Косоугольная диметрическая проекция (фронтальная). Фронтальная косоугольная диметрическая проекция

Для трёхмерных объектов и панорам.

Ограничения аксонометрической проекции

Изометрическая проекция в компьютерных играх и пиксельной графике

Рисунок телевизора в почти-изометрической пиксельной графике. У пиксельного узора видна пропорция 2:1

Примечания

  1. По ГОСТ 2 .317-69 - Единая система конструкторской документации. Аксонометрические проекции.
  2. Здесь горизонтальной называется плоскость, перпендикулярная оси Z (которая является прообразом оси Z").
  3. Ingrid Carlbom, Joseph Paciorek. Planar Geometric Projections and Viewing Transformations // ACM Computing Surveys (CSUR) : журнал. - ACM , декабрь 1978. - Т. 10. - № 4. - С. 465-502. - ISSN 0360-0300 . - DOI :10.1145/356744.356750
  4. Jeff Green. GameSpot Preview: Arcanum (англ.) . GameSpot (29 февраля 2000).(недоступная ссылка - история ) Проверено 29 сентября 2008.
  5. Steve Butts. SimCity 4: Rush Hour Preview (англ.) . IGN (9 сентября 2003). Архивировано
  6. GDC 2004: The History of Zelda (англ.) . IGN (25 марта 2004). Архивировано из первоисточника 19 февраля 2012. Проверено 29 сентября 2008.
  7. Dave Greely, Ben Sawyer.

Косоугольная фронтальная диметрическая проекция.

Положение осей во фронтальной диметрии аналогичны расположению осей во фронтальной изометрии. Её следует строить без сокращения по осям ОХ и OZ и с сокращением в два раза по оси ОY ; коэффициенты искажения по осям ОХ и OZ равны 1, по оси ОY – 0,5.

На рис. 68 изображены: а – аксонометрические оси; б – аксонометри­ческая проекция куба с окружностями, вписанными в три видимые грани.

Рис. 68. Косоугольная фронтальная диметрия

В передней грани, параллельной координатной плоскости XOZ , окруж­ность изображается без искажений, в двух других гранях – одинаковыми эллипсами, большие оси которых равны 1,07 D , а малые – 0,33 D , где D – диаметр вписанной окружности. Направления больших осей эллипсов отклоняются от большей диагонали параллелограмма на 7º. Эти эллипсы можно также вычертить способом, указанным для прямоугольной диметрии (см. рис. 63б), так как различие в размерах осей незначительно.

Пример фронтальной диметрической проекции детали приведён на рис. 69.

Косоугольные фронтальные диметрические и изометрические проекции рекомендуется применять в тех случаях, когда целесообразно сохранить неискажёнными элементы фигуры, расположенные во фронтальных плоскостях. Это значительно упрощает построение аксонометрического изображения.

Рис. 69. Деталь с разрезом в косоугольной фронтальной диметрии

5.5.7. Косоугольная горизонтальная изометрическая проекция.

Расположение аксонометрических осей с нанесением штриховки в раз­резах и аксонометрическая проекция куба с вписанными в грани окруж­ностями представлены на рис. 70. Ось ОY составляет с горизонталью угол 30 0 . ГОСТ 2.317-69 допускает применять и другие углы между горизонталью и осью ОУ , при этом угол 90° между осями ОХ и ОY сохраняется. Коэффициент искажения по осям ОХ, ОY и OZ равен 1. Размеры осей эллипса, расположенного в грани, параллельной координатной плоскости YOZ , равны осям эллипсов прямоугольной изометрии. Вместо эллипса можно построить овал способом, приведённым на рис. 59. Второй эллипс в грани, параллельной плоскости ХОZ , строят по восьми точкам. Оси эллипсов совпадают с диагоналями граней куба.

Рис. 70. Косоугольная горизонтальная изометрия

В горизонтальной изометрии фигуры или их элементы, расположенные в горизонтальных плоскостях, не искажаются. Поэтому этот вид аксонометрии применяют тогда, когда требуется изобразить в натуральную величину фигуры, лежащие в плоскостях, параллельных горизонтальной плоскости проекций.

Пример горизонтальной изометрической проекции приведён на рис. 71.

Рис. 71. Деталь в косоугольной горизонтальной изометрии

Вопросы для самоконтроля

1. Как располагают предмет относительно фронтальной плоскости проекций?

2. Как разделяют изображения на чертеже в зависимости от их содержания?

3. Какое изображение называется видом?

4.Как располагаются основные виды в проекционной связи на чертеже и каковы их названия?

5. Какие виды обозначают и как их надписывают?

6. Какие виды называются дополнительными, какие – местными?

7. Какое изображение называется разрезом?

8. Как при разрезах указывают положение секущей плоскости?

9. Какой надписью отмечают разрез?

10. Как разделяются разрезы в зависимости от положения секущей плоскости?

11. Как классифицируются разрезы в зависимости от числа секущих плоскостей?

12. Какие разрезы называются ступенчатыми? Как их вычерчивают и обозначают?

13. Какой разрез называется местным и как он выделяется на виде?

14. Что служит разделяющей линией при соединении половины вида и разреза?

15. Что служит линией раздела, если при соединении половины вида и разреза с осью симметрии совпадает контурная линия?

16. Как показывают в разрезе ребро жесткости, если секущая плоскость направлена вдоль его длинной стороны?

17. Какое изображение принимают на чертеже в качестве главного?

18. Как располагаются основные виды в проекционной связи на чертеже и каковы их названия?

19. Какое изображение называется разрезом?

20.Как при разрезах указывают положение секущей плоскости?

21. Где могут быть расположены горизонтальный, фронтальный и профильный разрезы и когда их не обозначают?

22. Как в сложном разрезе проводят линию сечения?

23. Какие разрезы называются ступенчатыми? Как их вычерчивают и обозначают?

24. Какой разрез называется местным и как он выделяется на виде?

25. Что служит разделяющей линией при соединении половины вида и разреза?

26. Что служит линией раздела, если при соединении половины вида и разреза с осью симметрии совпадает контурная линия?

27. Как показывают в разрезе ребро жесткости, если секущая плоскость направлена вдоль его длинной стороны?

28. Каковы особенности изометрической прямоугольной проекции?

29. Как построить прямоугольную изометрию окружности, расположен­ную в горизонтальной координатной плоскости (фронтальной, профильной)?

30. Как построить овал по четырём точкам в прямоугольной изометрии?

31. Каков порядок построения аксонометрии детали, заданной её про­екциями?

32. Как располагаются оси в прямоугольной диметрии? Чему равны коэффициенты искажения?

33. Чем руководствуются при выборе вида прямоугольной аксономет­рической проекции?

34. В каких единицах проставляются линейные размеры на чертежах и указывается ли единица измерения?

35. Допускается ли использование линий контура, осевых и центровых линий в качестве размерных?

36. Допускается ли пересекать или разделять размерные числа линиями чертежа?

37. Какие знаки используют для нанесения размеров диаметра и радиуса окружности, квадрата и уклона?

38. В каких случаях допускается проводить размерные линии с обрывом?

Для наглядного изображения предметов (изделий или их составных частей) рекомендуется применять аксонометрические проекции, выбирая в каждом отдельном случае наиболее подходящую из них.

Сущность метода аксонометрического проецирования заключается в том, что заданный предмет вместе с координатной системой, к которой он отнесен в пространстве, параллельным пучком лучей проецируется на некоторую плоскость. Направление проецирования на аксонометрическую плоскость не совпадает ни с одной из координатных осей и не параллельно ни одной из координатных плоскостей.

Все виды аксонометрических проекций характеризуются двумя параметрами: направлением аксонометрических осей и коэффициентами искажения по этим осям. Под коэффициентом искажения понимается отношение величины изображения в аксонометрической проекции к величине изображения в ортогональной проекции.

В зависимости от соотношения коэффициентов искажения аксонометрические проекции подразделяются на:

Изометрические, когда все три коэффициента искажения одинаковы (k x =k y =k z);

Диметрические, когда коэффициенты искажения одинаковы по двум осям, а третий не равен им (k x = k z ≠k y);

Триметрические, когда все три коэффициенты искажения не равны между собой (k x ≠k y ≠k z).

В зависимости от направления проецирующих лучей аксонометрические проекции подразделяются на прямоугольные и косоугольные. Если проецирующие лучи перпендикулярны аксонометрической плоскости проекций, то такая проекция называется прямоугольной. К прямоугольным аксонометрическим проекциям относятся изометрическая и диметрическая. Если проецирующие лучи направлены под углом к аксонометрической плоскости проекций, то такая проекция называется косоугольной. К косоугольным аксонометрическим проекциям относятся фронтальная изометрическая, горизонтальная изометрическая и фронтальная диметрическая проекции.

В прямоугольной изометрии углы между осями равны 120°. Действительный коэффициент искажения по аксонометрическим осям равен 0,82, но на практике для удобства построения показатель принимают равным 1. Вследствие этого аксонометрическое изображение получается увеличенным в раза.

Изометрические оси изображены на рисунке 57.


Рисунок 57

Построение изометрических осей можно выполнить при помощи циркуля (рисунок 58). Для этого сначала проводят горизонтальную линию и перпендикулярно к ней проводят ось Z. Из точки пересечения оси Z с горизонтальной линией (точка О) проводят вспомогательную окружность произвольным радиусом, которая пересекает ось Z в точке А. Из точки А этим же радиусом проводят вторую окружность до пересечения с первой в точках В и С. Полученную точку В соединяют с точкой О - получают направление оси Х. Таким же образом соединяют точку С с точкой О - получают направление оси Y.


Рисунок 58

Построение изометрической проекции шестиугольника представлено на рисунке 59. Для этого необходимо отложить по оси X радиус описанной окружности шестиугольника в обе стороны относительно начала координат. Затем, по оси Y отложить величину размера под ключ, из полученных точек провести линии параллельно оси X и отложить по ним величину стороны шестиугольника.


Рисунок 59

Построение окружности в прямоугольной изометрической проекции

Наиболее сложной плоской фигурой для вычерчивания в аксонометрии является окружность. Как известно, окружность в изометрии проецируется в эллипс, но построение эллипса довольно сложно, поэтому ГОСТ 2.317-69 рекомендует вместо эллипсов применять овалы. Существует несколько способов построения изометрических овалов. Рассмотрим один из наиболее распространенных.

Размер большой оси эллипса 1,22d, малой 0,7d, где d - диаметр той окружности, изометрия которой строится. На рисунке 60 показан графический способ определения большой и малой осей изометрического эллипса. Для определения малой оси эллипса соединяют точки С и D. Из точек С и D, как из центров, проводят дуги радиусов, равных СD, до взаимного их пересечения. Отрезок АВ - большая ось эллипса.


Рисунок 60

Установив направление большой и малой осей овала в зависимости от того, какой координатной плоскости принадлежит окружность, по размерам большой и малой оси проводят две концентрические окружности, в пересечении которых с осями намечают точки О 1 , О 2 , О 3 , О 4 , являющиеся центрами дуг овала (рисунок 61).

Для определения точек сопряжения проводят линии центров, соединяя О 1 , О 2 , О 3 , О 4 . из полученных центров О 1 , О 2 , О 3 , О 4 проводят дуги радиусами R и R 1 . размеры радиусов видны на чертеже.


Рисунок 61

Направление осей эллипса или овала зависит от положения проецируемой окружности. Существует следующее правило: большая ось эллипса всегда перпендикулярна к той аксонометрической оси, которая на данную плоскость проецируется в точку, а малая ось совпадает с направлением этой оси (рисунок 62).


Рисунок 62

Штриховка и изометрической проекции

Линии штриховки сечений в изометрической проекции, согласно ГОСТ 2.317-69, должны иметь направление, параллельное или только большим диагоналям квадрата, или только малым.

Прямоугольной диметрией называется аксонометрическая проекция с равными показателями искажения по двум осям X и Z, а по оси Y показатель искажения в два раза меньше.

По ГОСТ 2.317-69 применяют в прямоугольной диметрии ось Z, расположенную вертикально, ось Х наклонную под углом 7°, а ось Y-под углом 41° к линии горизонта. Показатели искажения по осям X и Z равны 0,94, а по оси Y-0,47. Обычно применяют приведенные коэффициенты k x =k z =1, k y =0,5, т.е. по осям X и Z или по направлениям им параллельным, откладывают действительные размеры, а по оси Y размеры уменьшают в два раза.

Для построения осей диметрии пользуются способом, указанным на рисунке 63, который заключается в следующем:

На горизонтальной прямой, проходящей через точку О, откладывают в обе стороны восемь равных произвольных отрезков. Из конечных точек этих отрезков вниз по вертикали откладывают слева один такой же отрезок, а справа - семь. Полученные точки соединяют с точкой О и получают направление аксонометрических осей X и Y в прямоугольной диметрии.


Рисунок 63

Построение диметрической проекции шестиугольника

Рассмотрим построение в диметрии правильного шестиугольника, расположенного в плоскости П 1 (рисунок 64).


Рисунок 64

На оси Х откладываем отрезок равный величине b , чтобы его середина находилась в точке О, а по оси Y - отрезок а , размер которого уменьшен вдвое. Через полученные точки 1 и 2 проводим прямые параллельно оси ОХ, на которых откладываем отрезки равные стороне шестиугольника в натуральную величину с серединой в точках 1 и 2. Полученные вершины соединяем. На рисунке 65а изображен в диметрии шестиугольник, расположенный параллельно фронтальной плоскости, а на рисунке 66б -параллельно профильной плоскости проекции.


Рисунок 65

Построение окружности в диметрии

В прямоугольной диметрии все окружности изображаются эллипсами,

Длина большой оси для всех эллипсов одинакова и равна 1,06d. Величина малой оси различна: для фронтальной плоскости равна 0,95d , для горизонтальной и профильной плоскостей - 0,35 d.

На практике эллипс заменяется четырехцентровым овалом. Рассмотрим построение овала, заменяющего проекцию окружности, лежащей в горизонтальной и профильной плоскостях (рисунок 66).

Через точку О - начало аксонометрических осей, проводим две взаимно перпендикулярные прямые и откладываем на горизонтальной линии величину большой оси АВ=1,06d , а на вертикальной линии величину малой оси СD=0,35d. Вверх и вниз от О по вертикали откладываем отрезки ОО 1 и ОО 2 , равные по величине 1,06d. Точки О 1 и О 2 являются центром больших дуг овала. Для определения еще двух центров (О 3 и О 4) откладываем на горизонтальной прямой от точек А и В отрезки АО 3 и ВО 4 , равные ¼ величины малой оси эллипса, то есть d.


Рисунок 66

Затем, из точек О1 и О2 проводим дуги, радиус которых равен расстоянию до точек С и D, а из точек О3 и О4 - радиусом до точек А и В (рисунок 67).


Рисунок 67

Построение овала, заменяющего эллипс, от окружности, расположенной в плоскости П 2 , рассмотрим на рисунке 68. Проводим оси диметрии: Х, Y, Z. Малая ось эллипса совпадает с направлением оси Y, а большая перпендикулярна к ней. На осях Х и Z от начала откладываем величину радиуса окружности и получаем точки M, N, K, L, являющиеся точками сопряжения дуг овала. Из точек M и N проводим горизонтальные прямые, которые в пересечении с осью Y и перпендикуляром к ней дают точки О 1 , О 2, О 3, О 4 - центры дуг овала (рисунок 68).

Из центров О 3 и О 4 описывают дугу радиусом R 2 =О 3 М, а из центров О 1 и О 2 - дуги радиусом R 1 = О 2 N


Рисунок 68

Штриховка а прямоугольной диметрии

Линии штриховки разрезов и сечений в аксонометрических проекциях выполняются параллельно одной из диагоналей квадрата, стороны которого расположены в соответствующих плоскостях параллельно аксонометрическим осям (рисунок 69).


Рисунок 69

  1. Какие виды аксонометрических проекций вы знаете?
  2. Под каким углом расположены оси в изометрии?
  3. Какую фигуру представляет изометрическая проекция окружности?
  4. Как расположена большая ось эллипса для окружности, принадлежащей профильной плоскости проекций?
  5. Какие приняты коэффициенты искажения по осям X, Y, Z для построения диметрической проекции?
  6. Под какими углами расположены оси в диметрии?
  7. Какой фигурой будет являться диметрическая проекция квадрата?
  8. Как построить диметрическую проекцию окружности, расположенной во фронтальной проскости проекций?
  9. Основные правила нанесения штриховки в аксонометрических проекциях.

Косоугольные аксонометрические проекции характеризуются двумя основными признаками: плоскость аксонометрических проекций располагайся параллельно одной из граней предмета, которая изображается без искажения; направление проецирования выбирается косоугольное (составляет с плоскостью проекций острый угол), что дает возможность спроецировать и две другие грани или стороны предмета, но уже с искажением.

Название фронтальная или горизонтальная определяет положение плоскости аксонометрических проекций относительно основных сторон или граней предмета.

Аксонометрические изображения предметов при косоугольном проецировании оказываются менее наглядными, чем при прямоугольном проецировании. Изображенные предметы воспринимаются -только деформированными, со скошенностью в направлении, перпендикулярном плоскости проекций. Однако изображения в косоугольной аксонометрии обладают важным преимуществом, которое довольно часто используют в техническом черчении:плоские элементы предмета, параллельные плоскости аксонометрических проекций, проецируются без искажения. В черчении косоугольные аксонометрические проекции используют в случаях, когда нужно изобразить без искажения части предмета сложной криволинейной формы.

Фронтальная диметрическая проекция. Аксонометрические оси фронтальной диметрии располагаются следующим образом (Рис. 59а): ось ОZ -вертикальная, ось ОХ - горизонтальная, ось OY делит угол ZOX пополам и направлена вправо вниз. Ось OY можно построить, отложив от горизонтали угол 45°. По осям ОХ и OZ, размеры изображения проецируются в истинную величину, а по оси OY сокращаются вдвое.

Фронтальная диметрическая проекция куба с окружностями, вписанными в три видимые грани, показана на рис.596. В передней грани параллельной координатной плоскости XOZ окружность изображается без искажений, в двух других гранях - одинаковыми эллипсами, большие оси которых равны 1,07D, а малые - 0.33D, где D - диаметр окружности, вписанной в грани куба. Направления больших осей эллипсов отклоняются от большей диагонали аксонометрии описанного квадрата (параллелограмма) на 7°.

Фронтальную диметрию целесообразно применять в тех случаях, когда требуется сохранить неискаженными фигуры, расположенные во фронтальных плоскостях что упрощает построение аксонометрического изображения.

Фронтальная изометрическая проекция.
Во фронтальной изометрии положение осей (рис. 60а) аналогично положению осей во фронтальной ди-метрии. По всем осям размеры откладывают без сокращений, в истинную величину. На рис. 606 построена фронтальная изометрия куба. Искажение общей формы изображенного предмета и неестественная вытянутость куба вдоль оси OY в этой проекции больше, чем во фронтальной диметрии. Эллипсы рекомендуется строить по восьми точкам. Направление осей эллипсов совпадает с диагоналями граней куба.

Расположение осей во фронтальной изометрии, как и в других аксонометрических проекциях, дает вид предмета сверху.



Горизонтальная изометрическая проекция . Аксонометрические оси горизонтальной изометрии располагают следующим образом (рис. 61а): ось 0Z - вертикальная, угол между осями ОХ и OY равен 90°, ось OY составляет с горизонталью угол 30°. ГОСТ 2.317-69* допускает применять и другие углы между горизонталью и осью OY - 45 и 60°, при этом угол 90° между осями ОХ и OY сохраняется. По всем осям размеры откладывают без искажений, в истинную величину. Искажение формы и вытянутость куба направлены вдоль оси OZ. (Рис. 616).

Размеры осей эллипса, расположенного в грани, параллельной координатной плоскости Y0Z, равны осям эллипсов прямоугольной изометрии. Вместо этого эллипса можно построить овал. Второй эллипс строят по восьми точкам. Оси эллипса совпадают с направлением диагоналей граней куба.

В горизонтальной изометрии плоские фигуры, расположенные на плане и в горизонтальных плоскостях, не искажаются. Это свойство проекции используют при изображении в аксонометрии строительных объектов, когда надо сохранить неискаженными конфигурацию и размерные соотношения плана.

8.2. Ортогональные проекции.


Прямоугольное проецирование на две и три плоскости проекций.

Аксонометрические и перспективные изображения обладают хорошей наглядностью, но по ним трудно определить истинные размеры изображенных предметов, а также воспроизвести их в натуре. Поэтому в основу получения изображений на чертежах положен метод прямоугольного (ортогонального) проецирования на две или три взаимно перпендикулярные плоскости проекций. (Рис.62). Прямоугольные проекции (чертежи) предмета обладают следующим преимуществом: при наличии масштаба и размеров по чертежам можно воспроизвести изображенные предметы в точном соответствии с проектным замыслом.

Две проекции определяют положение, форму и размеры изображенного на чертеже предмета; третья проекция определяется пересечением соответствующих линий связи.

Чертеж предмета должен давать полное представление о форме изображаемого предмета, его устройстве, размерах, материале, из которого изготовлен предмет, а также содержать сведения о способах его изготовления. Вместе с тем чертеж предмета должен быть лаконичным и содержать минимальное количество изображений и текста, достаточных для свободного чтения чертежа, изготовления по нему детали и ее контроля.

Для лучшего понимания и чтения чертежи должны составляться по общим правилам. Все требования к оформлению чертежей, а также условные обозначения, содержащиеся на чертежах, должны быть единообразными. Поэтому при составлении чертежей необходимо руководствоваться основными положениями и правилами ГОСТов «Единой системы конструкторской документации». Все изображения на чертежах в зависимости от их содержания разделяются на виды, разрезы, сечения.

Изображения предметов на чертежах образуются с помощью прямоугольного проецирования предмета на плоскости проекций. При этом предполагается, что предмет расположен между, наблюдателем и соответствующей плоскостью проекций.

Предмет должен располагаться относительно фронтальной плоскости проекций так, чтобы изображение на ней наиболее полно отображало форму и размеры предмета при наилучшем использовании поля чертежа.

За основные плоскости проекций принимают шесть граней куба. Предмет мысленно помещают внутри этого куба (заднюю его грань принимают за фронтальную плоскость проекций) и строят проекции предмета на каждой грани. Если после этого развернуть грани куба до совмещения с фронтальной плоскостью, то получим изображения предмета на шести плоскостях проекций.

На каждой плоскости проекций получается изображение обращенной к наблюдателю видимой части предмета; такое изображение называется видом. В зависимости от направления проецирования установлены следующие названия видов, получаемых на основных плоскостях проекций: 1 - вид спереди (главный вид); 2 - вид сверху; 3 - вид слева; 4 - вид справа; 5 - вид снизу; 6 - вид сзади.

Названия видов на чертежах, выполненных в проекционной связи, не указывают. Чтобы уменьшить количество видов, допускается на них показывать невидимые части поверхностей предметов штриховыми линиями. Виды предмета должны быть увязаны между собой, вид сверху располагается под видом спереди, а виды слева и справа - на одном уровне с видом спереди (справа от него при взгляде на предмет слева и слева от него при взгляде на предмет справа). (Рис.63).


Рис. 63

Для того чтобы правильно разместить изображения предмета и его частей на рабочем поле чертежа, необходимо:

Выбрав масштаб чертежа, определить для каждого вида его основные габаритные размеры: для вида сверху - наибольшую длину и ширину предмета, для вида спереди - наибольшие длину и высоту и т. д.;

Полученные размеры перевести на выбранный масштаб чертежа;

Каждое изображение выразить в виде прямоугольника по установленным в масштабе габаритным размерам;

Для определения формата чертежа полученные размеры прямоугольнике расположить с возможной равномерной плотностью и с учетом необходимых мест для выносных и размерных линий и поясняющих надписей;

После схематической компоновки чертежа приступают к детальному изображению видов предмета внутри этих прямоугольников.

Аксонометрические деталей и узлов машин нередко используются в конструкторской документации для того, чтобы наглядно показать конструктивные особенности детали (сборочного узла), представить, как выглядит деталь (узел) в пространстве. В зависимости от того, под каким углом расположены оси координат, аксонометрические проекции подразделяются на прямоугольные и косоугольные.

Вам понадобится

  • Программа для построения чертежей, карандаш, бумага, ластик, транспортир.

Инструкция

Прямоугольные проекции. Изометрическая проекция. При построении прямоугольной изометрической проекции учитывают коэффициент искажения по осям X, Y, Z, равный 0,82, при этом , параллельные плоскостям проекций, проецируются на аксонометрические плоскости проекций в виде эллипсов, ось которых равна d, а ось – 0,58d, где d – диаметр исходной окружности. Для простоты расчетов изометрическую проекцию без искажения по осям (коэффициент искажения равен 1). В этом случае проецируемые окружности будут иметь вид эллипсов с осью, равной 1,22d, и малой осью, равной 0,71d.

Диметрическая проекция. При построении прямоугольной диметрической проекции коэффициент искажения по осям X и Z, равный 0,94, а по оси Y – 0.47. На диметрическую проекцию упрощенно выполняют без искажения по осям X и Z и с коэффициентом искажения по оси Y = 0,5. Окружность, параллельная фронтальной плоскости проекций, проецируется на нее в виде эллипса с большой осью, равной 1,06d и малой осью, равной 0,95d, где d – диаметр исходной окружности. Окружности, параллельные двум другим аксонометрическим плоскостям, проецируются на них в виде эллипсов с осями, равными соответственно 1.06d и 0,35d.

Косоугольные проекции. Фронтальная изометрическая проекция. При построении фронтальной изометрической проекции стандартом установлен оптимальный угол наклона оси Y к горизонтали 45 градусов. Допускаются углы наклона оси Y к горизонтали - 30 и 60 градусов. Коэффициент искажения по осям X, Y и Z равен 1. Окружность 1, расположенная фронтальной плоскости проекций, проецируется на нее без искажений. Окружности, параллельные горизонтальной и профильной плоскостям проекций, выполняются в виде эллипсов 2 и 3 с большой осью, равной 1.3d и малой осью, равной 0,54d, где d – диаметр исходной окружности.

Горизонтальная изометрическая проекция. Горизонтальная изометрическая проекция детали (узла) строится на аксонометрических осях, расположенных, как показано на рис. 7. Допускается изменять угол между осью Y и горизонталью на 45 и 60 градусов, оставляя неизменным угол 90 градусов между осями Y и X. Коэффициент искажения по осям X, Y, Z равен 1. Окружность, лежащая в плоскости, параллельной горизонтальной плоскости проекций, проецируется в виде окружности 2 без искажения. Окружности, параллельные фронтальной и профильной плоскостям проекций, вид эллипсов 1 и 3. Размеры осей эллипсов связаны с диаметром d исходной окружности следующими зависимостями:
эллипс 1 – большая ось равна 1,37d, малая ось – 0, 37d; эллипс 3 – большая ось равна 1,22d, малая ось – 0.71d.

Фронтальная диметрическая проекция. Косоугольная фронтальная диметрическая проекция детали (узла) строится на аксонометрических осях, подобных осям фронтальной изометрической проекции, но от нее коэффициентом искажения по оси Y, который равен 0,5. По осям X и Z коэффициент искажения равен 1. Также допустимо изменение угла наклона оси Y к горизонтали до значений 30 и 60 градусов. Окружность, лежащая в плоскости, параллельной фронтальной аксонометрической плоскости проекций, проецируется на нее без искажений. Окружности, параллельные плоскостям проекций горизонтальной и профильной, вычерчиваются в виде эллипсов 2 и 3. Размеры эллипсов от размера диаметра окружности d выражаются зависимостью:
большая ось эллипсов 2 и 3 равна 1,07d; малая ось эллипсов 2 и 3 равна 0,33d.

Видео по теме

Обратите внимание

Аксонометрическая проекция (от др.-греч. ἄξων «ось» и др.-греч. μετρέω «измеряю») - способ изображения геометричеук4уеских предметов на чертеже при помощи параллельных проекций.

Полезный совет

Плоскость, на которую производится проецирование, называется аксонометрической или картинной. Аксонометрическая проекция называется прямоугольной, если при параллельном проецировании проецирующие лучи перпендикулярны картинной плоскости (=90) и косоугольной, если лучи составляют с картинной плоскостью угол 0

Источники:

  • Справочник по черчению
  • аксонометрическая проекция окружности

Изображение предмета на чертеже должно давать полное представление о его форме и конструкторских особенностях и может быть выполнено при помощи прямоугольного проецирования, линейной перспективы и аксонометрической проекции.

Инструкция

Помните, что диметрия является одним из видов аксонометрической проекции предмета, при котором изображение жестко привязывают к натуральной системе координат Oxyz. Диметрия тем, что два коэффициента искажения по осям собой равны и отличны от третьего. Диметрия прямоугольной и фронтальной.

При прямоугольной диметрии ось z вертикально, ось х с горизонтальной линией угол 7011`, а угол y – 410 25`. Приведенный коэффициент искажения по оси у ky = 0,5 (реальный 0,47), kx = kz = 1 (реальные 0,94). ГОСТ 2.317–69 рекомендует пользоваться только приведенными коэффициентами при построении изображений в прямоугольной диметрической проекции.

Чтобы начертить прямоугольную диметрическую проекцию, отметьте на чертеже вертикальную ось Оz. Для построения оси х изобразите на чертеже прямоугольник с катетами 1 и 8 единиц, вершиной которого является точка О. Гипотенуза прямоугольника станет осью х, которая отклоняется от горизонта на угол 7011`. Для построения оси у также изобразите прямоугольный треугольник с вершиной в точке О. Величина катетов в данном случае 7 и 8 единиц. Полученная гипотенуза будет осью у, отклоняющейся от горизонта на угол 410 25`.

При построении диметрической проекции размер предмета получается увеличенным в 1,06 раз. При этом изображение проецируются в эллипс в координатных плоскостях хОу и уО с большей осью, равной 1.06d, где d – диаметр проецируемой окружности. Малая ось эллипса равна 0.35 d.

Видео по теме

Обратите внимание

Во многих отраслях промышленности используются чертежи. Правила изображения предметов и оформления чертежей регламентируются "Единой системой конструкторской документации" (ЕСКД).

Чтобы сделать любую деталь, необходимо спроектировать ее и выпустить чертежи. На чертеже должны быть представлены основные и вспомогательные виды детали, которые при грамотном прочтении дают всю необходимую информацию о форме и размерах изделия.

Инструкция

Как , проектирование новых деталей изучение государственных и отраслевых стандартов, по которым выполняется конструкторская документация. Найдите все ГОСТы и ОСТы, которые понадобятся при выполнении чертежа детали. Для этого вам нужны номера стандартов, по которым вы сможете их найти в интернете в электронном виде или в архиве предприятия в бумажном виде.

Перед тем, как начать выполнять чертеж, подберите необходимый листа, на котором он будет располагаться. Учитывайте количество проекций детали, которые вам нужно изобразить на чертеже. Для деталей простой формы (особенно для тел вращения) достаточно бывает основного вида и одной проекции. Если проектируемая деталь имеет сложную форму, большое количество сквозных и глухих отверстий, пазов, то желательно сделать несколько проекций, а также дать дополнительные местные виды.

Начертите главный вид детали. Выберите тот вид, который будет давать наиболее полное представление о форме детали. Сделайте другие виды, если это необходимо. Нанесите разрезы и сечения, показывающие внутренние отверстия и пазы детали.

Нанесите размеры в соответствии с ГОСТ 2.307-68. Габаритные размеры лучше всего величину детали, поэтому проставьте эти размеры так, чтобы их легко можно было обнаружить на чертеже. Все размеры проставляйте с допусками или указывайте квалитет, по которому должна быть изготовлена деталь. Помните о том, что в реальной , на , изготовить деталь с точными размерами. Всегда будет отклонение в большую или меньшую сторону,которое должно в интервал допуска на размер.

Обязательно указывайте шероховатость поверхностей детали в соответствии с ГОСТ 2.309-73. Это очень важно, особенно для точных деталей приборостроения, которые входят в состав сборочных единиц и соединяются по посадке.

Напишите технические требования, предъявляемые к детали. Укажите ее изготовления, обработки, нанесения покрытия, эксплуатации и хранения. В основной надписи чертежа не забудьте указать материал, из которого изготовлена деталь.

Видео по теме

При проектировке и практической отладке систем электроснабжения приходится пользоваться различными схемами. Иногда они даются в готовом виде, прилагаемом к технической системе, но в некоторых случаях схему приходится чертить самостоятельно, восстанавливая ее по монтажу и соединениям. От правильного вычерчивания схемы зависит, насколько она будет доступной для понимания.

Инструкция

Используйте для вычерчивания схемы электроснабжения компьютерную программу “Visio”. Для накопления вначале можно схему абстрактной питающей цепи, включающей произвольный набор элементов. В соответствии со стандартами и требованиями единой системы конструкторской принципиальная вычерчивается в однолинейном изображении.

Выберите настройки параметров страницы. В меню «Файл» воспользуйтесь соответствующей командой, а в открывшемся окне установите требуемый формат будущего изображения, например, А3 или А4. Выберите также книжную или альбомную ориентацию чертежа. Масштаб установите 1:1, а единицу измерения – миллиметры. Завершите выбор нажатием на кнопку “OK”.

При помощи меню «Открыть» найдите библиотеку трафаретов. Откройте набор основных надписей и перенесите на лист будущего чертежа рамку, форму надписи и дополнительные графы. Заполните графы необходимыми , поясняющими схему.

Собственно схему питающей цепи вычертите, применив трафареты из программы, или же используйте другие имеющиеся в вашем распоряжении заготовки. Удобно использовать специально разработанный комплект для черчения электрических схем различных питающих цепей.

Поскольку многие компоненты схемы питания отдельных групп часто однотипны, изобразите сходные методом копирования уже начерченных элементов, а после этого внесите корректировки. При этом элементы группы выделите «мышью» и переместите скопированный фрагмент на нужное место в схеме.

В завершение работы переместите из набора трафаретов компоненты схемы ввода. Аккуратно заполните пояснительные надписи к схеме. Сохраните изменения под необходимым именем. При необходимости готовый схемы электроснабжения выведите на печать.

Построение изометрической проекции детали позволяет получить максимально подробное представление о пространственных характеристиках объекта изображения. Изометрия с вырезом части детали дополнительно к внешнему виду показывает внутреннее устройство предмета.

Вам понадобится

  • - набор чертежных карандашей;
  • - линейка;
  • - угольники;
  • - транспортир;
  • - циркуль;
  • - ластик.

Инструкция

Начертите оси тонкими линиями так, чтобы изображение разместилось по центру листа. В прямоугольной изометрии углы между осями составляют сто градусов. В горизонтальной косоугольной изометрии углы между осями X и Y составляют девяносто градусов. А между осями X и Z; Y и Z - сто тридцать пять градусов.

Начните выполнять с верхней поверхности изображаемой детали. От углов горизонтальных поверхностей проведите вниз вертикальные линии и отложите на этих линиях соответствующие линейные размеры с чертежа детали. В изометрии линейные размеры по всем трем осям остаются единице. Последовательно соедините полученные точки на вертикальных линиях. Внешний контур детали готов. Выполните изображения имеющихся на гранях детали отверстий, пазов и пр.

Помните, что при изображении предметов в изометрии видимость криволинейных элементов будет искажаться. Окружность в изометрии изображается как эллипс. Расстояние между точками эллипса по осям изометрии равно диаметру окружности, а оси эллипса не совпадают с осями изометрии .

Все действия должны выполняться с помощью чертежных инструментов - линейки, карандаша, циркуля и транспортира. Используйте несколько карандашей разной твердости. Твердый - для тонких линий, твердо- - для пунктирных и штрихпунктирных линий, мягкий - для основных линий. Не забудьте начертить и заполнить основную надпись и рамку в соответствии с ГОСТ. Также построение изометрии можно выполнять в специализированном программном обеспечении, таком как Компас, AutoCAD.

Источники:

  • черчение в изометрии

Не так уж много найдется в наше время людей, которым ни разу в жизни не приходилось чертить или рисовать что-то на бумаге. Умение выполнить простейший чертеж какой-либо конструкции иногда бывает очень полезным. Можно потратить уйму времени, объясняя «на пальцах», как сделана та или иная вещь, в то время как бывает достаточного одного взгляда на ее чертеж, чтобы понять это без всяких слов.

Вам понадобится

  • – лист ватмана;
  • – чертежные принадлежности;
  • – чертежная доска.

Инструкция

Выберите формат листа, на котором будет выполняться чертеж – в соответствии с ГОСТ 9327-60. Формат должен быть таким, чтобы на листе можно было разместить основные виды детали в соответствующем масштабе, а также все необходимые разрезы и сечения. Для несложных деталей выбирают формат А4 (210х297 мм) или А3 (297х420 мм). Первый может располагаться своей длинной стороной только вертикально, второй – вертикально и горизонтально.

Начертите рамку чертежа, отступив от левого края листа 20 мм, от остальных трех – 5 мм. Начертите основную надпись – таблицу, в которую заносятся все данные о детали и чертеже. Ее размеры определяются ГОСТ 2.108-68. Ширина основной надписи является неизменной – 185 мм, высота варьируется от 15 до 55 мм в зависимости от назначения чертежа и вида учреждения, для которого он выполняется.

Выберите масштаб главного изображения. Возможные масштабы определяются ГОСТ 2.302-68. Их следует выбрать такими, чтобы на чертеже хорошо просматривались все основные элементы детали . Если при этом некоторые места просматриваются не достаточно ясно, их можно вынести отдельным видом, показав с необходимым увеличением.

Выберите главное изображение детали . Оно должно представлять собой такое направление взгляда на деталь (направление проецирования), с которого ее конструкция раскрывается наиболее полно. В большинстве случаев главным изображением является положение, в котором деталь находится на станке во время выполнения основной операции. Детали, имеющие ось вращения, располагаются на главном изображении, как правило, таким образом, чтобы ось имела горизонтальное положение. Главное изображение располагается в верхней части чертежа слева (если имеется три проекции) или близко к центру (при отсутствии боковой проекции).

Определите расположение остальных изображений (вида сбоку, сверху, сечений, разрезов). Виды детали образуются ее проецированием на три или две взаимно перпендикулярные плоскости (метод Монжа). При этом деталь должна располагаться таким образом, чтобы большинство или все ее элементы проецировались без искажения. Если какой-то из этих видов является информационно излишним, не выполняйте его. Чертеж должен иметь только те изображения, которые необходимы.

Выберите разрезы и сечения, которые необходимо выполнить. Их отличие друг от друга состоит в том, что на показывается и то, что находится за секущей плоскостью, в то время как на сечении отображает только то, что располагается в самой плоскости. Секущая плоскость может быть ступенчатой и ломаной.

Приступите непосредственно к черчению. При начертании линий руководствуйтесь ГОСТ 2.303-68, в котором определяются виды линий и их параметры. Располагайте изображения друг от друга на таком расстоянии, чтобы оставалось достаточно места для простановки размеров. Если плоскости разрезов проходят по монолиту детали , штрихуйте сечения линиями, идущими под углом 45°. Если при этом линии штриховки совпадают с основными линиями изображения, можно чертить их под углом 30° или 60°.

Начертите размерные линии и проставьте размеры. При этом руководствуйтесь следующими правилами. Расстояние от первой размерной линии до контура изображения должно быть не менее 10 мм, расстояние между соседними размерными линиями – не менее 7 мм. Стрелки должны иметь длину около 5 мм. Написание цифр осуществляйте в соответствии с ГОСТ 2.304-68, их высоту принимайте равной 3,5-5 мм. Цифры размещайте ближе к середине размерной линии (но не на оси изображения) с некоторым смещением относительно цифр, проставленных на соседних размерных линиях.

Видео по теме

Источники:

Соотношение углов и плоскостей любого предмета визуально меняется в зависимости от положения объекта в пространстве. Именно поэтому деталь на чертеже обычно выполняется в трех ортогональных проекциях, к которым добавлено пространственное изображение. Обычно это . При ее выполнении не используются точки схода, как при построении фронтальной перспективы. Поэтому размеры по мере удаления от наблюдателя не меняются.

Вам понадобится

  • - линейка;
  • - циркуль;
  • - лист бумаги.

Инструкция

Определите осей. Для этого начертите из точки О окружность произвольного радиуса. Центральный угол ее равен 360º. Разделите окружность на 3 равные , использовав в качестве базового радиуса ось ОZ. При этом угол каждого сектора будет равен 120º. Два радиуса как раз и представляют собой нужные вам оси ОX и OY.

Определите положение . Разделите углы между осями пополам. Соедините точку О с этими новыми точками тонкими линиями. Положение центра окружности зависит от условий . Отметьте его точкой и проведите к ней в обе стороны перпендикуляр. Эта линия определит положение большого диаметра.

Вычислите размеры диаметров. Они зависят от того, применяете вы коэффициент искажения или нет. В этот коэффициент по всем осям составляет 0,82, но довольно часто его округляют и принимают за 1. С учетом искажения большой и малый диаметры эллипса составляют соответственно 1 и 0,58 от исходного. Без применения коэффициента эти размеры составляют 1, 22 и 0, 71 диаметра первоначальной окружности.

Видео по теме

Обратите внимание

Для создания объемного изображения можно построить не только изометрическую, но и диметрическую проекцию, а также фронтальную или линейную перспективу. Проекции используются при построении чертежей деталей, а перспективы - в основном в архитектуре. Окружность в диметрии тоже изображается как эллипс, но там другое расположение осей и другие коэффициенты искажения. При выполнении различных видов перспектив учитываются изменения размеров при удалении от наблюдателя.