Свойства газов и газовых смесей, применяемых для водолазных спусков. Физические свойства газов

Плотность газов

Газы в отличие от жидкостей характеризуются малой плотностью. Нормальной плотностью газа называется масса одного его литра при 0°С и давлении 1 кгс/см2. Масса одной молекулы любого газа пропорциональна его плотности.

Плотность газа с изменяется пропорционально давлению и измеряется отношением массы газа m к занимаемому им объему V:

Для практических целей различные газы удобно характеризовать по их плотности относительно воздуха при одинаковых условиях давления и температуры. Поскольку молекулы разных газов имеют различную массу, их плотности при одинаковом давлении пропорциональны молярным массам.

Плотность газов и отношение их плотности к плотности воздуха:

Основные газовые законы

Характерным для газов является то, что они не имеют своего объема и формы, а принимают форму и занимают объем того сосуда, в который их помещают. Газы равномерно наполняют объем сосуда, стремясь расшириться и занять возможно больший объем. Все газы обладают большой сжимаемостью. Молекулы реальных газов обладают объемом и имеют силы взаимного притяжения, хотя эти величины весьма незначительны. В расчетах по реальным газам обычно используют газовые законы для идеальных газов. Идеальные газы - это условные газы, молекулы которых не имеют объема и не взаимодействуют друг с другом из-за отсутствия сил притяжения, а при столкновениях между ними не действуют никакие другие силы, кроме сил упругого удара. Эти газы строго следуют законам Бойля - Мариотта, Гей-Люссака и др.

Чем выше температура и меньше давление, тем поведение реальных газов ближе соответствует идеальным газам. При малых давлениях все газы можно рассматривать как идеальные. При давлениях около 100 кг/см2 отклонения реальных газов от законов идеальных газов не превышают 5 %. Поскольку отклонения реальных газов от законов, выведенных для идеальных газов, обычно ничтожны, законами для идеальных газов можно свободно пользоваться для решения многих практических задач.

Закон Бойля -- Мариотта

Измерения объема газа под влиянием внешнего давления показали, что между объемом V и давлением Р имеется простая связь, выражающаяся законом Бойля - Мариотта: давление данной массы (или количества) газа при постоянной температуре обратно пропорционально объему газа:

Р1: Р2 = V1: V2,

где Р1 - давление газа при объеме V1; Р2 - давление газа при объеме V2.

Отсюда следует,что:

Р1 * V1 = P2* V2 или Р * V= const (при t = const).

Этот постулат формулируется так: произведение давления данной массы газа на его объем постоянно, если температура не меняется (т.е. при изотермическом процессе).

Если, например, взять 8 л газа под давлением Р = 0,5 кгс/см2 и менять давление при неизменной постоянной температуре, то будут получены следующие данные: при 1 кгс/см2 газ займет объем 4 л, при 2 кгс/см2 - 2л, при 4 кгс/см2 - 1л; при 8 кгс/см2 - 0,5л.

Таким образом, при постоянной температуре всякое повышение давления приводит к уменьшению объема газа, а уменьшение объема газа - к повышению давления.

Зависимость между объемом газа и давлением при неизменной температуре широко применяется для различных расчетов в водолазной практике.

Законы Гей-Люссака и Шарля

Закон Гей-Люссака выражает зависимость объема и давления газа от температуры: при постоян-ном давлении объем данной массы газа прямо пропорционален его абсолютной температуре:

где Т1 и Т2 -- температура в Кельвинах (К), которая равна температуре в °С + 273,15; т.е. 0°С? 273 К; 100 °С - -373 К, а 0оК = -273,15 оС.

Следовательно, всякое повышение температуры приводит к увеличению объема, или, иными словами, изменение объема данной массы газа V прямо пропорционально изменению температуры t газа при постоянном давлении (т.е. при изобарическом процессе). Это положение выражается формулой:

где V1 - объем газа при данной температуре; V0 - исходный объем газа при 0°С; б -- коэффициент объемного расширения газа.

При нагревании различных газов на одинаковое число градусов относительное приращение объема одинаково для всех газов. Коэффициент б является постоянной для всех газов величиной приращения объема, равной 1/273 или 0,00367 оС-1. Этот коэффициент объёмного расширения газов показывает, на какую часть объема, занимаемого при 0°С, возрастает объем газа, если его нагреть на 1°С при постоянном давлении.

Соотношение между давлением и температурой подчиняется той же закономерности, а именно: изменение давления данной массы газа прямо пропорционально температуре при неизменном объеме (т.е. при изохорном процессе: от греческих слов «изос» -- равный и «хорема» -- вместимость), что выражается формулой:

Рt = Р0 (1 + бt),

где Рt -- давление газа при данной температуре; Р0 -- исходное давление газа при 0° С; б -- коэффициент объемного расширения газа.

Эта зависимость была установлена Ж.Шарлем за 25 лет до публикации Ж.Л.Гей-Люссака и нередко называется законом Шарля. Зависимость объема от температуры при постоянном давлении также была впервые установлена Шарлем.

При понижении температуры газа его давление убывает, а при температуре -273,15 °С давление любого газа равно нулю. Эта температура называется абсолютным нулем температуры. При этом прекращается хаотическое тепловое движение молекул и количество тепловой энергии становится равным нулю. Приведенные зависимости, выражающие законы Шарля и Гей-Люссака, позволяют решать важные практические задачи при подготовке и планировании подводных погружений, такие, например, как определение давления воздуха в баллонах при изменении температуры, соответствующие ему изменение запасов воздуха и времени пребывания на данной глубине и т. п.

Уравнение состояния идеального газа

Если зависимость между объемом, давлением и температурой связать воедино и выразить одним уравнением, то получается уравнение состояния идеального газа, которое объединяет законы Бойля - Мариотта и Гей-Люссака. Это уравнение впервые было выведено Б.П.Клайпероном путем преобразований уравнений, предложенных его предшественниками. Уравнение Клайперона состоит в том, что произведение давления газа данной массы на объем, деленное на абсолютную температуру, есть величина постоянная, не зависящая от состояния, в котором находится газ. Одна из форм написания этого уравнения:

В этом случае газовая постоянная r будет зависеть от природы газа. Если массой газа является моль (грамм-молекула), то газовая постоянная R является универсальной и не зависит от природы газа. Для массы газа, равной 1 молю, уравнение примет следующий вид:

Точное значение R cocтaвляeт 8,314510 Дж моль -1 К-1

Если брать не 1 моль, а любое количество газа, имеющего массу m, то состояние идеального газа можно выразить удобным для расчетов уравнением Менделеева -- Клайперона в том виде, в котором оно было впервые записано Д.И.Менделеевым в 1874 г.:

где m -- масса газа, г; М - молярная масса.

Уравнение состояния идеального газа может использоваться для расчетов в водолазной практике.

Пример. Определить, какой объем занимают 2,3 кг водорода при температуре + 10 °С и давлении 125 кгс/см2

где 2300 - масса газа, г; 0,082 - газовая постоянная; 283 - температура Т (273+10); 2 - молярная масса водорода М. Из уравнения следует, что давление, оказываемое газом на стенки сосуда, равно:

Это давление исчезает или при m > 0 (когда почти исчезает газ), или при V> ? (когда газ неограниченно расширяется), или при Т > 0 (когда молекулы газа не движутся).

Уравнение Ван-дер- Ваалъса

Еще М. В Ломоносов указывал на то, что закон Бойля - Мариотта не может быть верен при очень больших величинах давления, когда расстояния между молекулами сравнимы с их собственными размерами. Впоследствии полностью подтвердилось то, что отступления от поведения идеальных газов будут значительны при очень высоких давлениях и очень низких температурах. В этом случае уравнение идеального газа даст неверные результаты без учета сил взаимодействия молекул газа и занимаемого ими объема. Поэтому в 1873 г. Ян Дидерик Ван-дер-Ваальс предложил внести в это уравнение две поправки: на давление и на объем.

Закон Авогадро

Авогадро выдвинул гипотезу, по которой при одинаковых условиях температуры и давления все идеальные газы независимо от их химической природы содержат в единице объема равное число молекул. Отсюда следует, что масса равных объемов газа пропорциональна их молекулярной массе.

Исходя из закона Авогадро, зная объемы исследуемых газов, можно определить их массу и, наоборот, по массе газа узнать его объем.

Законы газовой динамики

Закон Дальтона. Давление смеси газов равно сумме парциальных (частичных) давлений отдельных газов, составляющих смесь, т. е. тех давлений, которые производил бы каждый газ в отдельности, если бы он был взят при той же температуре в объеме смеси.

Парциальное давление газа Pr пропорционально процентному содержанию С данного газа и величине абсолютного давления Рабс газовой смеси и определяется по формуле:

Pr = Pa6с С/100 ,

где Pr - парциальное давление газа в смеси, кг/см2; С - объемное содержание газа в смеси, %.

Проиллюстрировать данный закон можно, сравнив смесь газов в замкнутом объеме с набором гирь различного веса, положенных на весы. Очевидно, что каждая из гирь будет оказывать давление на чашу весов независимо от наличия на ней других гирь.

Страница 5

Абсолютная температура

Легко видеть, что давление газа, заключенного в постоянный объем, не является прямо пропорциональным температуре, отсчитанной по Шкале Цельсия. Это ясно, например, из таблицы, приведенной в предыдущей главе. Если при 100° С давление газа равно 1,37 кг1см2, то при 200° С оно равно 1,73 кг/см2. Температура, отсчитанная по термометру Цельсия, увеличилась вдвое, а давление газа увеличилось только в 1,26 раза. Ничего удивительного, конечно, в этом нет, ибо шкала термометра Цельсия установлена условно, без всякой связи с законами расширения газа. Можно, однако, пользуясь газовыми законами, установить такую шкалу температур, что давление газа будет прямо пропорционально температуре, измеренной по этой новой шкале. Нуль в этой новой шкале называют абсолютным нулем. Это название принято потому, что, как было доказано английским физиком Кельвином (Вильямом Томсоном) (1824-1907), ни одно тело не может быть охлаждено ниже этой температуры.

В соответствии с этим и эту новую шкалу называют шкалой абсолютных температур. Таким образом, абсолютный нуль указывает температуру, равную -273° по шкале Цельсия, и представляет собой температуру, ниже которой не может быть ни при каких условиях охлаждено ни одно тело. Температура, выражающаяся цифрой 273°+t1 представляет собой абсолютную температуру тела, имеющего по шкале Цельсия температуру, равнуюt1. Обычно абсолютные температуры обозначают буквой Т. Таким образом, 2730+t1=T1. Шкалу абсолютных температур часто, называют шкалой Кельвина и записывают Т° К. На основании сказанного

Полученный результат можно выразить словами: давление данной массы газа, заключенной в постоянный объем, прямо пропорционально абсолютной температуре. Это - новое выражение закона Шарля.

Формулой (6) удобно пользоваться и в том случае, когда давление при 0°С неизвестно.

Объем газа и абсолютная температура

Из формулы (6), можно получить следующую формулу:

Объем некоторой массы газа при постоянном давлении прямо пропорционален абсолютной температуре. Это - новое выражение закона Гей-Люссака.

Зависимость плотности газа от температуры

Что происходит с плотностью некоторой массы газа, если температура повышается, а давление остается неизменным?

Вспомним, что плотность равна массе тела, деленной на объем. Так как масса газа постоянна, то при нагревании плотность газа уменьшается вот столько раз, во сколько увеличился объем.

Как мы знаем, объем газа прямо пропорционален абсолютной температуре, если давление остается постоянным. Следовательно, плотность газа при неизменном давлении обратно пропорциональна абсолютной температуре. Если d1 и d2- плотности газа при температурах t1 и t2 , то имеет место соотношение

Объединенный закон газового состояния

Мы рассматривали случаи, когда одна из трех величин, характеризующих состояние газа (давление, температура и объем), не изменяется. Мы видели, что если температура постоянна, то давление и объем связаны друг с другом законом Бойля- Мариотта; если объем постоянен, то давление и температура связаны законом Шарля; если постоянно давление, то объем и температура связаны законом Гей-Люссака. Установим связь между давлением, объемом и температурой некоторой массы газа, если изменяются все три эти величины.

Пусть начальные объем, давление и абсолютная температура некоторой массы газа равны V1, P1 и Т1, конечные - V2, P2 и T2 - Можно представить себе, что переход от начального к конечному состоянию произошел в два этапа. Пусть, например, сначала изменился объем газа от V1 до V2, причем температура Т1, осталась без изменения. Получившееся при этом давление газа обозначим Pср Затем изменилась температура от Т1 до T2 при постоянном объеме, причем давление изменилось от Pср. до P. Составим таблицу:

Закон Бойля - Мариотта

Закон Шарля

Пименяя, к первому переходу закон Бойля-Мариотта запишем

Применяя ко второму переходу закон Шарля, можно написать

Перемножив эти равенства почленно и сокращая на Pcp получим:

Итак, произведение объема некоторой массы, газа на его давление пропорционально абсолютной температуре газа. Это и есть объединенный закон газового состояния или уравнение состояния газа.

Закон Дальтона

До сих пор мы говорили о давлении какого-нибудь одного газа - кислорода, водорода и т. п. Но в природе и в технике мы очень часто имеем дело со смесью нескольких газов. Самый важный пример этого - воздух, являющийся смесью азота, кислорода, аргона, углекислого газа и других газов. От чего зависит давление смеси газов?

Поместим в колбу кусок вещества, химически связывающего кислород из воздуха (например, фосфор), и быстро закроем колбу пробкой с трубкой. присоединенной к ртутному манометру. Через некоторое время весь кислород воздуха соединится с фосфором. Мы увидим, что манометр покажет меньшее давление, чем до удаления кислорода. Значит, присутствие кислорода в воздухе увеличивает его давление.

Точное исследование давления смеси газов было впервые произведено английским химиком Джоном Дальтоном (1766-1844) в 1809 г. Давление, которое имел бы каждый из газов, составляющих смесь, если бы удалить остальные газы из объема, занимаемого смесью, называют парциальным давлением этого газа. Дальтон нашел, что давление смеси газов равно сумме парциальных давлений их (закон Дальтона). Заметим, что к сильно сжатым газам закон Дальтона неприменим, так же как и закон Бойля - Мариотта.

Физикохимические свойства нефти и параметры ее характеризующие: плотность, вязкость, сжимаемость, объемный коэффициент. Их зависимость от температуры и давления

Физические свойства пластовых нефтей сильно отличаются от свойств поверхностных дегазированных нефтей, что обусловливается влиянием температуры, давления и растворенного газа. Изменение физических свойств пластовых нефтей, связанных с термодинамическими условиями нахождения их в пластах, учитывают при подсчете запасов нефти и нефтяного газа, при проектировании, разработке и эксплуатации нефтяных месторождений.

Плотность дегазированной нефти изменяется в широких пределах - от 600 до 1000 кг/м 3 и более и зависит в основном от углеводородного состава и содержания асфальтосмолистых веществ.

Плотность нефти в пластовых условиях зависит от количества растворенного газа, температуры и давления. С повышением давления плотность несколько увеличивается, а с повышением двух других факторов - уменьшается. Влияние последних факторов сказывается больше. Плотность нефтей, насыщенных азотом или углекислотой, несколько возрастает с повышением давления.

Влияние количества растворенного газа и температуры сказывается сильнее. Поэтому плотность газа в итоге всегда меньше плотности дегазированной нефти на поверхности. При повышении давления плотность нефти значительно уменьшается, что связано с насыщением нефти газом. Рост давления выше давления насыщения нефти газом способствует некоторому увеличению плотности нефти.

На плотность пластовых вод, кроме давления, температуры и растворенного газа, сильно влияет их минерализация. При концентрации солей в пластовой воде 643 кг/м 3 плотность ее достигает 1450 кг/м 3 .

Объемный коэффициент . При растворении газа в жидкости объем ее увеличивается. Отношение объема жидкости с растворенным в ней газом в пластовых условиях к объему этой же жидкости на поверхности после ее дегазации называется объемным коэффициентом

b=V ПЛ / V ПОВ

где V ПЛ - объем нефти в пластовых условиях; V ПОВ - объем той же нефти при атмосферном давлении и t=20°С после дегазации.

Так как в нефти может растворяться очень большое количество углеводородного газа (даже 1000 и более м 3 в 1 м 3 нефти), в зависимости от термодинамических условий объемный коэффициент нефти может достигать 3,5 и более. Объемные коэффициенты для пластовой воды составляют 0,99-1,06.

Уменьшение объема извлеченной нефти по сравнению с объемом нефти в пласте, выраженное в процентах, называется «усадкой»

u=(b-1) / b *100%

При снижении давления от первоначального пластового р 0 до давления насыщения объемный коэффициент мало меняется, т.к. нефть с растворенным в ней газом ведет себя в этой области как обычная слабосжимаемая жидкость, слегка расширяясь при снижении давления. По мере снижения давления газ постепенно выделяется из нефти, и объемный коэффициент уменьшается. Увеличение температуры нефти ухудшает растворимость газов, что приводит к уменьшению объемного коэффициента

Вязкость. Одной из важнейших характеристик нефти является вязкость. Вязкость нефти учитывают почти при всех гидродинамических расчетах, связанных с подъемом жидкости по насосно-компрессорным трубам, промывкой скважин, транспортом продукции скважины по внутрипромысловым трубам, обработкой призабойных зон пласта различными методами, а также при расчетах, связанных с движением нефти в пласте.

Вязкость пластовой нефти сильно отличается от вязкости поверхностной нефти, так как в своем составе имеет растворенный газ и находится в условиях повышенных давлений и температур. С увеличением количества растворенного газа и температуры вязкость нефтей уменьшается.

Повышение давления, ниже давления насыщения приводит к увеличению газового фактора и, как следствие, к уменьшению вязкости. Повышение давления выше давления насыщения для пластовой нефти приводит к увеличению величины вязкости

С повышением молекулярной массы нефти вязкость ее увеличивается. Также на вязкость нефти оказывает большое влияние содержание в ней парафинов и асфальтосмолистых веществ, как правило, в сторону ее увеличения.

Сжимаемость нефти . Нефть обладает упругостью, т. е. способностью изменять свой объем под действием внешнего давления. Упругость жидкости измеряется коэффициентом сжимаемости, который определяется как отношение изменения объема жидкости к ее первоначальному объему при изменении давления:

β П =ΔV/(VΔP) , где

ΔV – изменение объема нефти; V – начальный объем нефти; ΔP – изменение давления

Коэффициент сжимаемости пластовой нефти зависит от состава, содержания в ней растворенного газа, температуры и абсолютного давления.

Дегазированные нефти имеют сравнительно низкий коэффициент сжимаемости, порядка (4-7) *10 -10 1/Па, а легкие нефти, содержащие в своем составе значительное количество растворенного газа, - до 140*10 -10 1/Па. Чем больше температура, тем больше коэффициент сжимаемости.

Плотность.

Под плотностью обычно понимают массу вещества, заключенную в единице объема. Соответственно размерность этой величины – кг/м 3 или г/см 3 .

ρ=m/V

Плотность нефти в пластовых условиях уменьшается из-за растворенного в ней газа и в связи с повышением температуры. Однако при снижении давления ниже давления насыщения зависимость плотности нефти носит немонотонный характер, а при увеличении давления выше давления насыщения нефть сжимается и плотность несколько увеличивается.

Вязкость нефти.

Вязкостьхарактеризует силу трения (внутреннего сопротивления), возникающую между двумя смежными слоями внутри жидкости или газа на единицу поверхности при их взаимном перемещении.

Вязкость нефти определяется экспериментальным путем на специальном вискозиметре ВВД–У. Принцип действия вискозиметра основан на измерении времени падения металлического шарика в исследуемой жидкости.

Вязкость нефти при этом определяют по формуле:

μ = t (ρ ш – ρ ж) · k

t – время падения шарика, с

ρ ш и ρ ж - плотность шарика и жидкости, кг/м 3

k – постоянная вискозиметра

Повышение температуры вызывает уменьшение вязкости нефти (рис. 2. а). Повышение давления, ниже давления насыщения приводит к увеличению газового фактора и, как следствие, к уменьшению вязкости. Повышение давления выше давления насыщения для пластовой нефти приводит к увеличению величины вязкости (рис. 2. б).

Минимальная величина вязкости имеет место, когда давление в пласте становится равным пластовому давлению насыщения.

Сжимаемость нефти

Нефть обладает упругостью. Упругие свойства нефти оцениваются коэффициентом сжимаемости нефти. Под сжимаемостью нефти понимается способность жидкости изменять свой объем под действием давления:

β н = (1)

β н – коэффициент сжимаемости нефти, МПа -1-

V н – исходный объем нефти, м 3

∆V – измерение объема нефти под действием измерения давления ∆Р

Коэффициент сжимаемости характеризует относительное изменение единицы объема нефти при изменении давления на единицу. Он зависит от состава пластовой нефти, температуры и абсолютного давления. С увеличением температуры коэффициент сжимаемости увеличивается.

Объемный коэффициент

Под объемным коэффициентом понимают величину, показывающую во сколько раз объем нефти в пластовых условиях превышает объем той же нефти после выделения газа на поверхности.

в = V пл /V дег

в – объемный коэффициент

V пл иV дег – объемы пластовой и дегазированной нефти, м 3

При снижении давления от первоначального пластового р 0 до давления насыщения (отрезок аб) объемный коэффициент мало меняется, т.к. нефть с растворенным в ней газом ведет себя в этой области как обычная слабосжимаемая жидкость, слегка расширяясь при снижении давления.

По мере снижения давления газ постепенно выделяется из нефти, и объемный коэффициент уменьшается. Увеличение температуры нефти ухудшает растворимость газов, что приводит к уменьшению объемного коэффициента.

Как правило, при уменьшении температуры плотность увеличивается, хотя встречаются вещества, чья плотность ведёт себя иначе, например, вода, бронза и чугун. Так, плотность воды имеет максимальное значение при 4 °C и уменьшается как с повышением, так и с понижением температуры относительно этого числа.

При изменении агрегатного состояния плотность вещества меняется скачкообразно: плотность растёт при переходе из газообразного состояния в жидкое и при затвердевании жидкости. Правда, вода является исключением из этого правила, её плотность при затвердевании уменьшается.

Отношение П. двух веществ при определённых стандартных физических условиях называется относительной П.: для жидких и твёрдых веществ она обычно определяется по отношению к П. дистиллированной воды при 4 °С, для газов - по отношению к П. сухого воздуха или водорода принормальных условиях.

Единицей П. в СИ является кг/м 3 , в СГС системе единиц г/см 3 . На практике пользуются также внесистемными единицами П.: г/л , т/м 3 и др.

Для измерения П. веществ применяют плотномеры, пикнометры, ареометры, гидростатическое взвешивание (см. Мора весы). Др. методы определения П. основаны на связи П. с параметрами состояния вещества или с зависимостью протекающих в веществе процессов от его П. Так, плотность идеального газа может быть вычислена по уравнению состояния r = pm/RT, где р -давление газа, m - его молекулярная масса (мольная масса), R - газовая постоянная, Т - абсолютная температура, или определена, например, по скорости распространения ультразвука (здесь b - адиабатическая сжимаемость газа).

Диапазон значений П. природных тел и сред исключительно широк. Так, П. межзвёздной среды не превышает 10 -21 кг/м 3 , средняя П. Солнца составляет 1410 кг/м 3 , Земли - 5520 кг/м 3 , наибольшая П. металлов - 22 500 кг/м 3 (осмий ), П. вещества атомных ядер - 10 17 кг/м 3 , наконец, П. нейтронных звёзд может, по-видимому, достигать 10 20 кг/м 3 .

Манометр - это механический измерительный прибор, конструктивно представляющий собой стальной или пластиковый циферблат с пружиной в виде трубки, предназначенный для измерения давления жидких и газообразных веществ.

В механических манометрах измеряемое давление с помощью чувствительного элемента преобразуется в механическое перемещение, вызывающее механическое отклонение стрелок или других деталей механизмов отсчета, записи результата измерений, а также устройств сигнализации и стабилизации давлений в системах контролируемого объекта. В качестве чувствительных элементов механических манометров применяются трубчатые пружины, гармониковые (сильфонные) и плоские мембраны и другие измерительные механизмы, в которых под действием давления вызываются упругие деформации или упругости специальных пружин.

По точности все механические манометры делятся на: технические, контрольные и образцовые. Технические манометры имеют классы точности 1,5; 2,5; 4; контрольные 0,5; 1,0; образцовые 0,16; 0,45.

Манометрические трубчатые пружины представляют собой пустотелые трубки овального или иного сечения, изогнутые по дуге окружности, по винтовой или спиральной линиям и имеющие один или несколько витков. В обычной конструкции, которая наиболее часто применяется на практике, используются одновитковые пружины. Принципиальная и структурная схемы манометра с одновитковой трубчатой пружиной представлены на рис.2.

Рис.2. Механический манометр и его характеристики

К штуцеру 1 припаян конец манометрической пружины 5. Второй запаянный конец К шарнирно связан тягой 3 с рычагом зубчатого сектора 4. Зубья сектора сцеплены с ведомым зубчатым колесом 6, которое насажено на ось 7 стрелки 9. Для устранения колебаний стрелки из-за зазоров между зубьями зубчатой передачи применяют спиральную пружину 2, концы которой связаны с корпусом и осью 7. Под стрелкой находится неподвижная шкала.

Под действием разности давлений внутри и снаружитрубчатая пружина меняет форму своего сечения, в результате чего ее запаянный конецК перемещается пропорционально действующей разности давлений .

Структурная схема механического манометра (рис.2,б) состоит из трех линейных звеньев I, II, III, статические характеристики которых представлены графиками ,и, где– перемещение свободного конца трубчатой пружины,– начальный центральный угол трубчатой пружины. Благодаря линейности всех звеньев общая статическая характеристикаманометра линейна и шкала равномерна. Входной величиной звенаI является измеряемое давление , а выходной – перемещениесвободного (запаянного) конца манометрической пружины5. Тяга 3 с рычагом зубчатого сектора 4 образует второе звено. Входной величиной звена II является , а выходной – угловое отклонение конца манометрической пружины. Входной величиной звенаIII (звено III - это зубчатый сектор, сцепленный с ведомым зубчатым колесом 6) служит угловое отклонение , а выходной – угловое отклонение стрелки9 от нулевой отметки шкалы 8.

Механические манометры применяют для измерений в области низкого вакуума. В деформационных манометрах упругий элемент, связанный с индикатором, прогибается под действием разницы измеряемого и эталонного давлений (атмосфера или высокий вакуум). В сильфонных промышленных манометрах серии ВС-7 измеряемое давление вызывает перемещение сильфона, передающееся самописцу. Эти приборы имеют линейную шкалу до 760 тор и точность показаний 1,6%.

Выведенные дифференциальные уравнения (1.2, 1.4) содержат параметры, которые характеризуют жидкость или газ: плотность r , вязкость m , а также параметры пористой среды – коэффициенты пористости m и проницаемости k . Для дальнейших расчетов надо знать зависимость этих коэффициентов от давления.

Плотность капельной жидкости . При установившейся фильтрации капельной жидкости можно считать ее плотность, не зависящей от давления, то есть рассматривать жидкость как несжимаемую: r = const .

В неустановившихся процессах необходимо учитывать сжимаемости жидкости, которая характеризуется коэффициентом объемного сжатия жидкости b ж . Этот коэффициент обычно считают постоянным:

Проинтегрировав последнее равенство от начального значений давления р 0 и плотности r 0 до текущих значений, получим:

При этом получаем линейную зависимость плотности от давления.

Плотность газов . Сжимаемые жидкости (газы) при малых изменениях давления и температуры также можно характеризовать коэффициентами объёмного сжатия и температурного расширения. Но при больших изменениях давлений и температур эти коэффициенты меняются в больших пределах, поэтому зависимость плотности идеального газа с давлением и температурой находятся на основе уравнения состояния Клайперона – Менделеева :

где R’ = R/M m – газовая постоянная, зависящая от состава газа.

Газовая постоянная для воздуха и метана соответственно равны, R΄ воздуха = 287 Дж/кг K˚; R΄ метан = 520 Дж/кг K˚.

Последнее уравнение иногда записывают в виде:

(1.50)

Из последнего уравнения видно, что плотность газа зависит от давления и температуры, поэтому если известна плотность газа, то необходимо указывать давление, температуру и состав газа, что неудобно. Поэтому вводятся понятия нормальных и стандартных физических условий.

Нормальные условия соответствуют температуре t = 0°С и давлению p ат = 0,1013°МПа. Плотность воздуха при нормальных условиях равна ρ в.н.ус = 1,29 кг/м 3 .

Стандартные условия соответствуют температуре t = 20°С и давлению p ат = 0,1013°МПа. Плотность воздуха при стандартных условиях равна ρ в.ст.ус = 1,22 кг/м 3 .

Поэтому по известной плотности при данных условиях можно рассчитать плотность газа при других значениях давления и температуры:

Исключая пластовую температуру, получим уравнение состояния идеального газа, которым будем пользоваться в дальнейшем:

где z – коэффициент, характеризующий степень отклонения состояния реального газа от закона идеальных газов (коэффициент сверхсжимаемости) и зависящий для данного газа от давления и температуры z = z(p, Т) . Значения коэффициента сверхсжимаемости z определяются по графикам Д. Брауна.

Вязкость нефти . Эксперименты показывают, что коэффициенты вязкости нефти (при давлениях выше давления насыщения) и газа увеличиваются с повышением давления. При значительных изменениях давления (до 100 МПа) зависимость вязкости пластовых нефтей и природных газов от давления можно принять экспоненциальной:

(1.56)

При малых изменениях давления эта зависимость имеет линейный характер.

Здесь m 0 – вязкость при фиксированном давлении p 0 ; β m – коэффициент, определяемый экспериментально и зависящий от состава нефти или газа.

Пористость пласта . Чтобы выяснить, как зависит от давления коэффициент пористости, рассмотрим вопрос о напряжениях, действующих в пористой среде, заполненной жидкостью. При уменьшении давления в жидкости увеличивается силы на скелет пористой среды, поэтому пористость уменьшается.

Вследствие малой деформации твердой фазы считают обычно, что изменение пористости зависит от изменения давления линейно. Закон сжимаемости породы записывают следующим образом, вводя коэффициент объемной упругости пласта b с :

где m 0 – коэффициент пористости при давлении p 0 .

Лабораторные эксперименты для разных зернистых пород и промысловые исследования показывают, что коэффициент объемной упругости пласта составляет (0,3 – 2) 10 -10 Па -1 .

При значительных изменениях давления изменение пористости описывается уравнением:

а при больших – экспоненциальной:

(1.61)

В трещиноватых пластах проницаемость изменяется в зависимости от давления более интенсивно, чем в пористых, поэтому в трещиноватых пластах учет зависимости k(p) более необходим, чем в гранулярных.

Уравнения состояния жидкости или газа, насыщающих пласт, и пористой среды замыкают систему дифференциальных уравнений.