиеся на самом раннем этапе Вселенной, называют реликтовыми. Предполагают, что размер некоторых из них может быть значительно меньше размера протона.

В 1974 г. Хокинг показал, что черные дыры должны испускать частицы. Источником этих частиц является процесс образования виртуальных пар частица-античастица в вакууме. В обычных полях эти пары аннигилируют столь быстро, что их не удается наблюдать. Однако в очень сильных полях виртуальные частица и античастица могут разделиться и стать реальными.

На границе черной дыры действуют мощные приливные силы. Под действием этих сил некоторые из частиц (античастиц), входивших в состав виртуальных пар, могут вылететь за пределы черной дыры. Так как многие из них аннигилируют, черная дыра должна становиться источником излучения.

Энергия, излучаемая в пространство черной дырой, поступает из её недр. Поэтому в процессе такого испускания частиц, масса и размеры черной дыры должны уменьшаться. Таков механизм «испарения» черной дыры.

Температура черной дыры обратно пропорциональна ее массе, таким образом, более массивные испаряются медленнее, ибо время их жизни пропорционально кубу массы (в четырехмерном пространстве-времени). Например, время жизни черной дыры с массой M порядка солнечной превосходит возраст Вселенной, тогда как микродыра с M = 1 тераэлектронвольт (10 12 эВ, примерно 2x10 -30 кг) живет около 10 -27 секунд (Наука и жизнь, ЧЕРНЫЕ ДЫРЫ).

Для больших черных дыр темп «испарения» очень медленный и практически им можно пренебречь. Черная дыра массой в 10 солнечных масс испарится за 10 69 лет. Время испарения сверхмассивных (миллиарды масс Солнца) черных дыр, которые могут быть в центре больших галактик, может составлять 10 96 лет.

Процессы превращения звезд в белые карлики, нейтронные звезды или черные дыры, как правило, сопровождаются выбросами колоссальной энергии. Подробнее о подобного рода энергетических выбросах, и других космических взрывах рассказывается в следующем видеосюжете.

Видео: Жесточайшие и крупнейшие взрывы в космосе. Взрывы Галактик, звезд, планет.

Теоретически в черную дыру может превратиться любое космическое тело. Например, такой планете, как Земля, для этого нужно сжаться до радиуса в несколько миллиметров, что на практике, конечно, маловероятно. В новом выпуске с премией «Просветитель» T&P публикуют отрывок из книги физика Эмиля Ахмедова «О рождении и смерти черных дыр» , в котором объясняется, как небесные тела превращаются в черные дыры и можно ли их разглядеть на звездном небе.

Как образуются черные дыры?

*Если какая-то сила сожмет небесное тело до соответствующего его массе радиуса Шварцшильда, то оно настолько искривит пространство–время, что даже свет не сможет его покинуть. Это и означает, что тело станет черной дырой.

Например, для звезды с массой Солнца радиус Шварцшильда приблизительно равен трем километрам. Сравните эту величину с настоящим размером Солнца - 700 000 километров. В то же время для планеты с массой Земли радиус Шварцшильда равен нескольким миллиметрам.

[…]Только гравитационная сила способна сжать небесное тело до таких маленьких размеров, как его шварцшильдовский радиус*, так как только гравитационное взаимодействие ведет исключительно к притяжению, и фактически неограниченно возрастает при увеличении массы. Электромагнитное взаимодействие между элементарными частицами на много порядков сильнее гравитационного. Однако любой электрический заряд, как правило, оказывается компенсированным зарядом противоположного знака. Гравитационный заряд - массу ничто не может заэкранировать.

Такая планета, как Земля, не сжимается под собственной тяжестью до соответствующих размеров Шварцшильда потому, что ее массы недостаточно для преодоления электромагнитного расталкивания ядер, атомов и молекул, из которых она состоит. А такая звезда, как Солнце, являясь намного более массивным объектом, не сжимается из-за сильного газодинамического давления за счет высокой температуры в его недрах.

Заметим, что для очень массивных звезд, с массой больше ста Солнц, сжатие не происходит в основном из-за сильного светового давления. Для звезд массивнее двухсот Солнц ни газодинамического и ни светового давления оказывается не достаточно, чтобы предотвратить катастрофическое сжатие (коллапс) такой звезды в черную дыру. Однако ниже речь пойдет об эволюции более легких звезд.

Свет и высокая температура звезд являются продуктами термоядерных реакций. Такая реакция идет потому, что в недрах звезд достаточно водорода и вещество сильно сжато под давлением всей массы звезды. Сильное сжатие позволяет преодолеть электромагнитное отталкивание одинаковых зарядов ядер водорода, ведь термоядерная реакция - это слияние ядер водорода в ядро гелия, сопровождающееся большим выделением энергии.

Рано или поздно количество термоядерного топлива (водорода) сильно сократится, световое давление ослабнет, температура упадет. Если масса звезды достаточно мала, как, например, у Солнца, то она пройдет через фазу красного гиганта и превратится в белый карлик.

Если же ее масса велика, то звезда начнет сжиматься под собственной тяжестью. Произойдет коллапс, который мы можем увидеть как взрыв сверхновой. Это очень сложный процесс, состоящий из многих фаз, и пока не все его детали ясны ученым, но многое уже понятно. Известно, например, что дальнейшая судьба звезды зависит от ее массы в момент перед коллапсом. Результатом такого сжатия может быть либо нейтронная звезда, либо черная дыра, или же комбинация из нескольких подобных объектов и белых карликов.

«Черные дыры являются результатом коллапса самых тяжелых звезд»

Нейтронные звезды и белые карлики не коллапсируют до состояния черной дыры, так как их массы недостаточно, чтобы преодолеть давление нейтронного или электронного газа соответственно. Эти давления обусловлены квантовыми эффектами, вступающими в силу после очень сильного сжатия. Обсуждение последних не имеет непосредственного отношения к физике черных дыр и выходит за рамки данной книги.

Однако если, например, нейтронная звезда находится в двойной звездной системе, то она может притягивать материю со звезды компаньона. В таком случае ее масса будет расти и, если она превысит некоторое критическое значение, опять произойдет коллапс, уже с образованием черной дыры. Критическая масса определяется из условия, что газ нейтронов создает недостаточное давление, чтобы удержать ее от дальнейшего сжатия.

*Это приблизительная оценка. Точное значение предела пока не известно. - Прим. автора.

Итак, черные дыры являются результатом коллапса самых тяжелых звезд. В современном представлении масса сердцевины звезды после выгорания термоядерного топлива должна составлять не менее двух с половиной солнечных*. Никакое известное нам состояние вещества не способно создать такое давление, которое удержало бы столь большую массу от сжатия до состояния черной дыры, если выгорело все термоядерное топливо. Факты, экспериментально подтверждающие упомянутое ограничение на массу звезды для образования черной дыры, мы обсудим чуть позже, когда будет рассказано, как астрономы обнаруживают черные дыры. […]

Рис. 7. Неверное представление о коллапсе с точки зрения стороннего наблюдателя как о замедляющемся вечном падении вместо формирования горизонта черной дыры

В связи с нашим обсуждением поучительно будет на примере вспомнить о взаимосвязи различных идей и представлений в науке. Этот рассказ, возможно, позволит читателю ощутить, насколько потенциально глубок обсуждаемый вопрос.

Известно, что Галилей пришел к тому, что сейчас называется законом Ньютона об инерциальных системах отсчета, отвечая на критику системы Коперника. Критика заключалась в том, что Земля не может вращаться вокруг Солнца по причине того, что иначе мы бы не удержались на ее поверхности.

В ответ Галилей утверждал, что Земля вращается вокруг Солнца по инерции. А инерциальное движение мы не можем отличить от покоя, так же как не ощущаем инерциальное движение, например, корабля. При этом он не верил в гравитационные силы между планетами и звездами, так как не верил в действие на расстоянии, а про существование полей он и вовсе не мог знать. Да и не принял бы столь абстрактного на тот момент объяснения.

Галилей считал, что инерциальное движение может происходить только по идеальной кривой, то есть Земля может двигаться только по окружности или же по окружности, центр которой, в свою очередь, вращается по окружности вокруг Солнца. То есть может существовать наложение разных инерциальных движений. Последний тип движения можно усложнить, добавив еще больше окружностей в композиции. Такое вращение называется движением по эпициклам. Оно было придумано еще для согласования птолемеевой системы с наблюдаемыми положениями планет.

Кстати, в момент своего создания система Коперника описывала наблюдаемые явления гораздо хуже системы Птолемея. Так как Коперник тоже верил только в движение по идеальным окружностям, у него получалось, что центры орбит некоторых планет находились за пределами Солнца. (Последнее являлось одной из причин задержки публикации Коперником своих работ. Ведь он верил в свою систему исходя из эстетических соображений, а наличие странных смещений центров орбит за пределы Солнца в эти соображения не вписывались.)

Поучительно то, что в принципе система Птолемея могла описывать наблюдаемые данные с любой наперед заданной точностью - нужно было только добавить необходимое число эпициклов. Однако, несмотря на все логические противоречия в исходных представлениях ее создателей, только система Коперника могла привести к концептуальному перевороту в наших взглядах на природу - к закону всемирного тяготения, который описывает как движение планет, так и падение яблока на голову Ньютона, а в дальнейшем и к понятию поля.

Поэтому Галилей отрицал кеплеровское движение планет по эллипсам. Они с Кеплером обменивались письмами, которые были написаны в довольно-таки раздражительном тоне*. И это несмотря на их полную поддержку одной и той же планетарной системы.

Итак, Галилей считал, что Земля движется вокруг Солнца по инерции. С точки зрения механики Ньютона это явная ошибка, так как на Землю действует гравитационная сила. Однако с точки зрения общей теории относительности Галилей должен быть прав: в силу этой теории, в гравитационном поле тела движутся по инерции по крайней мере тогда, когда их собственной гравитацией можно пренебречь. Такое движение происходит по так называемой геодезической кривой. В плоском пространстве это просто прямая мировая линия, а в случае планеты Солнечной системы это такая геодезическая мировая линия, которая отвечает эллиптической траектории, а не обязательно круговой. К сожалению, Галилей этого не мог знать.

Однако из общей теории относительности известно, что движение происходит по геодезической, только если можно пренебречь искривлением пространства самим движущимся телом (планетой) и считать, что оно искривляется исключительно гравитирующим центром (Солнцем). Возникает естественный вопрос: так прав ли был Галилей по поводу инерциальности движения Земли вокруг Солнца? И хотя это уже и не столь важный вопрос, так как теперь мы знаем причину, по которой люди не слетают с Земли, возможно, он имеет отношение к геометрическому описанию гравитации.

Как можно «увидеть» черную дыру?

[…] Перейдем теперь к обсуждению того, как черные дыры наблюдаются на звездном небе. Если черная дыра поглотила все вещество, которое ее окружало, то ее можно увидеть только через искажение лучей света от дальних звезд. То есть если бы недалеко от нас оказалась черная дыра в таком чистом виде, то мы увидели бы примерно то, что изображено на обложке. Но даже встретив подобное явление, нельзя быть уверенным, что это черная дыра, а не просто массивное, несветящееся тело. Требуется определенная работа, чтобы отличить одно от другого.

Однако в реальности черные дыры окружены облаками, содержащими элементарные частицы, пыль, газы, метеориты, планеты и даже звезды. Поэтому астрономы наблюдают нечто вроде картинки, изображенной на рис. 9. Но как они делают вывод, что это именно черная дыра, а не какая-нибудь звезда?

Рис. 9. Реальность гораздо прозаичней, и нам приходится наблюдать черные дыры в окружении различных небесных тел, газов и облаков пыли

Для начала выбирают определенного размера область на звездном небе, как правило, в двойной звездной системе или в активном ядре галактики. По спектрам излучения, исходящего из нее, определяется масса и поведение вещества в ней. Далее фиксируют, что от рассматриваемого объекта исходит излучение, как от падающих в гравитационном поле частиц, а не только от термоядерных реакций, идущих в недрах звезд. Излучение, являющееся, в частности, результатом взаимного трения падающей на небесное тело материи, содержит значительно более энергичное гамма-излучение, чем результат термоядерной реакции.

«Черные дыры окружены облаками, содержащими элементарные частицы, пыль, газы, метеориты, планеты и даже звезды»

Если наблюдаемая область достаточно мала, не является пульсаром и в ней сосредоточена большая масса, то делается вывод, что это черная дыра. Во-первых, теоретически предсказано, что после выгорания термоядерного топлива не существует никакого состояния вещества, которое могло бы создавать давление, способное предотвратить коллапс столь большой массы в столь маленькой области.

Во-вторых, как только что было подчеркнуто, рассматриваемые объекты не должны быть пульсарами. Пульсар - это нейтронная звезда, которая, в отличие от черной дыры, имеет поверхность и ведет себя как большой магнит, что является одной из тех самых более тонких характеристик электромагнитного поля, чем заряд. Нейтронные звезды, являясь результатом очень сильного сжатия исходных вращающихся звезд, совершают еще более быстрые вращения, ибо угловой момент должен сохраняться. Это приводит к тому, что такие звезды создают магнитные поля, меняющиеся во времени. Последние играют основную роль при образовании характерного пульсирующего излучения.

Все найденные на данный момент пульсары имеют массу меньше двух с половиной масс Солнца. Источники характерного энергичного гамма-излучения, масса которых превышает этот предел, не являются пульсарами. Как видно, этот предел массы совпадает с теоретическими предсказаниями, сделанными исходя из известных нам состояний вещества.

Все это, хотя и не является прямым наблюдением, представляет собой достаточно убедительную аргументацию в пользу того, что астрономы видят именно черные дыры, а не что-либо другое. Хотя что можно считать прямым наблюдением, а что нет - является большим вопросом. Ведь вы, читатель, видите не саму книгу, а лишь рассеянный ею свет. И только совокупность тактильных и визуальных ощущений убеждает вас в реальности ее существования. Точно так же и ученые делают вывод о реальности существования того или иного объекта на основании всей совокупности наблюдаемых ими данных.

Черная дыра, это и есть нейтронная звезда, точнее, черная дыра представляет собой одну из разновидностей нейтронных звезд.

Черня дыра, как и нейтронная звезда состоит из нейтронов. Причем, это не нейтронный газ, в котором нейтроны находятся в свободном состоянии, а очень плотная субстанция с плотностью атомного ядра.

Черные дыры и нейтронные звезды образуются в результате гравитационного коллапса, когда давление газа в звезде не может уравновесить её гравитационное сжатие. При этом звезда сжимается до очень маленького размера и очень большой плотности, так что электроны вдавливаются в протоны и образуются нейтроны.

Заметим, что среднее время жизни свободного нейтрона около 15 минут (период полураспада около 10 минут). Поэтому нейтроны в нейтронных звездах и в черных дырах могут быть только в связанном состоянии, как в атомных ядрах. Поэтому нейтронная звезда и черная дыра, это как бы атомное ядро макроскопических размеров, в котором нет протонов.

Отсутствие протонов, это одно отличие черной дыры и нейтронной звезды от атомного ядра. Второе отличие связано с тем, что в обычных атомных ядрах нейтроны и протоны "склеены" друг с другом с помощью ядерных сил (так называемое, "сильное" взаимодействие). А в нейтронных звездах нейтроны "склеены" с помощью гравитации.

Дело в том, что ядерным силам нужны еще и протоны для "склеивания" нейтронов друг с другом. Не существует таких ядер, которые состоят только из одних нейтронов. Обязательно должен быть хотя бы один протон. А для гравитации никакие протоны не нужны, чтобы "склеить" нейтроны друг с другом.

Еще одно отличие гравитации от ядерных сил заключается в том, что гравитация, это дальнодействующее взаимодействие, а ядерные силы, это короткодействующее взаимодействие. Поэтому атомные ядра не могут быть макроскопических размеров. Начиная с урана, все элементы периодической таблицы Менделеева имеют неустойчивые ядра, которые распадаются из-за того, что положительно заряженные протоны отталкиваются друг от друга и разрывают крупные ядра.

У нейтронных звезд и черных дыр такой проблемы нет, так как, во-первых, гравитационные силы дальнодействующие, а, во-вторых, в нейтронных звездах и черных дырах нет положительно заряженных протонов.

Нейтронная звезда и черная дыра под действием сил гравитации имеют форму шара, а точнее эллипсоида вращения, так как все нейтронные звезды (и черные дыры) вращаются вокруг своей оси. Причем достаточно быстро, с периодами вращения от нескольких секунд и меньше.

Дело в том, что нейтронные звезды и черные дыры образуются из обычных звезд путем их сильного сжатия под действием гравитации. Поэтому, по закону сохранения момента вращения, они должны очень быстро вращаться.

Является ли поверхность черных дыр и нейтронных звезд твердой? Не в смысле твердого тела, как агрегатного состояния вещества, а в смысле четкой поверхности шара, без нейтронной атмосферы. Видимо, да, черные дыры и нейтронные звезды имеют твердую поверхность. Нейтронная атмосфера и нейтронная жидкость, это нейтроны в свободном состоянии, значит, они должны распадаться.

Но это не значит, что, если мы, например, уроним на поверхность черной дыры или нейтронной звезды какое-нибудь "изделие" из нейтронов с плотностью атомного ядра, то оно останется лежать на поверхности звезды. Такое гипотетическое "изделие" тут же "всосется" во внутрь нейтронной звезды и черной дыры.

Отличие черных дыр от нейтронных звезд

Сила тяжести у черной дыры такая, что вторая космическая скорость на её поверхности превышает скорость света. Поэтому свет с поверхности черной дыры не может навсегда уйти в открытый космос. Гравитационные силы заворачивают луч света обратно.

Если на поверхности черной дыры находится источник света, то фотоны этого света сначала летят вверх, а потом поворачивают и падают обратно на поверхность черной дыры. Или эти фотоны начинают вращаться вокруг черной дыры по эллиптической орбите. Последнее имеет место на такой черной дыре, на поверхности которой первая космическая скорость меньше скорости света. В этом случае фотон может вырваться с поверхности черной дыры, но он превращается в постоянный спутник черной дыры.

А на поверхности всех остальных нейтронных звезд, которые не являются черными дырами, вторая космическая скорость меньше скорости света. Поэтому, если на поверхности такой нейтронной дыры находится источник света, то фотоны от этого источника света покидают поверхность такой нейтронной звезды по гиперболическим орбитам.

Понятно, что все эти рассуждения относятся не только к видимому свету, но и к любому электромагнитному излучению. То есть покинуть черную дыру не может не только видимый свет, но и радиоволны, инфракрасные лучи, ультрафиолетовое, рентгеновское и гамма-излучение. Максимум, что смогут фотоны этих излучений и волн, это начать вращаться вокруг черной дыры, если для данной черной дыры скорость света больше первой космической скорости на поверхности звезды.

Поэтому такие нейтронные звезды и называются так "черная дыра". От черной дыры ничего не вылетает, а всё что угодно может туда залететь. (Испарение черных дыр за счет квантового туннелирования здесь рассматривать не будем.)

То есть понятно, что никакой дырки в пространстве там на самом деле нет. Точно также, как нет никакой дырки в пространстве на месте расположения обычной нейтронной звезды или на месте обычной звезды.

Дырки в пространстве там есть только в книгах писателей-фантастов, в научно-популярных изданиях и телепередачах. Изданиям и телепередачам нужно финансово отбить затраты на тиражи и рейтинги. Поэтому им приходится эмоционально поражать своих читателей и телезрителей такими фактами, которые нельзя проверить при сегодняшнем уровне развития науки и техники, но которые могут появится в каких-нибудь математических моделях. (Непрофессиональная публика обычно не подозревает, что математические модели в физике всегда вторичны, что физика наука экспериментальная и что математические модели физических объектов имеют свойство в будущем меняться по мере появления новых экспериментальных данных.)

Если бы мы могли стоять на поверхности черной дыры, то посмотрев вверх мы бы увидели вместо звездного неба полупрозрачное зеркало. То есть мы видели бы там и окружающий космос (так как черная дыра принимает всё излучение отправленное к ней) и тот свет, который возвращается к нам обратно не сумев преодолеть гравитация. Этот возврат света обратно имеет эффект зеркала.

Точно такое же полупрозрачное "зеркало" на поверхности черной дыры имеет место и для других видов электромагнитного излучения (радиоволны, рентген, ультрафиолет и т.д.)

Этот пост - конспект к пятому занятию по программе курса по астрофизике для средней школы. Он содержит описание вспышек сверхновых, процессов образования нейтронных звезд (пульсаров) и черных дыр звездных масс как одиночных, так и в звездных парах. И несколько слов о коричневых карликах.


Сначала повторю картинку, показывающую классификацию типов звезд и их эволюции в зависимости от их масс:

1. Вспышки новых и сверхновых.
Выгорание гелия в недрах звезд завершается образованием красных гигантов и их вспышками как новых с образованием белых карликов или образованием красных сверхгигантов и их вспышками как сверхновых с образованием нейтронных звезд или черных дыр, а также туманностей из сброшенных этими звездами своих оболочек. Зачастую массы сбрасываемых оболочек превышают массы "мумий" этих звезд - нейтронных звезд и черных дыр. Для понимания масштабов этого явления приведу видео вспышки сверхновой 2015F в удаленной от нас на 50 млн. св. лет галактике NGC 2442:

Другой пример - сверхновая 1054 года в нашей Галактике, в результате вспышки которой образовались Крабовидная туманность и нейтронная звезда на расстоянии от нас в 6,5 тыс. св. лет. При этом масса образовавшейся нейтронной звезды ~ 2 солнечных масс, а масса сброшенной оболочки ~ 5 солнечных масс. Современники оценивали яркость этой сверхновой как примерно в 4-5 раз большую, чем у Венеры. Если бы такая сверхновая вспыхнула в тысячу раз ближе (6,5 св. лет), то она бы сверкала на нашем небе в 4000 раз ярче Луны, но в сотню раз слабее Солнца.

2. Нейтронные звезды.
Звезды больших масс (классов О, В, А ) после выгорания водорода в гелий и в процессе выгорания гелия преимущественно в углерод, кислород и азот входят в достаточно короткую стадию красного сверхгиганта и по завершении гелиево-углеродного цикла тоже сбрасывают оболочку и вспыхивают как "Сверхновые" . Их недра тоже сжимаются под действием гравитации. Но давление вырожденного электронного газа уже не может, как у белых карликов, остановить это гравитационное самосжатие. Поэтому температура в недрах этих звезд повышается и в них начинают идти термоядерные реакции, в результате которых образуются следующие элементы таблицы Менделеева. Вплоть до железа .

Почему именно до железа? Потому, что образование ядер с большим атомным номером идет не с выделением энергии, а с поглощением ее. А взять ее от других ядер не так то просто. Конечно, элементы с большим атомным номером в недрах этих звезд образуются. Но в гораздо меньшем количестве, чем железо.

А вот дальше эволюция расщепляется. Не слишком массивные звезды (классов А и частично В ) превращаются в нейтронные звезды . В которых электроны буквально впечатываются в протоны и большая часть тела звезды превращается в огромное нейтронное ядро. Состоящее из соприкасающихся и даже вжатых друг в друга обычных нейтронов. Плотность вещества в котором порядка нескольких миллиардов тонн в кубическом сантиметре. А типичный диаметр нейтронной звезды - порядка 10-20 километров. Нейтронная звезда - второй устойчивый тип "мумии" умершей звезды. Их массы, как правило, лежат в интервале от примерно 1,3 до 2,1 масс Солнца (по данным наблюдений).

Одиночные нейтронные звезды в оптике увидеть практически невозможно из-за их чрезвычайно низкой светимости. Но часть из них обнаруживают себя как пульсары . Что это такое? Практически все звезды обращаются вокруг своей оси и обладают достаточно сильным магнитным полем. Например, наше Солнце делает оборот вокруг своей оси примерно за месяц.

Теперь представьте себе, что его диаметр уменьшится сто тысяч раз. Ясно, что благодаря закону сохранения момента импульса вращаться оно будет гораздо быстрее. И магнитное поле такой звезды будет вблизи ее поверхности на много порядков сильнее солнечного. Большинство нейтронных звезд имеют период оборота вокруг своей оси в десятые - сотые доли секунды. Из наблюдений известно, что самый быстро вращающийся пульсар делает чуть более 700 оборотов вокруг своей оси в секунду, а самый медленно вращающийся делает один оборот за более чем 23 секунды.

А теперь представьте себе, что у такой звезды магнитная ось, как и у Земли, не совпадает с осью вращения. Жесткое излучение от такой звезды будет концентрироваться в узких конусах вдоль магнитной оси. И если этот конус будет с периодом вращения звезды "задевать" Землю, то эту звезду мы будем видеть как пульсирующий источник излучения. Наподобие вращаемого нашей рукой фонарика.

Такой пульсар (нейтронная звезда) образовался после вспышки сверхновой 1054 года, случившейся как раз во время визита кардинала Гумберта в Константинополь. По результатам которого произошел окончательный разрыв между католической и православной церквями. Сам этот пульсар совершает 30 оборотов в секунду. А сброшенная им оболочка массой ~ 5 масс Солнца выглядит как Крабовидная туманность :

3. Черные дыры (звездных масс).
Наконец, достаточно массивные звезды (классов О и частично В ) заканчивают свой жизненный путь третьим типом "мумии" - черной дырой . Такой объект возникает, когда масса остатка звезды настолько велика, что давление соприкасающихся нейтронов (давление вырожденного нейтронного газа) в недрах этого остатка не может противостоять его гравитационному самосжатию. Наблюдения показывают, что граница по массе между нейтронными звездами и черными дырами лежит в окрестности ~ 2,1 массы Солнца.

Напрямую одиночную черную дыру наблюдать невозможно. Ибо с ее поверхности (если она есть) никакая частица вырваться не может. Даже частица света - фотон.

4. Нейтронные звезды и черные дыры в двойных звездных системах.
Одиночные нейтронные звезды и черные дыры звездных масс практически не наблюдаемы. Но в случаях, если они являются одной из двух или более звезд в тесных звездных системах такие наблюдения становятся возможными. Поскольку своим тяготением могут "отсасывать" внешние оболочки остающихся пока нормальными звездами своих соседок.

При таком "отсасывании" вокруг нейтронной звезды или черной дыры образуется аккреционный диск , вещество которого частично "сползает" к нейтронной звезде или черной дыре и частично отбрасывается от нее в двух струях-джетах . Это процесс удается зафиксировать. Пример - двойная звездная системв SS433, одна компонента которой либо нейтронная звезда, либо черная дыра. А вторая - пока обычная звезда:

5. Коричневые карлики.
Звезды с массами заметно меньшей солнечной и вплоть до ~ 0,08 массы Солнца являются красными карликами класса М. Они будут работать на водородно-гелиевом цикле в течение времени большего, чем возраст Вселенной. В объектах с массами меньше этого предела по ряду причин стационарный долго работающий термояд не возможен. Такие звезды называют коричневыми карликами. Температура их поверхности настолько низка, что в оптике они почти не видны. Но светят в ИК-диапазоне. По совокупности этих причин их часто называют недозвездами .

Диапазон масс коричневых карликов - от 0,012 до 0,08 солнечных масс. Объекты с массой меньшей 0,012 массы Солнца (~ 12 масс Юпитера) могут быть только планетами. Газовыми гигантами. Излучающими за счет медленного гравитационного самосжатия заметно больше энергии, чем они получают от родительских звезд. Так, Юпитер по сумме всех диапазонов излучает примерно вдвое больше энергии, чем он получает от Солнца.

Гравитация является основным предметом многих из этих вопросов. Это - определяющая сила в космосе. Она удерживает планеты на их орбитах, связывает звезды и галактики, определяет судьбу нашей Вселенной.Созданное Исааком Ньютоном в 17-м веке теоретическое описание гравитации остается достаточно точным, чтобы вычислять траектории космических кораблей при полетах к Марсу, Юпитеру и еще дальше. Но после 1905 г., когда Альберт Эйнштейн показал в специальной теории относительности, что моментальная передача информации невозможна, физики поняли, что законы Ньютона перестанут быть адекватными, когда скорость вызванного гравитацией движения приблизится к скорости света. Однако, общая теория относительности Эйнштейна (опубликованная в 1916 г.), достаточно последовательно описывает даже те ситуации, когда гравитация чрезвычайно сильна.Общую теорию относительности рассматривают как один из двух столпов физики 20-го века; второй - это квантовая теория, революция в представлениях, предвосхитившая наше современное понимание атомов и их ядер. Интеллектуальный подвиг Эйнштейна был особенно впечатляющим, так как, в отличие от пионеров квантовой теории, у него не было стимула в виде экспериментальной проблемы.Только через 50 лет астрономы открыли объекты с достаточно сильным гравитационным полем, в котором могли проявиться наиболее характерные и яркие особенности теории Эйнштейна. В начале 60-х годов были обнаружены объекты с очень большой светимостью - квазары. Казалось, что для них необходим еще более эффективный источник энергии, чем ядерный синтез, благодаря которому светят звезды; гравитационный коллапс казался наиболее привлекательным объяснением. Американский теоретик Томас Голд выразил возбуждение, охватившее тогда теоретиков. В послеобеденном докладе на первой большой конференции о новом объекте релятивистской астрофизики, которая состоялась в Далласе в 1963 г., он сказал: "Релятивисты с их изощренными работами не только являются блестящим украшением культуры, но они могут быть полезны науке! Все довольны: релятивисты, которые чувствуют, что их труд признан, что они неожиданно стали экспертами в области, о существовании которой они и не подозревали; астрофизики, которые расширили свое поле деятельности... Все это очень приятно, будем надеяться, что это правильно."Наблюдения, использующие новые методы радио- и рентгеновской астрономии, поддержали оптимизм Голда. В 1950-х лучшие оптические телескопы мира были сосредоточены в Соединенных Штатах, в особенности в Калифорнии. Это перемещение из Европы произошло как из-за климатических, так и из-за финансовых причин. Однако радиоволны из космоса могут проходить сквозь облака, поэтому в Европе и Австралии новая наука - радиоастрономия - могла развиваться, не испытывая влияния погодных условий.Некоторые из самых сильных источников космического радиошума были идентифицированы. Одним была Крабовидная туманность - расширяющиеся остатки взрыва сверхновой, которую восточные астрономы наблюдали в 1054 г. Другие источники были удаленными внегалактическими объектами, в которых, как мы теперь понимаем, выработка энергии осуществлялась около гигантских черных дыр. Эти открытия были неожиданными. Физические процессы, ответственные за излучение радиоволн, которые сейчас достаточно хорошо поняты, не были предсказаны.Самым замечтельным неожиданным достижением радиоастрономии было открытие нейтронных звезд в 1967 г. Энтони Хьюишем и Джоселин Белл. Эти звезды - плотные остатки, остающиеся в центре после некоторых взрывов сверхновых. Они были открыты как пульсары: они вращаются (иногда с частотой несколько раз в секунду) и испускают мощный луч радиоволн, который проходит через нашу линию зрения один раз за оборот. Важность нейтронных звезд заключается в их экстремальных физических условиях: колоссальных плотностях, сильных магнитных и гравитационных полях.В 1969 г. очень быстрый (30 Гц) пульсар был обнаружен в центре Крабовидной туманности. Тщательные наблюдения показали, что частота импульсов постепенно уменьшается. Это было естественным, если энергия вращения звезды постепенно преобразуется в ветер из частиц, которые поддерживают свечение туманности в голубом свете. Интересно, что частота импульсов пульсара - 30 в секунду - так высока, что глаз видит его как постоянный источник. Если бы он был таким же ярким, но вращался медленнее - скажем, 10 раз в секунду - замечательные свойства этой маленькой звезды могли бы быть открыты еще 70 лет назад. Как изменилось бы развитие физики 20-го века, если бы сверхплотное вещество было открыто в 1920-х годах, до того как нейтроны были открыты на Земле? Хотя этого никто не знает, несомненно, что важность астрономии для фундаментальной физики была бы осознана гораздо раньше.Нейтронные звезды были обнаружены случайно. Никто не ожидал, что они будут излучать такие сильные и четкие радиоимпульсы. Если бы теоретиков в начале 1960-х годов спросили, как лучше всего обнаружить нейтронные звезды, большинство предложило бы искать рентгеновское излучение. Действительно, если нейтронные звезды излучают столько же энергии, как и обычные звезды, с гораздо меньшей площади, они должны быть достаточно горячими, чтобы испускать рентгеновские лучи. Таким образом, казалось, что астрономы, работающие в рентгеновском диапазоне, имели лучшие возможности открыть нейтронные звезды.Рентгеновские лучи от космических объектов, однако, поглощаются в земной атмосфере, и могут наблюдаться только из космоса. Рентгеновская астрономия, как и радиоастрономия, получила импульс к развитию в результате использования военных технологий и опыта. В этой области ученые из США заняли лидирующее положение, в особенности покойный Герберт Фридман и его коллеги из Военно-морской исследовательской лаборатории США. Их первые рентгеновские детекторы, установленные на ракетах, работали только по несколько минут, перед тем как упасть на землю. Большого прогресса рентгеновская астрономия добилась в 1970-х годах, когда НАСА запустило первый рентгеновский спутник, который собирал информацию в течение нескольких лет. Этот проект и многие последовавшие за ним показали, что рентгеновская астрономия открыла важное новое окно во Вселенную.Рентгеновские лучи излучаются необычно горячим газом и особенно мощными источниками. Поэтому на рентгеновской карте неба выделяются самые горячие и самые мощные объекты в космосе. Среди них - нейтронные звезды, в которых масса, по крайней мере не меньшая массы Солнца, сосредоточена в объеме с диаметром немногим больше 10 километров. Сила тяготения на них так сильна, что релятивистские поправки доходят до 30%.В настоящее время предполагается, что некоторые остатки звезд при коллапсе могут превзойти плотность нейтронных звезд и превратиться в черные дыры, которые искажают время и пространство еще больше, чем нейтронные звезды. Астронавт, который отважится попасть внутрь горизонта черной дыры, не сможет передать световые сигналы в окружающий мир - как будто само пространство засасывается внутрь быстрее, чем свет движется через него. Внешний наблюдатель никогда не узнает окончательную участь астронавта. Ему будет казаться, что любые часы, падая внутрь, будут идти все медленнее и медленнее. Так и астронавт будет как бы пригвозджен к горизонту, остановившись во времени.Российские теоретики Яков Зельдович и Игорь Новиков, исследовавшие, как искажается время около сколлапсировавших объектов, предложили в начале 1960-х термин "замерзшие звезды". Термин "черная дыра" был введен в употребление в 1968 г., когда Джон Уилер описал, как "свет и частицы, падающие снаружи... падают на черную дыру, только увеличивая ее массу и гравитационное притяжение".Черные дыры, которые являются финальным эволюционным состоянием звезд, имеют радиусы от 10 до 50 километров. Но сейчас существуют убедительные свидетельства того, что черные дыры с массами в миллионы или даже миллиарды масс Солнца, существуют в центрах большинства галактик. Некоторые из них проявляют себя как квазары - сгустки энергии, которые светят ярче всех звезд галактик, в которых они находятся, или как мощные источники космического радиоизлучения. Другие, включая черную дыру в центре нашей Галактики, не проявляют такой активности, но влияют на орбиты звезд, подходящих близко к ним.Черные дыры, если смотреть на них извне, являются стандартизированными объектами: не существует признаков, по которым можно было бы определить, как образовалась определенная черная дыра или какие объекты поглощены ей. В 1963 г. новозеландец Рой Керр обнаружил решение уравнений Эйнштейна, которые описывали сколлапсировавший вращающийся объект. "Решение Керра" приобрело очень важное значение, когда теоретики поняли, что оно описывает пространство-время около любой черной дыры. Коллапсирующий объект быстро приходит в стандартизированное состояние, характеризуемое всего двумя числами, измеряющими его массу и спин. Роджер Пенроуз, специалист в математической физике, который, возможно, сделал больше всех для возрождения теории относительности в 1960-х, заметил: "Есть какая-то ирония в том, что для самого странного и наименее знакомого астрофизического объекта - черной дыры - наша теоретическая картина наиболее полна".Обнаружение черных дыр проложило путь к проверке самых замечательных следствий теории Эйнштейна. Излучение таких объектов обусловлено в основном горячим газом, падающим по спирали в "гравитационную яму". Оно показывает сильный эффект Доплера, а также имеет дополнительное красное смещение из-за сильного гравитационного поля. Спектроскопическое исследование этого излучения, в особенности рентгеновского, позволит прозондировать поток очень близко к черной дыре и определить, согласуется ли форма пространства с предсказаниями теории.