Закон движения гармонического осциллятора. Идеальный гармонический осциллятор

Гармонический осциллятор.

Систему, описываемую уравнением , где , будем называть гармоническим осциллятором. Решение этого уравнения, как известно, имеет вид:

.

Следовательно, гармонический осциллятор представляет собой систему, которая совершает гармонические колебания около положения равновесия.

Для гармонического осциллятора справедливы все результаты, полученные ранее для гармонического колебания.

Рассмотрим и обсудим ещё дополнительно к ним два вопроса.

Найдем импульс гармонического осциллятора. Продифференцируем выражение по t и, умножив полученный результат на массу осциллятора, получим:

В каждом положении, характеризуемом отклонением “x”, осциллятор имеет некоторое значение ”p”. Чтобы найти ”p” как функцию ”x”, нужно исключить ”t” из написанных для ”p” и ”x” уравнений, Представим эти уравнения в виде:

(8.9)

Возведя эти выражения в квадрат и складывая, получим:

. (8.10)

Нарисуем график, показывающий зависимость ”p” импульса гармонического осциллятора от отклонения ”x” (рис. 8.6). Координатную плоскость (”p”, ”x”) принято называть фазовой плоскостью , а соответствующий график – фазовой траекторией . Фазовая траектория гармонического осциллятора представляет собой эллипс с полуосями “A” и ”A·m·w 0 ”. Каждая точка фазовой траектории изображает состояние осциллятора для некоторого момента времени (т.е. его отклонение и импульс). С течением времени точка, изображающая состояние, перемещается по фазовой траектории, совершая за период колебания полный обход. Причем это перемещение совершается по часовой стрелке [а именно, если в некоторый момент времени t¢ x=A, p=0, то в следующий момент времени ”x” будет уменьшаться, а ”p” принимать все возрастающие по модулю отрицательные значения, т.е. движение изобразительной точки (т.е. точки изображающей состояние) будет происходить по часовой стрелке].

Найдем теперь площадь эллипса . Или

.

Здесь , где n 0 – собственная частота осциллятора, являющаяся для данного осциллятора величиной постоянной.

Следовательно, . Откуда

Таким образом, полная энергия гармонического осциллятора пропорциональна площади эллипса, причем коэффициентом пропорциональности служит собственная частота осциллятора.

8.6. Малые колебания системы вблизи положения равновесия.

Рассмотрим произвольную механическую систему, положение которой может быть задано с помощью одной величины “x”. Величиной ”x”, определяющей положение системы может быть угол, отсчитываемый от некоторой плоскости или расстояние, отсчитываемое вдоль заданной кривой.

Потенциальная энергия такой системы будет функцией одной переменной ”x”: E p =E p (x).

Выберем начало отсчета таким образом, чтобы в положении равновесия x=0. Тогда функция E p (x) будет иметь минимум при x=0.

(ввиду малости “x” остальными членами пренебрегаем)

Так как E p (x) при x=0 имеет минимум, то , а . Обозначим E p (x) = b и , тогда .

Это выражение идентично с выражением для потенциальной энергии системы, в которой действует квазиупругая сила (константу “b” можно положить равной 0).

Сила, действующая на систему, может быть определена по формуле: . Получено с учетом, что работа совершается за счет убыли потенциальной энергии .

Итак, потенциальная энергия системы при малых отклонениях от положения равновесия оказывается квадратичной функцией смещения, а сила, действующая на систему, имеет вид квазиупругой силы. Следовательно, при малых отклонениях от положения равновесия любая механическая система будет совершать колебания, близкие к гармоническим.

8.7. Математический маятник.

ОПРЕДЕЛЕНИЕ: математическим маятником будем называть идеализированную систему, состоящую из невесомой и нерастяжимой нити, на которой подвешена масса, сосредоточенная в одной точке.

Отклонение маятника от положения равновесия будет характеризоваться углом j (рис. 8.7). При отклонении маятника от положения равновесия возникает вращательный момент , он имеет такое направление, что стремится вернуть маятник в положение равновесия, поэтому моменту M и угловому смещению j нужно приписать разные знаки.

2a. Пространство. Время. Движение Фейнман Ричард Филлипс

Глава 21 ГАРМОНИЧЕСКИЙ ОСЦИЛЛЯТОР

Глава 21

ГАРМОНИЧЕСКИЙ ОСЦИЛЛЯТОР

§ 1. Линейные дифференциаль­ные уравнения

§ 4. Начальные условия

§ 1. Линейные дифференциальные уравнения

Обычно физику как науку делят на не­сколько разделов: механику, электричество и г. п., и мы «проходим» эти разделы один за дру­гим. Сейчас, например, мы «проходим» в основ­ном механику. Но то и дело происходят стран­ные вещи: переходя к новым разделам физики и даже к другим наукам, мы сталкиваемся с уравнениями, почти не отличающимися от уже изученных нами ранее. Таким образом, многие явления имеют аналогию в совсем других об­ластях науки. Простейший пример: распро­странение звуковых волн во многом похоже на распространение световых волн. Если мы достаточно подробно изучим акустику, то обна­ружим потом, что «прошли» довольно большую часть оптики. Таким образом, изучение явле­ний в одной области физики может оказаться полезным при изучении других ее разделов. Хорошо с самого начала предвидеть такое воз­можное «расширение рамок раздела», иначе мо­гут возникнуть недоумения, почему мы тратим столько времени и сил на изучение небольшой задачи механики.

Гармонический осциллятор, к изучению ко­торого мы сейчас переходим, будет встречаться нам почти всюду; хотя мы начнем с чисто меха­нических примеров грузика на пружинке, ма­лых отклонений маятника или каких-то других механических устройств, на самом деле мы бу­дем изучать некое дифференциальное уравне­ние. Это уравнение непрестанно встречается в физике и в других науках и фактически описы­вает столь многие явления, что, право же, стоит того, чтобы изучить его получше. Такое уравне­ние описывает колебания грузика на пружинке, колебания заряда, текущего взад и вперед по электрической цепи, колебания камертона, порождающие звуковые волны, аналогичные колебания электронов в атоме, порождающие световые волны. Добавьте сюда уравнения, описывающие дей­ствия регуляторов, например поддерживающих заданную температуру термостата, сложные взаимодействия в химиче­ских реакциях и (уже совсем неожиданно) уравнения, от­носящиеся к росту колонии бактерий, которых одновременно и кормят и травят ядом, или к размножению лис, питаю­щихся кроликами, которые в свою очередь едят траву, и т. д. Мы привели очень неполный список явлений, которые описы­ваются почти теми же уравнениями, что и механический осцил­лятор. Эти уравнения называются линейными дифференциаль­ными уравнениями с постоянными коэффициентами. Это урав­нения, состоящие из суммы нескольких членов, каждый из которых представляет собой производную зависимой величины по независимой, умноженную на постоянный коэффициент. Таким образом,

называется линейным дифференциальным уравнением n-го порядка с постоянными коэффициентами (все а n - посто­янные).

§ 2. Гармонический осциллятор

Пожалуй, простейшей механической системой, движение которой описывается линейным дифференциальным уравнением с постоянными коэффициентами, является масса на пружинке. После того как к пружинке подвесят грузик, она немного рас­тянется, чтобы уравновесить силу тяжести. Проследим теперь за вертикальными отклонениями массы от положения равнове­сия (фиг. 21.1).

Фиг. 21.1. Грузик, подвешенный на пружинке.

Простой пример гармонического ос­циллятора.

Отклонения вверх от положения равновесия мы обозначим через х и предположим, что имеем дело с абсо­лютно упругой пружиной. В этом случае противодействующие растяжению силы прямо пропорциональны растяжению. Это означает, что сила равна -kx (знак минус напоминает нам, что сила противодействует смещениям). Таким образом, умно­женное на массу ускорение должно быть равно -kx

m(d 2 x/dt 2)=-kx. (21.2)

Для простоты предположим, что вышло так (или мы нужным образом изменили систему единиц), что k/m = 1. Нам предстоит решить уравнение

d 2 x/dt 2 =-x. (21.3)

После этого мы вернемся к уравнению (21.2), в котором k и m содержатся явно.

Мы уже сталкивались с уравнением (21.3), когда только начи­нали изучать механику. Мы решили его численно [см. вып. 1, уравнение (9.12)], чтобы найти движение. Численным интегри­рованием мы нашли кривую (см. фиг. 9.4, вып. 1), которая пока­зывает, что если частица mв начальный момент выведена из рав­новесия, но покоится, то она возвращается к положению рав­новесия. Мы не следили за частицей после того, как она достиг­ла положения равновесия, но ясно, что она на этом не остано­вится, а будет колебаться (осциллировать). При численном ин­тегрировании мы нашли время возврата в точку равновесия: t= 1,570. Продолжительность полного цикла в четыре раза боль­ше: t 0 =6,28 «сек». Все это мы нашли численным интегрирова­нием, потому что лучше решать не умели. Но математики дали в наше распоряжение некую функцию, которая, если ее про­дифференцировать дважды, переходит в себя, умножившись на -1. (Можно, конечно, заняться прямым вычислением таких функций, но это много труднее, чем просто узнать ответ.)

Эта функция есть: x=cost. Продифференцируем ее: dx/dt=-sint, a d 2 x/dt 2 =-wt=-x. В начальный момент t=0, x=1, а начальная скорость равна нулю; это как раз те пред­положения, которые мы делали при численном интегрирова­нии. Теперь, зная, что x=cost, найдем точное значение вре­мени, при котором z=0. Ответ: t=p/2, или 1,57108. Мы ошиб­лись раньше в последнем знаке, потому что численное интег­рирование было приближенным, но ошибка очень мала!

Чтобы продвинуться дальше, вернемся к системе единиц, где время измеряется в настоящих секундах. Что будет реше­нием в этом случае? Может быть, мы учтем постоянные k и т, умножив на соответствующий множитель cost? Попробуем. Пусть x=Acost, тогда dx/dt=-Asint и d 2 t/dt 2 =-Acost=-x. К нашему огорчению, мы не преуспели в решении уравнения (21.2), а снова вернулись к (21.3). Зато мы открыли важнейшее свойство линейных дифференциальных уравнений: если умно­жить решение уравнения на постоянную, то мы снова получим решение. Математически ясно - почему. Если х есть решение уравнения, то после умножения обеих частей уравнения на А производные тоже умножатся на A и поэтому Ах так же хорошо удовлетворит уравнению, как и х. Послушаем, что скажет по этому поводу физик. Если грузик растянет пружинку вдвое больше прежнего, то вдвое возрастет сила, вдвое возрастет ус­корение, в два раза больше прежней будет приобретенная ско­рость и за то же самое время грузик пройдет вдвое большее рас­стояние. Но это вдвое большее расстояние - как раз то самое расстояние, которое надо пройти грузику до положения равно­весия. Таким образом, чтобы достичь равновесия, требуется столько же времени и оно не зависит от начального смещения. Иначе говоря, если движение описывается линейным уравне­нием, то независимо от «силы» оно будет развиваться во вре­мени одинаковым образом.

Ошибка пошла нам на пользу - мы узнали, что, умножив решение на постоянную, мы получим решение прежнего уравне­ния. После нескольких проб и ошибок можно прийти к мысли, что вместо манипуляций с х надо изменить шкалу времени. Иначе говоря, уравнение (21.2) должно иметь решение вида

x=cosw 0 t. (21.4)

(Здесь w 0 - вовсе не угловая скорость вращающегося тела, но нам не хватит всех алфавитов, если каждую величину обозна­чать особой буквой.) Мы снабдили здесь w индексом 0, потому что нам предстоит встретить еще много всяких омег: запомним, что w 0 соответствует естественному движению осциллятора. Попытка использовать (21.4) в качестве решения более успешна, потому что dx/dt=- (w 0 sinw 0 t и d 2 x/dt 2 =-w 2 0 w sw 0 t=-w 2 0 x. На­конец-то мы решили то уравнение, которое и хотели решить. Это уравнение совпадает с (21.2), если w 2 0 =k/m.

Теперь нужно понять физический смысл w 0 . Мы знаем, что косинус «повторяется» после того, как угол изменится на 2я. Поэтому x=cosw 0 t будет периодическим движением; полный цикл этого движения соответствует изменению «угла» на 2p. Величину w 0 t часто называют фазой движения. Чтобы изменить w 0 t на 2p, нужно изменить t на t 0 (период полного колебания); конечно, t 0 находится из уравнения w 0 t 0 = 2p. Это значит, что w 0 t 0 нужно вычислять для одного цикла, и все будет повто­ряться, если увеличить t на t 0 ; в этом случае мы увеличим фазу на 2p. Таким образом,

Значит, чем тяжелее грузик, тем медленнее пружинка будет ко­лебаться взад и вперед. Инерция в этом случае будет больше, и если сила не изменится, то ей понадобится большее время для разгона и торможения груза. Если же взять пружинку пожест­че, то движение должно происходить быстрее; и в самом деле, период уменьшается с увеличением жесткости пружины.

Заметим теперь, что период колебаний массы на пружинке не зависит от того, как колебания начинаются. Для пружинки как будто безразлично, насколько мы ее растянем. Уравнение движения (21.2) определяет период колебаний, но ничего не го­ворит об амплитуде колебания. Амплитуду колебания, конеч­но, определить можно, и мы сейчас займемся этим, но для этого надо задать начальные условия.

Дело в том, что мы еще не нашли самого общего решения уравнения (21.2). Имеется несколько видов решений. Реше­ние x=acosw 0 t соответствует случаю, когда в начальный мо­мент пружинка растянута, а скорость ее равна нулю. Можно иначе заставить пружинку двигаться, например улучить момент, когда уравновешенная пружинка покоится (х=0), и резко ударить по грузику; это будет означать, что в момент t=0 пружинке сообщена какая-то скорость. Такому движению будет соответствовать другое решение (21.2) - косинус нужно заменить на синус. Бросим в косинус еще один камень: если x=cosw 0 t-решение, то, войдя в комнату, где качается пружин­ка, в тот момент (назовем его «t=0»), когда грузик проходит через положение равновесия (x=0), мы будем вынуждены заме­нить это решение другим. Следовательно, x=cosw 0 t не может быть общим решением; общее решение должно допускать, так сказать, перемещение начала отсчета времени. Таким свойст­вом обладает, например, решение x=acosw 0 (t-t 1 ), где t 1 - какая-то постоянная. Далее, можно разложить

cos(w 0 t+D )=cosw 0 t cosD -sinw 0 t sinD и записать

x=A cosw 0 t +В sinw 0 t ,

где A=acosD и В=- asinD . Каждую из этих форм можно ис­пользовать для записи общего решения (21.2): любое из су­ществующих в мире решений дифференциального уравнения

d 2 x/dt 2 =-w 2 0 x можно записать в виде

x=acosw 0 (t-t 1 ), (21.6а)

x=acos (w 0 t+D ), (21.6б)

х=A cosw 0 t+B sinw 0 t. (21.6в)

Некоторые из встречающихся в (21.6) величин имеют наз­вания: w 0 называют угловой частотой; это число радианов, на которое фаза изменяется за 1 сек. Она определяется дифферен­циальным уравнением. Другие величины уравнением не опре­деляются, а зависят от начальных условий. Постоянная а слу­жит мерой максимального отклонения груза и называется ам­плитудой колебания. Постоянную D иногда называют фазой колебания, но здесь возможны недоразумения, потому что другие называют фазой w 0 t+D и говорят, что фаза зависит от времени. Можно сказать, что D - это сдвиг фазы по сравнению с некоторой, принимаемой за нуль. Не будем спорить о словах. Разным D соответствуют движения с разными фазами. Вот это верно, а называть ли D фазой или нет - уже другой вопрос.

§ 3. Гармоническое движение и движение по окружности

Косинус в решении уравнения (21.2) наводит на мысль, что гармоническое движение имеет какое-то отношение к движению по окружности. Это сравнение, конечно, искусственное, потому что в линейном движении неоткуда взяться окружности: грузик движется строго вверх и вниз. Можно оправдаться тем, что мы уже решили уравнение гармонического движения, когда изуча­ли механику движения по окружности. Если частица движется по окружности с постоянной скоростью v, то радиус-вектор из центра окружности к частице поворачивается на угол, величина которого пропорциональна времени. Обозначим этот угол q=vt/R (фиг. 21.2).

Фиг. 21.2. Частица, движу­щаяся по кругу с постоянной скоростью.

Тогда d q/dt= w 0 =v/R. Известно, что ускоре­ние а=v 2 /R=w 2 0 R и направлено к центру. Координаты движу­щейся точки в заданный момент равны

х =R cosq, y=Rsinq.

Что можно сказать об ускорении? Чему равна x-составляющая ускорения, d 2 x/dt 2 . Н айти эту величину можно чисто гео­метрически: она равна величине ускорения, умноженной на ко­синус угла проекции; перед полученным выражением надо пос­тавить знак минус, потому что ускорение направлено к центру:

а х =- acosq=-wRcosq=-w 2 0 х. (21.7)

Иными словами, когда частица движется по окружности, гори­зонтальная составляющая движения имеет ускорение, пропор­циональное горизонтальному смещению от центра. Конечно, мы знаем решения для случая движения по окружности: x=Rcos w 0 t. Уравнение (21.7) не содержит радиуса окружности; оно оди­наково при движении по любой окружности при одинаковой w 0 .

Таким образом, имеется несколько причин, по которым следует ожидать, что отклонение грузика на пружинке окажется пропор­циональным cosw 0 t и движение будет выглядеть так, как если бы мы следили за x-координатой частицы, движущейся по окружно­сти с угловой скоростью w 0 . Проверить это можно, поставив опыт, чтобы показать, что движение грузика вверх-вниз на пружинке в точности соответствует движению точки по окружности. На фиг. 21.3 свет дуговой лампы проектирует на экран тени дви­жущихся рядом воткнутой во вращающийся диск иголки и вер­тикально колеблющегося груза.

Фиг. 21.3. Демонстрация экви­валентности простого гармони­ческого движения и равномерного движения по окружности.

Если вовремя и с нужного места заставить грузик колебаться, а потом осторожно подобрать скорость движения диска так, чтобы частоты их движений сов­пали, тени на экране будут точно следовать одна за другой. Вот еще способ убедиться в том, что, находя численное реше­ние, мы почти вплотную подошли к косинусу.

Здесь можно подчеркнуть, что поскольку математика равно­мерного движения по окружности очень сходна с математикой колебательного движения вверх-вниз, то анализ колебатель­ных движений очень упростится, если представить это движе­ние как проекцию движения по окружности. Иначе говоря, мы можем дополнить уравнение (21.2), казалось бы, совершенно лишним уравнением для у и рассматривать оба уравнения совместно. Проделав это, мы сведем одномерные колебания к движению по окружности, что избавит нас от решения дифферен­циального уравнения. Можно сделать еще один трюк - ввести комплексные числа, но об этом в следующей главе.

§ 4. Начальные условия

Давайте выясним, какой смысл имеют А и В или а и D. Конечно, они показывают, как началось движение. Если движе­ние начнется с малого отклонения, мы получим один тип коле­баний; если слегка растянуть пружинку, а потом ударить по грузику - другой. Постоянные А и В или а и D, или какие-нибудь две другие постоянные определяются обстоятельствами, при которых началось движение, или, как обычно говорят, начальными условиями. Нужно научиться определять постоян­ные, исходя из начальных условий. Хотя для этого можно использовать любое из соотношений (21.6), лучше всего иметь дело с (21.6в). Пусть в начальный момент t=0 грузик смещен от положения равновесия на величину х 0 и имеет скорость v 0 . Это самая общая ситуация, какую только можно придумать. (Нельзя задать начального ускорения, потому что оно зависит от свойств пружины; мы можем распорядиться только величи­ной х 0 .) Вычислим теперь А и В. Начнем с уравнения для

х=Acosw o t+B sinw 0 t;

поскольку нам понадобится и скорость, продифференцируем х и получим

v=-w 0 Asinw 0 t+w 0 Bcosw 0 t.

Эти выражения справедливы для всех t, но у нас есть допол­нительные сведения о величинах х и v при t=0. Таким образом, если положить t=0, мы должны получить слева х 0 и v 0 , ибо это то, во что превращаются х и v при t=0. Кроме того, мы знаем, что косинус нуля равен единице, а синус нуля равен нулю. Следовательно,

х 0 ·1+В ·0=А

v u =-w 0 A·0+w 0 B·1=w 0 B.

Таким образом, в этом частном случае

А=х 0 , В=v 0 /w 0 .

Зная А и В, мы можем, если пожелаем, найти а и D.

Итак, задача о движении осциллятора решена, но есть одна интересная вещь, которую надо проверить. Надо выяснить, сохраняется ли энергия. Если нет сил трения, то энергия долж­на сохраняться. Сейчас нам удобно использовать формулы

х=a cos(w o t+D) и v=-w 0 asin(w 0 t+D).

Давайте найдем кинетическую энергию Т и потенциальную энергию U . Потенциальная энергия в произвольный момент времени равна 1 / 2 kx 2 , где х - смещение, a k - постоянная упругости пружинки. Подставляя вместо х написанное выше выражение, найдем

U= 1 / 2 kx 2 = 1 / 2 ka 2 cos 2 (w 0 t+D).

Разумеется, потенциальная энергия зависит от времени; она всегда положительна, это тоже понятно: ведь потенциальная энергия - это энергия пружины, а она изменяется вместе с х. Кинетическая энергия равна 1 / 2 mv 2 ; используя выражение для v, получаем

Т = 1 / 2 mv 2 = 1 / 2 mw 2 0 a 2 sin 2 (w 0 t+D ).

Кинетическая энергия равна нулю при максимальном х, ибо в этом случае грузик останавливается; когда же грузик прохо­дит положение равновесия (x=0), то кинетическая энергия до­стигает максимума, потому что именно тогда грузик движется быстрее всего. Изменение кинетической энергии, таким обра­зом, противоположно изменению потенциальной энергии. Пол­ная энергия должна быть постоянной. Действительно, если вспомнить, что k=mw 2 0 , то

T+U= 1 / 2 mw 2 0 а 2 = 1 / 2 rnw 2 0 a 2 .

Энергия зависит от квадрата амплитуды: если увеличить амп­литуду колебания вдвое, то энергия возрастет вчетверо. Средняя потенциальная энергия равна половине максимальной и, сле­довательно, половине полной; средняя кинетическая энергия также равна половине полной энергии.

§ 5. Колебания под действием внешней силы

Нам остается рассмотреть колебания гармонического осцил­лятора под действием внешней силы. Движение в этом случае описывается уравнением

md 2 x/dt 2 =-kx+F(t). (21.8)

Давайте подумаем, как будет вести себя грузик при этих об­стоятельствах. Внешняя движущая сила может зависеть от времени каким угодно образом. Начнем с простейшей зависимо­сти. Предположим, что сила осциллирует

F(t)=F 0 coswt. (21.9)

Обратите внимание, что w - это не обязательно w 0: будем считать, что можно изменять w , заставляя силу действовать с разной частотой. Итак, надо решить уравнение (21.8) в случае специально подобранной силы (21.9). Каким будет решение (21.8)? Одно из частных решений (общим решением мы еще зай­мемся) выглядит так:

z=Ccoswt, (21.10)

где постоянную С еще надо определить. Иначе говоря, пытаясь найти решение в таком виде, мы предполагаем, что, если тянуть грузик взад и вперед, он в конце концов начнет качаться взад и вперед с частотой действующей силы. Проверим, может ли это быть. Подставив (21.10) в (21.9), получим

Mw 2 С coswt=-mw 2 0 Сcoswt+F 0 coswt. (21.11)

Мы уже заменили k на mw 2 0 , потому что удобнее сравнивать две частоты. Уравнение (21.11) можно поделить на содержащийся в каждом члене косинус и убедиться, что при правильно подоб­ранном значении С выражение (21.10) будет решением. Эта ве­личина С должна быть такой:

Таким образом, грузик т колеблется с частотой действующей на него силы, но амплитуда колебания зависит от соотношения между частотой силы и частотой свободного движения осцил­лятора. Если со очень мала по сравнению с w 0 , то грузик дви­жется вслед за силой. Если же чересчур быстро менять направ­ление толчков, то грузик начинает двигаться в противополож­ном по отношению к силе направлении. Это следует из равенства (21.12), которое говорит нам, что величина С отрицательна, если w больше собственной частоты гармонического осцилля­тора w 0 . (Мы будем называть w 0 собственной частотой гармо­нического осциллятора, а w - приложенной частотой.) При очень высокой частоте знаменатель становится очень большим и грузик практически не движется.

Найденное нами решение справедливо только в том случае, когда уже установилось равновесие между осциллятором и дей­ствующей силой; это происходит после того, как вымрут дру­гие движения. Эти вымирающие движения называют переход­ным откликом на силу F(t), а движение, описываемое (21.10) и (21.12),- равновесным откликом.

Приглядевшись к формуле (21.12), мы заметим любопытную вещь: если частота со почти равна w 0 , то С приближается к бес­конечности. Таким образом, если настроить силу «в лад» с соб­ственной частотой, отклонения грузика достигнут гигантских размеров. Об этом знает всякий, кому когда-либо приходилось раскачивать ребенка на качелях. Это довольно трудно сделать, если закрыть глаза и беспорядочно толкать качели. Но если найти правильный ритм, то раскачать качели легко, однако, как только мы опять собьемся с ритма, толчки начнут тормо­зить качели и от такой работы будет мало проку.

Если частота со будет в точности равна w 0 , то амплитуда должна стать бесконечной, что, разумеется, невозможно. Мы ошиблись, потому что решали не совсем верное уравнение. Составляя уравнение (21.8), мы забыли о силе трения и о мно­гих других силах. Поэтому амплитуда никогда не достигнет бесконечности; пожалуй, пружинка порвется гораздо раньше!

Из книги Живой кристалл автора Гегузин Яков Евсеевич

Из книги Принц из страны облаков автора Гальфар Кристоф

Глава 11 Дверь открылась, и Миртиль застыла на месте. У нее перехватило дыхание. Перед ней стояла такая красивая женщина, какой она еще никогда не видела. Черты г-жи Дрейк были поразительно тонкими: ветерок, овевавший ее прекрасное лицо, и тот, казалось, прикасался к нему с

Из книги НИКОЛА ТЕСЛА. ЛЕКЦИИ. СТАТЬИ. автора Тесла Никола

Глава 12 Г-жа Дрейк сидела напротив принцессы. Ноздри Миртиль щекотал сладковатый запах настоя, курившегося в чашках. Вдыхая ароматы далеких стран, она, никогда не покидавшая Миртильвиль, как будто перенеслась в неведомые края и мчалась по воздуху над огненно-алыми

Из книги Глаз и Солнце автора Вавилов Сергей Иванович

Глава 14 Незаметно махнув рукой Тому, Тристам занял свое обычное место в последнем ряду. Миртиль бросила беглый взгляд на его руку: вчерашний ожог зажил. Джерри, сидевший рядом с Томом, был вне себя от ярости. Опять этот Тристам дешево отделался! Безобразие! Давно пора

Из книги автора

Глава 15 - Мне совсем не хочется идти к директрисе, - сказал Тристам, как только они с Томом оказались в коридоре.- Раньше нужно было думать, - возразил Том. - Теперь ничего не поделаешь. Придется идти!И друзья поплелись к директорскому кабинету. Тристам не замечал, что

Из книги автора

Глава 16 Ветер дул все сильнее. Стебли рисовых метелок нещадно хлестали Тома и Тристама, убегавших от преследователей. Обезумев от страха, мальчики думали только о том, чтобы нагнать г-жу Дрейк. До защитного ограждения было уже недалеко. Возле городской черты мать Тристама

Из книги автора

Глава 17 Получасом раньше, в тот самый момент, когда в класс Лазурро вбежал полковник, Миртиль поняла, что для их городка наступили последние часы.- Они нас нашли, - твердо сказал полковник. - Они уже здесь. Миртиль, Тристам, идемте со мной, вы должны бежать.Миртиль

Из книги автора

Глава 13 Когда в гостиную вошел Том, Тристам сидел на диване. Он повесил мамин кулон себе на шею, заправив кристалл под свитер, и смотрел на портрет Миртиль, лежавший перед ним на низеньком столике. Глаза Тристама блестели, как будто он только что плакал.- Ну и тип! -

Из книги автора

Глава 7 - Ты знаешь что-нибудь про аэродинамику? - спросил Вакинг.- Ароэ… что?В наушниках послышался тяжелый вздох Тома, летевшего вместе с Робом. Их машину отделяло от ласточки Вакинга несколько километров.- Это наука о свойствах воздуха, обтекающего самолеты, ракеты

Из книги автора

Глава 10 - Все пропало! - воскликнул Том. - Роб не прилетит! Как думаешь, у лейтенанта был план на этот случай?Тристам явно сомневался, но промолчал. Он с отчаянием смотрел, как звенья по десять машин, одно за другим, заходят на посадку. В некоторых, особенно крупных

Из книги автора

Глава 13 Внутри жуткого облака было нечем дышать. Густой серый туман ослепил Миртиль и Тристама, порывистый ветер, с каждым мгновением усиливаясь, швырял машину как щепку, и они почти сразу перестали понимать, куда их тащит. Мощь чудовища, в утробе которого они оказались,

Из книги автора

Глава 15 Они шли долго, может быть, несколько часов. Тристам молча шагал за Вакингом и Миртиль, улавливая обрывки их разговора. Так, он услышал, что большинство летчиков из Белой Столицы, по мнению лейтенанта, должны были спастись и даже не слишком пострадать: все они были

Из книги автора

Глава 16 Они шли по лесу, и Миртиль рассказывала Тристаму обо всем, что с ней приключилось: о встрече с тираном, о тропическом циклоне и о том, какой выбор предложил ей этот человек, не скрывавший своего безумия.- Ты выбрала смерть? - спросил потрясенный Тристам.- Да. И

Из книги автора

ПЕРВЫЕ ПОПЫТКИ ПОЛУЧИТЬ САМО-ДЕИСТВУЮЩИИ ДВИГАТЕЛЬ - МЕХАНИЧЕСКИЙ ОСЦИЛЛЯТОР - РАБОТА ДЮАРА И ЛИНДЕ - ЖИДКИЙ ВОЗДУХ Осознав эту истину, я начал изыскивать пути выполнения моей идеи, и после длительных размышлений, я наконец придумал аппарат, который смог бы получать

Из книги автора

РАЗВИТИЕ НОВОГО ПРИНЦИПА - ЭЛЕКТРИЧЕСКИЙ ОСЦИЛЛЯТОР - ПРОИЗВЕДЕНИЕ КОЛОССАЛЬНЫХ ЭЛЕКТРИЧЕСКИХ ДВИЖЕНИЙ - ЗЕМЛЯ ОТВЕЧАЕТ ЧЕЛОВЕКУ - МЕЖПЛАНЕТНАЯ СВЯЗЬ ТЕПЕРЬ СТАЛА ВОЗМОЖНОЙ Я решил сконцентрировать свои усилия на этой несколько рискованной задаче, хотя и сулившей

Открытий в квантовой области и других сферах. При этом изобретаются новые устройства и приспособления, посредством которых можно проводить различные исследования и объяснять явления микромира. Одним из таких механизмов является гармонический осциллятор, принцип действия которого знали еще представители древних цивилизаций.

Устройство и его виды

Гармонический осциллятор - это механическая система, находящаяся в движении, которое описывается дифференциала с коэффициентами постоянного значения. Наиболее простые примеры таких устройств - груз на пружине, маятник, системы акустики, движение молекулярных частиц и др.

Условно можно выделить следующие виды этого устройства:

Применение устройства

Данное приспособление применяется в различных сферах, в основном для изучения природы колебательных систем. Квантовый гармонический осциллятор применяют при исследовании поведения элементов фотонов. Результаты экспериментов могут использоваться в различных сферах. Так, ученые-физики из американского института обнаружили, что атомы бериллия, находящиеся на довольно больших расстояниях друг от друга, могут взаимодействовать на квантовом уровне. При этом поведение этих частиц подобно телам (металлическим шарам) в макромире, двигающимся в поступательно-возвратном порядке, аналогично гармоничному осциллятору. Ионы бериллия, несмотря на физически большие расстояния, обменивались наименьшими единицами энергии (квантами). Это открытие позволяет значительно продвинуть IT-технологии, а также дает новое решение в производстве компьютерной техники и электроники.

Гармонический осциллятор используют при оценке музыкальных произведений. Этот метод называют спектроскопическим исследованием. При этом установлено, что наиболее устойчивой системой является состав из четырех музыкантов (квартет). А современные произведения в большинстве своем являются ангармоничными.

Рассмотрим колебания грузика массой m на пружинке с коэффициентом жесткости k, который лежит на плоском горизонтальном столе, предполагая, что трение грузика об поверхности стола отсутствует. Если грузик вывести из положения равновесия, он будет совершать колебания относительно этого положения. Эти колебания мы будем описываем зависящей от времени функцией, считая, что она определяет отклонение грузика из своего положения равновесия в момент времени t.

В горизонтальном направлении на грузик действует только одна сила - сила упругости пружинки, определенная известным законом Гука

Деформация пружины является функцией времени, в силу чего, также является переменной.

Из второго закона Ньютона имеем

поскольку ускорение является второй производной от смещения: .

Уравнение (9) можно переписать в форме

где. Это уравнение получило название уравнение гармонического осциллятора.

Замечание. В математической литературе, при написании дифференциального уравнения обычно не указывают аргумент (t) около всех, зависящих от него функций. Такая зависимость предполагается по умолчанию. При использовании же математического пакета Maple в (10) необходимо указывать явную зависимость функции.

В отличие от предыдущего примера движения тела под действием постоянной силы в нашем случае сила изменяется с течением времени, и уравнение (10) уже нельзя решить с помощью обычной процедуры интегрирования. Попытаемся угадать решение этого уравнения, зная, что оно описывает некоторый колебательный процесс. В качестве одного из возможных решений уравнения (10) можно выбрать следующую функцию:

Дифференцируя функцию (11), имеем

Подставляя выражение (12) в уравнение (10), убеждаемся, что оно удовлетворяется тождественно при любом значении t.

Однако, функция (11) не является единственным решением уравнения гармонического осциллятора. Например, в качестве другого его решения можно выбрать функцию, что также легко проверить аналогичным образом. Более того, можно проверить, что любая линейная комбинация этих двух наугад названных решений

с постоянными коэффициентами A и B также является решениеv уравнения гармонического осциллятора.

Можно доказать, что зависящее от двух постоянных решение (13) является общим решением уравнения гармонического осциллятора (10). Это означает, что формула (13) исчерпывает все возможные решения этого уравнения. Иными словами, других частных решений, кроме тех, которые получаются из формулы (13) фиксацией произвольных постоянных А и В, уравнение гармонического осциллятора не имеет.

Заметим, что в физике наиболее часто приходится искать именно некоторые частные решения отдельных ОДУ или их систем. Рассмотрим этот вопрос более подробно.

Возбудить колебания в рассматриваемой нами системе грузика на пружинке можно разными способами. Пусть мы задали следующие начальные условия

Это значит, что в начальный момент времени грузик был отведен из положения равновесия на величину a и свободно отпущен (т.е. он начинает свое движение с нулевой начальной скоростью). Можно представить себе и много разных других способов возбуждения, например, грузику в положении равновесия «щелчком» придается некоторая начальная скорость и т.д. [общем случае, ].

Мы рассматриваем начальные условия (14) как некоторые дополнительные условия для выделения из общего решения (13) некоторого частного решения, соответствующего нашему способу возбуждения колебаний грузика.

Полагая t=0 в выражении (13), имеем, откуда следует, что B=a. Таким образом, мы нашли одну из ранее произвольных констант в решении (13). Далее, дифференцируя в формуле (13), имеем

Полагая в этом выражении t=0 и учитывая второе начальное условие из (14), получим, отсюда следует, что A=0 и, таким образом, исходное частное решение имеет вид

Оно описывает колебательный режим рассматриваемой механической системы, который определяется условиями начального возбуждения (14).

Из школьного курса физики известно, что в формуле (16) a является амплитудой колебаний (она задает максимальную величину отклонения грузика от своего положения равновесия), является циклической частотой, а - фазой колебаний (начальная фаза оказывается при этом равной нулю).

Уравнение гармонического осциллятора (10) является примером линейного ОДУ. Это значит, что неизвестная функция и все ее производные входят в каждый член уравнения в первой степени. Линейные дифференциальные уравнения обладают чрезвычайно важным отличительным свойством: они удовлетворяют принципу суперпозиции. Это значит, что любая линейная комбинация двух каких либо решений линейного ОДУ также является его решением.

В рассматриваемом нами примере уравнения гармонического осциллятора, произвольная линейная комбинация двух частных решений и является не просто каким-то новым решением, но общим решением этого уравнения (оно исчерпывает все возможные его решения).

В общем случае, это не так. Например, если бы мы имели дело с линейным дифференциальным уравнением третьего порядка, (т.е. если бы в уравнение входила бы третья производная), то линейная комбинация каких-либо двух его частных решений также была бы решением этого уравнения, но не представляла бы собой его общее решение.

В курсе дифференциальных уравнений доказывается теорема о том, что общее решение ОДУ N-ого порядка (линейного или нелинейного) зависит от N произвольных постоянных. В случае нелинейного уравнения эти произвольные постоянные могут входить в общее решение (в отличие от (13)), нелинейным образом.

Принцип суперпозиции играет в теории ОДУ исключительно важную роль, поскольку с его помощью можно построить общее решение дифференциального уравнения в виде суперпозиции его частных решений. Например, для случая линейных ОДУ с постоянными коэффициентами и их систем (уравнение гармонического осциллятора относится именно к этому типу уравнений) в теории дифференциальных уравнений разработан общий метод решения. Суть его заключается в следующем. Ищется частное решение в виде. В результате его подстановки в исходное уравнение, все зависящие от времени множители сокращаются и мы приходим к некоторому характеристическому уравнению, которое для ОДУ N-ого порядка представляет собой алгебраическое уравнение N-ой степени. Решая его, мы находим, тем самым, все возможные частные решения, произвольная линейная комбинация которых и дает общее решение исходного ОДУ. Мы не будем далее останавливаться на этом вопросе, отсылая читателя к соответствующим учебникам по теории дифференциальным уравнениям, в которых можно найти дальнейшие детали, в частности, рассмотрение случая, когда характеристическое уравнение содержит кратные корни.

Если рассматривается линейное ОДУ с переменными коэффициентами, (его коэффициенты зависят от времени), то принцип суперпозиции также справедлив, но построить в явном виде общее решение этого уравнение каким-либо стандартным методом, уже не представляется возможным. Мы вернемся к этому вопросу далее, обсуждая явление параметрического резонанса и связанным с его исследованием уравненем Матье.