Колебания: механические и электромагнитные. Свободные и вынужденные колебания

(лат. amplitude — величина) — это наибольшее отклонение колеблющегося тела от положения равновесия.

Для маятника это максимальное расстояние, на которое удаляется ша-рик от своего положения равновесия (рисунок ниже). Для колебаний с малыми амплитудами за такое расстояние можно принимать как длину дуги 01 или 02, так и длины этих отрезков.

Амплитуда колебаний измеряется в единицах длины — метрах , санти-метрах и т. д. На графике колебаний амплитуда определяется как макси-мальная (по модулю) ордината синусоидальной кривой, (см. рис. ниже).

Период колебаний.

Период колебаний — это наименьший промежуток времени, через который система, соверша-ющая колебания, снова возвращается в то же состояние, в котором она находилась в начальный момент времени, выбранный произвольно.

Другими словами, период колебаний (Т ) — это время, за которое совершается одно полное ко-лебание. Например, на рисунке ниже это время, за которое грузик маятника перемещается из крайней правой точки через точку равновесия О в крайнюю левую точку и обратно через точку О снова в крайнюю правую.

За полный период колебаний, таким образом, тело проходит путь, равный четы-рем амплитудам. Период колебаний измеряется в единицах времени — секундах , минутах и т. д. Период колебаний может быть определен по известному графику колебаний, (см. рис. ниже).

Понятие «период колебаний», строго говоря, справедливо, лишь когда значения колеблющей-ся величины точно повторяются через определенный промежуток времени, т. е. для гармоничес-ких колебаний. Однако это понятие применяется также и для случаев приблизительно повторяю-щихся величин, например, для затухающих колебаний .

Частота колебаний.

Частота колебаний — это число колебаний, совершаемых за единицу времени, например, за 1 с .

Единица частоты в СИ названа герцем (Гц ) в честь немецкого физика Г. Герца (1857-1894). Если частота колебаний (v ) равна 1 Гц , то это значит, что за каждую секунду совершается одно колебание. Частота и период колебаний связаны соотношениями:

В теории колебаний пользуются также понятием циклической , или круговой частоты ω . Она связана с обычной частотой v и периодом колебаний Т соотношениями:

.

Циклическая частота — это число колебаний, совершаемых за секунд.

Можно теперь ответить на вопрос, поставленный в § 5: что означает отсутствие определенной частоты у негармонического периодического колебания периода ?

Согласно теореме Фурье такое периодическое колебание представляет собой набор гармонических колебаний и, следовательно, характеризуется не одной частотой, а набором частот и т. д., т. е. кратных наиболее низкой (основной) частоте .

Рассмотрим осциллограммы колебаний, имеющих одинаковый период , но различных по своей форме. Пример таких осциллограмм мы имели на рис. 6, где было изображено несколько различных периодических колебаний одного и того же периода. По теореме Фурье каждое из этих колебаний является суммой гармонических колебаний, причем и основная частота , и ее обертоны и т. д. у всех рассматриваемых периодических колебаний одинаковы, так как одинаков период .

Но если частоты гармоник одни и те же, то с чем связано различие формы наших периодических колебаний?

Попробуем выяснить этот вопрос на примерах сложения гармонических колебаний. Это сложение осуществляется по общим правилам сложения движений (см. том I, § 6). Если складываемые перемещения происходят вдоль одной прямой, то результирующее перемещение равно алгебраической сумме складываемых перемещений. Отсюда вытекает и графический способ сложения колебании, которым мы будем сейчас пользоваться.

Рис. 30. Сумма гармонического колебания и его первого обертона

На рис. 30 штриховой линией показаны развертки (осциллограммы) двух гармонических колебаний - основного тона и первого обертона. Прямая линия соответствует положению равновесия. В какой-то момент времени, т. е. в какой-то точке этой прямой линии, имеем отрезки и , изображающие отклонения от положения равновесия, вызванные каждым из колебаний в этот момент. Сложив эти отрезки, мы получаем отрезок , изображающий результирующее отклонение в точке . Выполнив такое построение для ряда точек на прямой (с учетом знаков отклонений, т. е. плюс - вверх, минус - вниз), соединим концы всех результирующих отрезков линией. Мы получим развертку суммарного колебания (сплошная кривая на рисунке). Оно имеет тот же период, что и основная гармоника, но форма его несинусоидальная.

Попробуем теперь вдвое уменьшить амплитуду обертона. Результат сложения в этом случае показан на рис. 31. На рис. 32 амплитуды обеих гармоник те же, что и на рис. 30, но обертон сдвинут по времени на четверть своего периода. Наконец, на рис. 33 обе гармоники взяты такими же, как на рис. 30, но добавлен еще второй обертон. Во всех случаях результирующие колебания получаются с одним и тем же периодом, но совершенно различными по форме.

Рис. 31. То же, что на рисунке 30, но амплитуда обертона вдвое меньше

Итак, различие формы периодических колебаний связано с тем, сколько гармоник входит в их состав, с какими они входят амплитудами и фазами.

Рис. 32. То же, что на рисунке 30, но обертон сдвинут на четверть своего периода

Мы брали для простоты всего две или три складываемые гармоники; но формы периодических колебаний могут быть (и чаще всего бывают) такими, что количество обертонов будет очень большим и даже бесконечно большим. При этом для всякой формы периодического колебания каждая его гармоника имеет вполне определенную амплитуду и фазу. Стоит изменить амплитуду или фазу хотя бы одной-единственной гармоники, и форма результирующего периодического колебания в какой-то мере изменится.

Впрочем, очень часто изменения формы колебаний, обусловленные фазами гармоник, т. е. их сдвигами повремени, не играют роли в физическом явлении и поэтому не представляют интереса. Именно так, в частности, обстоит дело по отношению к звуковым колебаниям, к которым мы обратимся в следующих параграфах. В таких случаях нам важно знать лишь частоты и амплитуды гармоник, входящих в состав данного сложного колебания. Набор этих частот и амплитуд называется гармоническим спектром (или просто спектром) данного колебания.

Рис. 33. То же, что на рисунке 30, но добавлен второй обертон

Рис. 34. Периодическое колебание в форме толчков и спектр такого колебания

Спектры можно изображать в виде очень наглядных графиков, откладывая в определенном масштабе по горизонтальной оси частоты (или номера) гармоник, а по вертикали - их амплитуды. На рис. 34 показана осциллограмма колебания, представляющего собой периодические выбросы в одну сторону. Так меняется со временем, например, действующая периодическими толчками сила. В нижней части рисунка показан спектр этого колебания. Положение каждой линии определяет номер соответствующей гармоники и, следовательно, ее частоту, а высота линии - амплитуду этой гармоники.

Общая характеристика колебаний

Ритмические процессы любой природы, характеризующиеся повторяемостью во времени, называются колебаниями.

Колебание – процесс, характеризующийся повторяемостью во времени параметров, его описывающих. Единство закономерностей ритмических процессов позволило разработать единый математический аппарат для их описания – теорию колебаний. Существуют множество признаков, по которым могут быть классифицированы колебания.

По физической природе колеблющейся системы различают механические и электромагнитные колебания.

Колебания называются периодическими, если величина, характеризующая состояние системы, повторяется через равные промежутки времени – период колебания.

Период (T ) - минимальное время, через которое повторяется состояние колебательной системы, т.е. время одного полного колебания.

Для таких колебаний

x(t)=x(t+T) ;(3. 1)

Периодическими являются колебания маятника часов, переменный ток, биение сердца, а колебания деревьев под порывом ветра, курсов иностранных валют – не периодические.

Кроме периода в случае периодических колебаний определена их частота.

Частота ()т.е. число колебаний в единицу времени.

Частота -величина, обратная периоду колебания,

Единицей измерения частоты являетсяГерц: 1 Гц = 1 с -1 , частота соответствующая одному колебанию в секунду. При описании периодических колебаний также используется циклическая частота – число колебаний за 2π секунд:

При периодических колебаниях эти параметры постоянны, а при других колебаниях могут изменяться.

Закон колебаний – зависимость колеблющейся величины от времени x(t) - может быть может быть разной. Наиболее простыми являются гармонические колебания (рис3.1), для которых колеблющаяся величина меняется по закону синуса или косинуса, что позволяет использовать одну функцию для описания процесса во времени:

Здесь: x (t) – значение колеблющейся величины в данный момент времени t , А амплитуда – наибольшее отклонение колеблющейся величины от среднего значения., ω – циклическая частота, (ωt+φ ) – фаза колебания , φ – начальная фаза.

Гармоническому закону подчиняются многие известные колебательные процессы. в т.ч. упомянутые выше, но наиболее существенно что с помощью метода Фурье любая периодическая функция раскладывающаяся на гармонические составляющие (гармоники ) с кратными частотами:

f (t )= А + А 1 cos( t + )+ А cos (2 t+ )+…; (3.5)

Здесь основная частота определяется периодом процесса: .

Каждая гармоника характеризуется частотой () и амплитудой (А ). Совокупность гармоник называется спектром . Спектры периодических колебаний дискретные (линейчатые) (рис.3.1а), а не периодических непрерывные (рис.3.1б) .

Рис. 3.1 Дискретные (а) и непрерывные (б) спектры сложных колебательных

Виды колебаний

Колебательная система обладает определенной энергией, за счет которой совершаются колебания. Энергия зависит от амплитуды и частоты колебаний.

Колебания подразделяются на следующие виды: свободные или собственные, затухающие, вынужденные, автоколебания.

Свободные колебания совершаются в системе, однократно выведенной из положения равновесия и в дальнейшем предоставленной самой себе. При этом колебания происходят с собственной частотой (), которая не зависит от их амплитуды, т.е. определяется свойствами самой системы.

В реальных условиях колебания всегда являются затухающими , т.е. со временем происходит уменьшение энергии за счет ее диссипации и как следствие уменьшается амплитуда колебаний. Диссипация – необратимый переход части энергии упорядоченных процессов («энергии порядка») в энергию беспорядочных процессов («энергию хаоса»). Диссипация происходит в любой колеблющейся открытой системе.

Для создания незатухающих колебаний в реальных системах необходимо периодическое внешнее воздействие – периодическое пополнение энергии, теряемой за счет диссипации. Гармонические колебания, происходящие за счет внешнего периодического воздействия («вынуждающей силы»), называются вынужденными . Их частота совпадает с частотой вынуждающей силы (), а амплитуда оказывается зависящей от соотношения между частотой силы и собственной частотой системы. Важнейшим эффектом, осуществляющимся при вынужденных колебаниях, является резонанс – резкое возрастание амплитуды при приближении частоты вынужденных колебаний к собственной частоте колебательной системы. Резонансная частота тем ближе к собственной, а максимум амплитуды тем больше, чем меньше диссипация.

Автоколебания – незатухающие колебания, происходящие за счет источника энергии, вид и работа которого определяется самой колебательной системой. При автоколебаниях основные характеристики – амплитуда, частота – определяются самой системой. Это отличает данные колебания как от вынужденных, при которых эти параметры зависят от внешнего воздействия, так и от собственных, при которых внешнее воздействие задает амплитуду колебания. Простейшая автоколебательная система включает в себя:

колебательную систему (с затуханием),

усилитель колебаний (источник энергии),

нелинейный ограничитель (клапан),

звено обратной связи

При автоколебаниях для их установления важна нелинейность, управляющая поступлениями и тратами энергии источника, и позволяющая установить колебания определенной амплитуды. Примерами автоколебательных систем являются: механической - маятниковые часы, термодинамической – тепловой двигатель, электромагнитной – ламповый генератор, оптической – лазер (оптический квантовый генератор). Схема лазера представлена на рис.4.5. Здесь колебательная система – оптически активная среда, заполняющая оптический резонатор, имеется внешний источник энергии, обеспечивающий процесс «накачки», клапан и обратная связь – полупрозрачное зеркало на выходе оптического резонатора, нелинейность определяется условиями вынужденного излучения.

Во всех автоколебательных системах обратная связь регулирует включение внешнего источника и поступление в колебательную систему энергии: пока поступление энергии (вклад) выше потери, происходит самовозбуждение (раскачка), колебания в системе усиливаются; когда потеря энергии становится равной ее поступлению, клапан закрывается. Система колеблется в стационарном режиме с постоянной амплитудой; при возрастании потери амплитуда уменьшается, и вновь открывается клапан, возрастает вклад, амплитуда восстанавливается, клапан закрывается.

МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ

1. Колебания. Характеристики гармонических колебаний.

2. Свободные (собственные) колебания. Дифференциальное уравнение гармонических колебаний и его решение. Гармонический осциллятор.

3. Энергия гармонических колебаний.

4. Сложение одинаково направленных гармонических колебаний. Биение. Метод векторной диаграммы.

5. Сложение взаимно перпендикулярных колебаний. Фигуры Лиссажу.

6. Затухающие колебания. Дифференциальное уравнение затухающих колебаний и его решение. Частота затухающих колебаний. Изохронность колебаний. Коэффициент, декремент, логарифмический декремент затухания. Добротность колебательной системы.

7. Вынужденные механические колебания. Амплитуда и фаза вынужденных механических колебаний.

8. Механический резонанс. Соотношение между фазами вынуждающей силы и скорости при механическом резонансе.

9. понятие об автоколебаниях.

Колебания. Характеристики гармонических колебаний.

Колебания – движение или процессы, обладающие той или иной степенью повторности во времени.

Гармонические (или синусоидальные) колебания – разновидность периодических колебаний, которые могут быть заменены в виде

где a – амплитуда, - фаза, - начальная фаза, - циклическая частота, t – время (т.е. применяются со временем по закону синуса или косинуса).

Амплитуда (а) – наибольшее отклонение от среднего значения величины, совершающей колебания.

Фаза колебаний () – изменяющийся аргумент функции, описывающей колебательный процесс (величина t+ , стоящая под знаком синуса в выражении (1)).

Фаза характеризует значение изменяющейся величины в данный момент времени. Значение в момент времени t=0 называется начальной фазой ( ).

В качестве примера на рисунке 27.1 представлены математические маятники в крайних положениях с разностью фаз колебаний =0 (27.1.а) и = (27.1б)



Разность фаз колебаний маятников проявляется отличием в положении колеблющихся маятников.

Циклической или круговой частотой называется количество колебаний, совершаемое за 2 секунд.



Частотой колебаний (или линейной частотой ) называется число колебаний в единицу времени. За единицу частоты принимается частота таких колебаний, период которых равен 1с. Эту единицу называют Герц (Гц).

Промежуток времени, за который совершается одно полное колебание, а фаза колебания получает приращение, равное 2 , называется периодом колебания (рис. 27.2).


Частота связана с пе-

риодом Т соотношении-

t


X

Поделив обе части уравнений на m

и перенеся в левую часть

Обозначив , получим линейное дифференциальное однородное уравнение второго порядка

(2)

(линейное – т.е. и сама величина х, и ее производная в первой степени; однородное – т.к. нет свободного члена, не содержащего х; второго порядка – т.к. вторая производная х).

Уравнение (2) решается (*) подстановкой х = . Подставляя в (2) и проводя дифференцирование

.

Получаем характеристическое уравнение

Это уравнение имеет мнимые корни: ( -мнимая единица).

Общее решение имеет вид

где и - комплексные постоянные.

Подставляя корни, получим

(3)

(Замечание: комплексным числом z называется число вида z = x + iy, где x,y – вещественные числа, i – мнимая единица ( = -1). Число х называется вещественной частью комплексного числа z.. Число у называется мнимой частью z).


(*) В сокращенном варианте решение можно опустить

Выражение вида можно представить в виде комплексного числа с помощью формулы Эйлера

аналогично

Положим и в виде комплексных постоянных = А , а = А , где А и произвольные постоянные. Из (3) получим

Обозначив получим

Используя формулу Эйлера

Т.е. получим решение дифференциального уравнения для свободных колебаний

где - собственная круговая частота колебаний, А – амплитуда.

Смещение х применяется со временем по закону косинуса, т.е. движение системы под действием упругой силы f = -кх представляет собой гармоническое колебание .

Если величины, описывающие колебания некоторой системы периодически изменяются со временем, то для такой системы пользуются термином «осциллятор ».

Линейным гармоническим осциллятором называется такой, движение которого описывается линейным уравнением .

3. Энергия гармонических колебаний . Полная механическая энергия системы, изображенной на рис. 27.2 равна сумме механической и потенциальной энергий.

Продифференцируем по времени выражение ( , получим

A sin( t + ).

Кинетическая энергия груза (массой пружины пренебрегаем) равна

E = .

Потенциальная энергия выражается известной формулой подставляя х из (4), получим

Полная энергия

величина постоянная. В процессе колебаний потенциальная энергия переходит в кинетическую и наоборот, но каждая энергия остается неизменной.

4. Сложение одинаково направленных колебаний.. Обычно одно и то же тело участвует в нескольких колебаниях. Так, например, звуковые колебания, воспринимаемые нами при слушании оркестра представляют собой сумму колебаний воздуха, вызываемых каждым из музыкальных инструментов в отдельности. Амплитуды обоих колебаний будем полагать одинаковыми и равными а. Начальные фазы для упрощения задачи положим равными нулю. Тогдабиениями. За это время разность фаз изменяется на , т.е.

Таким образом период биений

Колебательными называются процессы, при которых параметры, характеризующие состояние колебательной системы, обладают опре­делённой повторяемостью во времени. Такими процессами, например, могут являться суточные и годовые колебания температуры атмо­сферы и поверхности Земли, колебания маятников и т.д.

Если про­межутки времени, через которые состояние системы повторяется, равны между собой, то колебания называются периодическими , а про­межуток времени между двумя последовательными одинаковыми состояниями системы – периодом колебаний .

Для периодических колебаний функция, определяющая состояние колеблющейся системы, повторя­ется через период колебаний:

Среди периодических колебаний особое место занимают коле­бания гармонические , т.е. колебания, при которых характеристики движения системы изменяются по гармоническому закону, например:

Наибольшее внимание, уделяемое в теории колебаний именно часто встречающимся на практике гармоническим процессам, объяс­няется как тем, что для них наиболее хорошо развит аналитический аппарат, так и тем, что любые периодические колебания (и не толь­ко периодические) могут быть рассмотрены в виде определённой комбинации гармонических составляющих. В силу этих причин далее будут рассмотрены преимущественно гармонические колебания. В аналитическом выражении гармонических колебаний ве­личина x отклонения материальной точки от положения равно­весия называется смещением .

Очевидно, что максимальное отклонение точки от положения равновесия равно a, эта величина называется амплитудой колебаний . Физическая величина, равная:

и определяющая состояние колеблющейся системы в данный момент вре­мени, называется фазой колебаний . Значение фазы в момент начала от счёта времени

называется начальной фазой колебаний . Величина w в выражении фазы колебаний, определяющая быстроту колебательного процесса, называется его круговой или циклической частотой колебаний.

Состояние движения при периодических колебаниях должно повторяться через промежутки времени, равные периоду колебаний T. При этом, очевидно, фаза колебаний должна изменятся на 2p (период гармонической функции), т.е.:

Отсюда следует, что период колебаний и циклическая частота связаны между собой соотношением:

Скорость точки, закон движения которой определяется, также изменяется по гармоническому закону

Отметим, что смещение и скорость точки неодновременно обращаются в нуль или принимают максимальные значения, т.е. смешение и скорость отличаются по фазе.

Аналогично получаем, что ускорение точки равно:

Из выражения для ускорения видно, что оно смещено по фазе относительно смещения и скорости. Хотя смешение и ускорение одновременно проходят через нуль, в этот момент времени они имеют противоположные направления, т.е. смещены на p. Графики зависимостей смещения, скорости и ускорения от времени при гармонических колебаниях представлены условном масштабе на рисунке

Из закона гармонического движения, пользуясь формулами тригонометрических преобразований, можно записать:

Собственные колебания.

Основные особенности собственных колебаний рассмотрим на примере механической колебательной системы с одной степенью свободы, т.е. такой системы, положение которой можно в любой момент времени определять только одной координатой. Будем счи­тать, что размеры тела достаточно малы, чтобы его можно было рассматривать как материальную точку. Предположим, что при выводе тела из положения равновесия на него будут действовать силы, пропорциональные смещению и направленные противоположно этому смещению -kx. Как говори­лось выше, трением, сопротивлением среды можно пренебречь. Внутренние же силы, величина и направление которых определя­ются смещением из положения равновесия, могут быть, например, силами упругости или силами другой природы, но изменяющимися так же, как и упругие . Такие силы, независимо от их природы, будем называть "квазиупругими" . С учётом этих сил дифференциальное уравнение движения принимает вид

Решением дифференциального уравнения движения имеет вид гармонической функции

Строгое доказательство этого даёт теория дифференциаль­ных уравнений, мы же легко можем убедиться в справедливости этого утверждения путём подстановки решения в уравнение

Как видно, равенство будет соблюдаться для любого момен­та времени, если:

Действительно, отношение можно представить в виде квадрата некоторой величины, поскольку масса тела, коэффициент упругости и, следовательно, само отношение положительны. Как коэффициент k , так и масса тела являются внутренними парамет­рами колебательной системы, поэтому циклическая частота коле­баний w не зависит от начальных условий. От начальных условий зависит только амплитуда колебаний и начальная фаза, которые можно найти из начальных условий, как это было показано ранее. Скорость и ускорение тела при собственных колебаниях так­же изменяются по гармоническому закону:

Затухающие колебания.

Выясним теперь характер колебаний рассмотренной системы при наличии трения. При этом будем полагать, что силы трения пропорциональны скорости тела и противоположно ей направлены. Такими силами, например, являются силы вязкого трения при до­статочно малых скоростях движения тела. Если тело выведено из положения равновесия на величину x и при этом имеет скорость , то на него будут действовать квазиупругая сила F=-kx и сила сопротивления движению , где, m - коэффициент сопротивления. По второму закону динамики напишем дифференциаль­ное уравнение движения

Введём обозначения и . C учётом этих обозначений дифференциальное уравнение принимает вид

Исходя из сказанного, решение уравнения будем искать в виде

Если выражение

действительно является решением урав­нения, то после подстановки в мы должны получить тождество:

Очевидно, тождество будет выполняться для любого произ­вольного момента времени, если будут выполняться следующие условия

Из условия получаем дифференциальное уравнение для определения амплитуды колебаний

Разделяя переменные, получаем уравнение, удобное для ин­тегрирования

Решением этого уравнения является функция ,

где А 0 - постоянная интегрирования, которую можно определить из начальных условий.

частота колебаний действительно отличается от частоты собственных колебаний и равна