Работа силы тяжести,упругой силы,пары сил. Работа силы тяжести


Готовые работы

ДИПЛОМНЫЕ РАБОТЫ

Многое уже позади и теперь ты - выпускник, если, конечно, вовремя напишешь дипломную работу. Но жизнь - такая штука, что только сейчас тебе становится понятно, что, перестав быть студентом, ты потеряешь все студенческие радости, многие из которых, ты так и не попробовал, всё откладывая и откладывая на потом. И теперь, вместо того, чтобы навёрстывать упущенное, ты корпишь над дипломной работой? Есть отличный выход: скачать нужную тебе дипломную работу с нашего сайта - и у тебя мигом появится масса свободного времени!
Дипломные работы успешно защищены в ведущих Университетах РК.
Стоимость работы от 20 000 тенге

КУРСОВЫЕ РАБОТЫ

Курсовой проект - это первая серьезная практическая работа. Именно с написания курсовой начинается подготовка к разработке дипломных проектов. Если студент научиться правильно излагать содержание темы в курсовом проекте и грамотно его оформлять, то в последующем у него не возникнет проблем ни с написанием отчетов, ни с составлением дипломных работ, ни с выполнением других практических заданий. Чтобы оказать помощь студентам в написании этого типа студенческой работы и разъяснить возникающие по ходу ее составления вопросы, собственно говоря, и был создан данный информационный раздел.
Стоимость работы от 2 500 тенге

МАГИСТЕРСКИЕ ДИССЕРТАЦИИ

В настоящее время в высших учебных заведениях Казахстана и стран СНГ очень распространена ступень высшего профессионального образования, которая следует после бакалавриата - магистратура. В магистратуре обучаются с целью получения диплома магистра, признаваемого в большинстве стран мира больше, чем диплом бакалавра, а также признаётся зарубежными работодателями. Итогом обучения в магистратуре является защита магистерской диссертации.
Мы предоставим Вам актуальный аналитический и текстовый материал, в стоимость включены 2 научные статьи и автореферат.
Стоимость работы от 35 000 тенге

ОТЧЕТЫ ПО ПРАКТИКЕ

После прохождения любого типа студенческой практики (учебной, производственной, преддипломной) требуется составить отчёт. Этот документ будет подтверждением практической работы студента и основой формирования оценки за практику. Обычно, чтобы составить отчёт по практике, требуется собрать и проанализировать информацию о предприятии, рассмотреть структуру и распорядок работы организации, в которой проходится практика, составить календарный план и описать свою практическую деятельность.
Мы поможет написать отчёт о прохождении практики с учетом специфики деятельности конкретного предприятия.

Работа силы тяжести. Решение задач

Цель урока: определить формулу для работы силы тяжести; определить, что работы силы тяжести не зависит от траектории движения тела; развить практические навыки по решению задач.

Ход урока.

1.Организационный момент. Приветствие учащихся, проверка отсутствующих, постановка цели урока.

2.Проверка домашней работы.

3.Изучение нового материала. На предыдущем уроке мы с вами определили формулу для определения работы. Какой формулой определяется работа постоянной силы? (А= FScosα )

Что такое А и S ?

Теперь же применим эту формулу для силы тяжести. Но для начала вспомним, чему равна сила тяжести? (F = mg )

Рассмотрим случай а) тело падает вертикально вниз. Как мы с вами знаем сила тяжести всегда направленно строго вниз. Для того чтобы определить направление S необходимо вспомнить определение. (Перемещение-это вектор соединяющий начальную и конечную точку. Направлен он от начала к концу)

Т.о. для определения , Так как направление перемещения и силы тяжести совпадают, то α =0 и работа силы тяжести равна:

Рассмотрим случай б) тело двигается вертикально вверх. Т.к. направление силы тяжести и перемещении противоположны, то то α =0 и работа силы тяжести равна .

Т.о. образом если сравнить две формулы по модулю, то они будут одинаковы.

Рассмотрим случай в) тело движется по наклонной плоскости. Работа силы равна скалярному произведению вектора силы на вектор перемещения тела, совершённого под действием данной силы, то есть работа сила тяжести в данном случае будет равна , где – угол между векторами силы тяжести и перемещения. На рисунке видно, что перемещение () представляет собой гипотенузу прямоугольного треугольника, а высота h – катет. Согласно свойству прямоугольного треугольника:

.Следовательно

Т.о. какой можно сделать вывод? (что работа силы тяжести не зависит от траектории движения.)

Рассмотрим последний пример, когда траектория движения будет замкнутая линия. Кто скажет чему будет равна работа и почему? (А=0, т.к. перемещение равно 0)

Отметим!: работа силы тяжести при движении тела по замкнутой траектории равна нулю.

4. Закрепление материала.

Задача 1. Охотник стреляет со скалы под углом 40° к горизонту. За время падения пули работа силы тяжести составила 5 Дж. Если пуля вошла в землю на расстоянии 250 м от скалы, то какова её масса?

Задача 2. Находясь на Нептуне, тело совершило перемещение так, как показано на рисунке. При этом перемещении работа силы тяжести составила 840 Дж. Если масса данного тела равна 5 кг, то каково ускорение свободного падения на Нептуне?

5. Домашнее задание.

Работа силы тяжести - раздел Философия, Теоретическая механикакраткий курс конспект лекций по теоретической механике При Вычислении Работы Силы Тяжести Будем Считать, Что Мы Расс...

Направим ось вертикально вверх. Точка с массой перемещается по некоторой траектории из положения в положение (Рис.6.2). Проекции силы тяжести на оси координат равны: где – ускорение свободного падения.

Вычислим работу силы тяжести. Используя формулу (6.3), получаем:

Как видно, сила тяжести – потенциальная сила. Ее работа не зависит от траектории точки, а определяется перепадом высот между начальным и конечным положениями точки, будучи равной убыли потенциальной энергии материального тела.

Таким образом,

(6.13)

Работа силы тяжести положительна, если точка теряет высоту (опускается) и отрицательна, если точка набирает высоту.

Конец работы -

Эта тема принадлежит разделу:

Теоретическая механикакраткий курс конспект лекций по теоретической механике

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования.. московский государственный строительный университет..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Основные законы механики
Теоретическая механика относится к числу так называемых аксиоматических наук. В ее основе лежит система исходных положений – аксиом, принимаемых без доказательства, но проверенных не только прямыми

Аксиома 3
Две материальные точки взаимодействуют с силами, равными по модулю и направленными по одной прямой в противоположные стороны (Рис.!.2). Аксиома 4(Принцип

Скорость точки
Быстроту движения точки характеризует ее скорость, к определению которой мы сейчас переходим. Пусть в момент времени

Ускорение точки
Быстроту изменения вектора скорости характеризует ускорение точки. Пусть в момент времени точка нах

Аксиома 3
Система двух сил, приложенная к абсолютно твердому телу, уравновешена (эквивалентна нулю) тогда и только тогда, когда эти силы равны по модулю и действуют по одной прямой в противоположные

Момент силы относительно точки
Пусть дана сила, приложенная в точке

Момент силы относительно оси
Моментом силы относительно оси называется проекция на ось момента силы, вычисленного относительно любой точки этой оси:

Пара сил
Парой сил называется система двух сил, равных по модулю и действующих по параллельным прямым в противоположные стороны. Плоскость, в ко

Дифференциальные уравнения движения механической системы
Рассмотрим механическую систему, состоящую из материальных точек. Для каждой точки системы в инерциальной системе о

Основные свойства внутренних сил
Рассмотрим две любые точки механической системы и

Теорема об изменении количества движения механической системы
Сложим почленно все равенства (3.1): Учитывая первое основное св

Теорема об изменении кинетического момента
Умножим каждое из уравнений (3.1) слева векторно на радиус–вектор соответствующей точки и сложим

Условия равновесия
Остановимся на вопросах равновесия материальных тел, которые составляют существенную часть раздела "Статика" курса теоретической механики. Под равновесием в механике традиционно

Равновесие системы сил, линии действия которых лежат в одной плоскости
Во многих практически интересных случаях тело находится в равновесии под действием системы сил, линии действия которых расположены в одной плоскости. Примем эту плоскость за координатную

Расчет ферм
Особое место в ряду статических задач занимает расчет ферм. Фермой называется жесткая конструкция из прямолинейных стержней (Рис.3.3). Если все стержни фермы и вся приложенная к ней

Равновесие тела при наличии трения
Как известно, при скольжении тела по опорной поверхности возникает сопротивление, тормозящее скольжение. Это явление учитывается путем введения в рассмотрение силы трения.

Центр параллельных сил
Это понятие вводится для системы параллельных сил, имеющих равнодействующую, причем точки приложения сил системы – точки

Центр тяжести тела
Рассмотрим материальное тело, расположенное вблизи поверхности Земли (в поле земного притяжения). Допустим сначала, что тело состоит из конечного числа материальных точек, другими словами – частиц,

Центр масс механической системы. Теорема о движении центра масс
Инерционные свойства материального тела определяются не только его массой, но и характером распределения этой массы в теле. Существенную роль в описании такого распределения играет положение центра

ЛЕКЦИЯ 5
5.1. Движение абсолютно твёрдого тела Одной из важнейших задач механики является описание движения абсолютно твердого тела. В общем случае различные точки

Поступательное движение твердого тела
Поступательным называется движение твердого тела, при котором любая прямая, проведенная в теле, остается параллельной своему первоначальному положению во все время движения.

Кинематика вращательного движения твердого тела
При вращательном движении в теле существует единственная прямая, все точки которой

Скоростью тела
Окончательно получаем: (5.4) Формула (5.4) называется формулой Эйлера. На Рис.5.

Дифференциальное уравнение вращательного движения твердого тела
Вращение твердого тела, как и любое другое движение, происходит в результате воздействия внешних сил. Для описания вращательного движения используем теорему об изменении кинетического момента относ

Кинематика плоскопараллельного движения твердого тела
Движение тела называется плоскопараллельным, если расстояние от любой точки тела до некоторой неподвижной (основной) плоскости остается неизменным во все время движения

Дифференциальные уравнения плоскопараллельного движения твердого тела
При изучении кинематики плоско-параллельного движения твердого тела за полюс можно принимать любую точку тела. При решении задач динамики за полюс всегда принимают центр масс тела, а в качестве под

Система Кенига. Первая теорема Кенига
(Изучить самостоятельно) Пусть система отсчета неподвижная (инерциальная). Система

Работа и мощность силы. Потенциальная энергия
Половина произведения массы точки на квадрат ее скорости называется кинетической энергией материальной точки. Кинетической энергией механической системы назы

Теорема об изменении кинетической энергии механической системы
Теорема об изменении кинетической энергии относится к числу общих теорем динамики наряду с доказанными ранее теоремами об изменении количества движения и изменения момента количеств

Работа внутренних сил геометрически неизменяемой механической системы
Заметим, что в отличие от теоремы об изменении количества движения и теоремы об изменении кинетического момента в теорему об изменении кинетической энергии в общем случае входят внутренние силы.

Вычисление кинетической энергии абсолютно твердого тела
Получим формулы для вычисления кинетической энергии абсолютно твердого тела при некоторых его движениях. 1. При поступательном движении в любой момент времени скорости всех точек тела один

Работа внешних сил, приложенных к абсолютно твердому телу
В разделе "Кинематика" установлено, что скорость любой точки твердого тела геометрически складывается из скорости точки, принятой за полюс, и скорости, полученной точкой при сферическом д

Работа упругой силы
Понятие упругой силы обычно ассоциируется с реакцией линейно–упругой пружины. Направим ось вдоль пр

Работа вращающего момента
Пусть сила приложена в некоторой точке тела, имеющего ось вращения. Тело вращается с угловой скорос

Возможные скорости и возможные перемещения
Понятия возможной скорости и возможного перемещения введем сначала для материальной точки, на которую наложена голономная удерживающая нестационарная связь. Возможной скоростью мат

Идеальные связи
Связи, наложенные на механическую систему, называются идеальными, если сумма работ всех реакций связей на любом возможном перемещении системы равна нулю:

Принцип возможных перемещений
Принцип возможных перемещений устанавливает условия равновесия механических систем. Под равновесием механической системы традиционно понимают состояние ее покоя по отношению к выбранной инерциально

Общее уравнение динамики
Рассмотрим механическую систему, состоящую из материальных точек, на которую наложены идеальные уде

Работа силы тяжести зависит только от изменения высоты и равна произведению модуля силы тяжести на вертикальное перемещение точки (рис. 15.6):

где Δh - изменение высоты. При опускании работа положительна, при подъеме отрицательна.

Работа равнодействующей силы

Под действием системы сил точка массой т перемещается из положения М 1 в положение М 2 (рис. 15.7).

В случае движения под действием системы сил пользуются тео­ремой о работе равнодействующей.

Работа равнодействующей на некотором перемещении равна алгебраической сумме работ системы сил на том же перемещении.

Примеры решения задач

Пример 1. Тело массой 200 кг поднимают по наклонной плос­кости (рис. 15.8).

Определите работу при перемеще­нии на 10 м с постоянной скоростью. Коэффициент трения тела о плоскость f = 0,15.

Решение

  1. При равномерном подъеме движущая сила равна сумме сил сопро­тивления движению. Наносим на схему силы, действующие на тело:

  1. Используем теорему о работе равнодействующей:
  1. Подставляем входящие величины и определяем работу по подъему:

Пример 2. Определите работу силы тяжести при перемещении груза из точки А в точку С по наклонной плоскости (рис. 15.9). Сила тяжести тела 1500 Н. АВ = 6 м, ВС = 4 м.

Решение

1. Работа силы тяжести зависит только от изменения вы­соты груза. Изменение высоты при перемещении из точки А в С:

2. Работа силы тяжести:

Пример 3. Определите работу силы резания за 3 мин. Ско­рость вращения детали 120 об/мин, диаметр обрабатываемой детали 40 мм, сила резания 1 кН (рис. 15.10).

Решение

1. Работа при вращательном движе­нии

где F peз - сила резания.

2. Угловая частота вращения 120 об/мин.

3. Число оборотов за заданное время составляет z = 120 3 = 360 об.

Угол поворота за это время

4. Работа за 3 мин Wp = 1 0,02 2261 = 45,2 кДж.

Пример 4. Тело массой m = 50 кг передвигают по полу при помощи горизонтальной силы Q на расстояние S = 6 м. Определить ра­боту, которую совершит сила трения, если коэф­фициент трения между поверхностью тела и полом f = 0,3 (рис. 1.63).

Решение

Согласно закону Аммонтона - Кулона сила трения

Сила трения направлена в сто­рону, противоположную движению, поэтому работа этой силы отрицательна:

Пример 5. Определить натяжение ветвей ремен­ной передачи (рис. 1.65), если мощность, передаваемая валом, N = 20 кВт, частота вращения вала п = 150 об/мин.

Решение

Вращающий момент, передаваемый валом,


Выразим вращающий мо­мент через усилия в ветвях ременной передачи:
откуда

Пример 6. Колесо радиусом R = 0,3м катится без скольжения по горизонтальному рельсу (рис. 1.66). Найти работу трения качения при перемещении центра колеса на расстояние S = 30 м, если вертикальная нагрузка на ось колеса составляет Р = 100 кН. Коэффициент трения качения ко­леса по рельсу равен k = 0,005 см.

Решение

Трение качения воз­никает из-за деформаций колеса и рельса в зоне их контакта. Нор­мальная реакция N смещается вперед по направлению движения и образует с вертикальной силой давления Р на ось колеса пару, плечо которой равно коэффициен­ту трения качения k , а момент

Эта пара стремится повернуть колесо в направлении, противоположном его вращению. Поэтому работа трения качения будет отрицательной и определится как произве­дение постоянного момента трения на угол поворота ко­леса φ , т. е.

Путь, пройденный колесом, можно определить как про­изведение его угла поворота на радиус

Вводя значение φ в выражение работы и подставляя числовые значения, получаем

Контрольные вопросы и задания

1. Какие силы называют движущими?

2. Какие силы называют силами сопротивления?

3. Запишите формулы для определения работы при поступатель­ном и вращательном движениях.

4. Какую силу называют окружной? Что такое вращающий мо­мент?

5. Сформулируйте теорему о работе равнодействующей.

Сила тяжести равна F = mg и направлена по вертикали вниз. Вблизи поверхности Земли ее можно считать постоянной.

При движении тела по вертикали вниз сила тяжести совпадает по направлению с перемещением. При переходе с высоты h1 над каким-то уровнем, от которого мы начинаем отсчет высоты, до высоты h2 над тем же уровнем (рис. 192), тело совершает перемещение, по абсолютной величине равное h1 - h2.

Так как направления перемещения и силы совпадают, то работа силы тяжести положительна и равна:

Высоты h1 и h2 не обязательно отсчитывать от поверхности Земли. Для начала отсчета высот можно выбрать любой уровень. Это может быть пол комнаты, стол или стул, это может быть и дно ямы, вырытой в земле, и т. д. Ведь в формулу для работы входит разность высот, а она не зависит от того, откуда начинать их отсчет. Мы могли бы, например, условиться начинать отсчет высоты с уровня В (см. рис. 192). Тогда высота этого уровня была бы равна нулю, а работа выражалась бы равенством

где h - высота точки A над уровнем В.

Если тело движется вертикально вверх, то сила тяжести направлена против движения тела и ее работа отрицательна. При подъеме тела на высоту h над тем уровнем, с которого оно брошено, сила тяжести совершает работу, равную

Если после подъема вверх тело возвращается в исходную течку, то работа на таком пути, начинающемся и кончающемся в одной и той же точке (на замкнутом пути), на пути «туда и обратно», равна нулю. Это одна из особенностей силы тяжести: работа силы тяжести на замкнутом пути равна нулю.

Теперь выясним, какую работу совершает сила тяжести в случае, когда тело движется не по вертикали.

В качестве примера рассмотрим движение тела по наклонной плоскости (рис. 193).

Допустим, что тело массой m по наклонной плоскости высотой h совершает перемещение s, по абсолютной величине равное длине наклонной плоскости. Работу силы тяжести mg в этом случае надо вычислять по формуле

Но из рисунка видно, что

Мы получили для работы то же самое значение.

Выходит, что работа силы тяжести не зависит от того, движется ли тело по вертикали или проходит более длинный путь по наклонной плоскости. При одной и той же «потере высоты» работа силы тяжести одинакова (рис. 194).

Это справедливо не только при движении по наклонной плоскости, но и по любому другому пути. В самом деле, допустим, что тело движется по какому-то произвольному пути, например по такому, какой изображен на рисунке 195.

Весь этот путь мы можем мысленно разбить на ряд малых участков: AA1, A2A1, A2A3 и т. д. Каждый из них может считаться маленькой наклонной плоскостью, а все движение тела на пути АВ можно представить как движение по множеству наклонных плоскостей, переходящих одна в другую. Работа силы тяжести на каждой такой наклонной плоскости равна произведению mg на изменение высоты тела на ней. Если изменения высот на отдельных участках равны h1, h2, h3 и т. д., то работы силы тяжести на них равны mgh1, mgh2, mgh3 и т. д. Тогда полную работу на всем пути можно найти, сложив все эти работы:


Следовательно,

Таким образом, работа силы тяжести не зависит от траектории движения тела и всегда равна произведению силы тяжести на разность высот в исходном и конечном положениях. При движении вниз работа положительна, при движении вверх - отрицательна.

Почему же в технике и быту при подъеме грузов часто пользуются наклонной плоскостью? Ведь работа перемещения груза по наклонной плоскости такая же, как и при движении по вертикали!

Это объясняется тем, что при равномерном движении груза по наклонной плоскости сила, которая должна быть приложена к грузу в направлении перемещения, меньше силы тяжести. Правда, груз при этом проходит больший путь. Больший путь - это плата за то, что по наклонной плоскости груз можно поднимать с помощью меньшей силы.