Выбросы парниковых газов в атмосферу, сокращение выбросов. Источники выбросов парниковых газов

Парниковые газы

Парниковые газы - газы с высокой прозрачностью в видимом диапазоне и с высоким поглощением в дальнем инфракрасном диапазоне. Присутствие таких газов в атмосферах планет приводит к появлению парникового эффекта .

Основным парниковым газом в атмосферах Венеры и Марса является диоксид углерода, в атмосфере Земли - водяной пар.

Основными парниковыми газами, в порядке их оцениваемого воздействия на тепловой баланс Земли , являются водяной пар , углекислый газ , метан и озон

Потенциально в парниковый эффект могут вносить вклад и антропогенные галогенированные углеводороды и оксиды азота , однако ввиду низких концентраций в атмосфере оценка их вклада проблематична.

Водяной пар

Анализ пузырьков воздуха во льдах свидетельствует о том, что сейчас в атмосфере Земли больше метана, чем в любое время за последние 400000 лет. С 1750 года средняя глобальная атмосферная концентрация метана возросла на 150 процентов от приблизительно 700 до 1745 частей на миллиард по объему (ppbv) в 1998 году. За последнее десятилетие, хотя концентрация метана продолжала расти, скорость роста замедлилась. В конце 1970-х годов темпы роста составили около 20 ppbv в год. В 1980-х годов рост замедлился до 9-13 ppbv в год. В период с 1990 по 1998 наблюдался рост между 0 и 13 ppbv в год. Недавние исследования (Dlugokencky и др.) показывают устойчивую концентрацию 1751 ppbv между 1999 и 2002 гг.

Метан удаляется из атмосферы посредством нескольких процессов. Баланс между выбросами метана и процессами его удаления в конечном итоге определяет атмосферные концентрации и время пребывания метана в атмосфере. Доминирующим является окисление с помощью химической реакции с гидроксильными радикалами (ОН). Метан реагирует с ОН в тропосфере, производя СН 3 и воду. Стратосферное окисление также играет некоторую (незначительную) роль в устранении метана из атмосферы. На эти две реакции с ОН приходится около 90% удаления метана из атмосферы. Кроме реакции с ОН известно еще два процесса: микробиологическое поглощение метана в почвах и реакция метана с атомами хлора (Cl) на поверхности моря. Вклад этих процессов 7% и менее 2% соответственно.

Озон

Озон является парниковым газом. В то же время озон необходим для жизни, поскольку защищает Землю от жёсткого ультрафиолетового излучения Солнца.

Однако ученые различают стратосферный и тропосферный озон. Первый (так называемый озоновый слой) является постоянной и основной защитой от вредного излучения. Второй же считается вредным, так как может переноситься к поверхности Земли, где вредит живым существам, и к тому же неустойчив и не может быть надежной защитой. Кроме того, повышение содержания именно тропосферного озона внесло вклад в рост парникового эффекта атмосферы, который (по наиболее широко распространенным научным оценкам) составляет около 25% от вклада СО 2

Большая часть тропосферного озона образуется, когда оксиды азота (NO x), окись углерода (СО) и летучие органические соединения вступают в химические реакции в присутствии солнечного света. Транспорт, промышленные выбросы, а также некоторые химические растворители являются основными источниками этих веществ в атмосфере. Метан, атмосферная концентрация которого значительно возросла в течение последнего столетия, также способствует образованию озона. Время жизни тропосферного озона составляет примерно 22 дня, основными механизмами его удаления являются связывание в почве, разложение под действием ультрафиолетовых лучей и реакции с радикалами OH и HO 2 .

Концентрации тропосферного озона отличаются высоким уровнем изменчивости и неравномерности в географическом распределении. Существует система мониторинга уровня тропосферного озона в США и Европе , основанная на спутниках и наземном наблюдении. Поскольку для образования озона требуется солнечный свет, высокие уровни озона наблюдаются обычно в периоды жаркой и солнечной погоды. Нынешняя средняя концентрация тропосферного озона в Европе в три раза выше, чем в доиндустриальную эпоху.

Увеличение концентрации озона вблизи поверхности имеет сильное негативное воздействие на растительность, повреждая листья и угнетая их фотосинтетический потенциал. В результате исторического процесса увеличения концентрации приземного озона, вероятно, была подавлена способность поверхности суши поглощать СО 2 и поэтому увеличились темпы роста СО 2 в XX веке. Ученые (Sitch и др. 2007) полагают, что это косвенное воздействие на климат увеличило почти вдвое тот вклад, который концентрация приземного озона внесла в изменения климата. Снижение загрязнения нижней тропосферы озоном может компенсировать 1-2 десятилетия эмиссии СО 2 , при этом экономические издержки будут относительно невелики (Wallack и Ramanathan, 2009).

Оксид азота

Парниковая активность закиси азота в 298 раз выше, чем у углекислого газа.

Фреоны

Парниковая активность фреонов в 1300-8500 раз выше чем у углекислого газа. Основным источником фреона являются холодильные установки и аэрозоли.

См. также

  • Киотский протокол (CO 2 , CH 4 , HFCs, PFCs, N 2 O, SF 6)

Примечания

Ссылки

  • Point Carbon – аналитическая компания, специализирующаяся на предоставлении независимой оценки, прогнозов, и информации о торговле выбросами парниковых газов.
  • “Г И С – атмосфера” автоматическая система мониторинга качества атмосферного воздуха

Парниковые газы

Парниковые газы -- газы, которые предположительно вызывают глобальный парниковый эффект.

Основными парниковыми газами, в порядке их оцениваемого воздействия на тепловой баланс Земли, являются водяной пар, углекислый газ, метан, озон, галоуглероды и оксид азота.

Водяной пар

Водяной пар -- основной естественный парниковый газ, ответственный более, чем за 60 % эффекта. Прямое антропогенное воздействие на этот источник незначительно. В то же время, увеличение температуры Земли, вызванное другими факторами, увеличивает испарение и общую концентрацию водяного пара в атмосфере при практически постоянной относительной влажности, что, в свою очередь, повышает парниковый эффект. Таким образом, возникает некоторая положительная обратная связь.

Метан

Гигантский выброс метана, скопившегося под морским дном, 55 миллионов лет назад разогрел Землю на 7 градусов Цельсия.

То же самое может произойти и сейчас - это предположение подтвердили исследователи из HАСА. Используя компьютерные симуляции древнего климата, они пытались лучше понять роль метана в его изменении. Сейчас большинство исследований парникового эффекта фокусируется на роли углекислого газа в этом эффекте, хотя потенциал метана по удержанию тепла в атмосфере превышает способности углекислого газа в 20 раз.

Разнообразные бытовые приборы, работающие на газе, вносят свою долю в увеличение содержания метана в атмосфере

За последние 200 лет содержание метана в атмосфере увеличилось более чем в 2 раза благодаря разложению органических останков в болотах и сырых низменностях, а также утечек с созданных человеком объектов: газовых трубопроводов, угледобывающих шахт, в результате увеличения ирригации и выделения газов домашним скотом. Hо существует еще один источник метана - разлагающиеся органические остатки в океанических отложениях, сохранившиеся в замерзшем виде под морским дном.

Обычно низкие температуры и высокое давление удерживают метан под океаном в стабильном состоянии, однако так дела обстояли не всегда. В периоды глобального потепления, как, например, термический максимум позднего палеоцена, имевший место 55 миллионов лет назад и продолжавшийся 100 тысяч лет, движение литосферных плит, в частности, индийского субконтинента, привело к падению давления на морском дне и могло вызвать большой выброс метана. Когда атмосфера и океан начали нагреваться, выбросы метана могли увеличиться. Некоторые ученые полагают, что нынешнее глобальное потепление может привести к развитию событий по этому же сценарию - если океан существенно прогреется.

Когда метан попадает в атмосферу, он вступает в реакцию с молекулами кислорода и водорода, в результате чего возникают углекислый газ и водяной пар, каждый из которых способен вызывать парниковый эффект. По ранее сделанным прогнозам весь выброшенный метан превратится в углекислый газ и воду примерно через 10 лет. Если это так, то увеличение концентрации углекислого газа станет основной причиной нагревания планеты. Однако попытки подтвердить рассуждения ссылками на прошлое не увенчались успехом - следов увеличения концентрации углекислого газа 55 миллионов лет назад не обнаружено.

Использовавшиеся в новом исследовании модели показали, что при резком возрастании уровня метана в атмосфере содержание в ней реагирующих с метаном кислорода и водорода снижается (вплоть до прекращения реакции), а остальной метан сохраняется в воздухе сотни лет, сам по себе становясь причиной глобального потепления. А этих сотен лет вполне достаточно, чтобы разогреть атмосферу, растопить лед в океанах и изменить всю климатическую систему.

Основными антропогенными источниками метана являются пищеварительная ферментация у скота, рисоводство, горение биомассы (в т. ч. сведение лесов). Как показали недавние исследования, быстрый рост концентрации метана в атмосфере происходил в первом тысячелетии нашей эры (предположительно в результате расширения сельхозпроизводства и скотоводства и выжигания лесов). В период с 1000 по 1700 годы концентрация метана упала на 40 %, но снова стала расти в последние столетия (предположительно в результате увеличения пахотных земель и пастбищ и выжигания лесов, использования древесины для отопления, увеличения поголовья домашнего скота, количества нечистот, выращивания риса). Некоторый вклад в поступление метана дают утечки при разработке месторождений каменного угля и природного газа, а также эмиссия метана в составе биогаза, образующегося на полигонах захоронения отходов

Углекислый газ

Источниками углекислого газа в атмосфере Земли являются вулканические выбросы, жизнедеятельность организмов, деятельность человека. Антропогенными источниками является сжигание ископаемого топлива, сжигание биомассы (в т. ч. сведение лесов), некоторые промышленные процессы (например производство цемента). Основными потребителями углекислого газа являются растения. В норме биоценоз поглощает приблизительно столько же углекислого газа, сколько и производит (в т. ч. за счет гниения биомассы).

Влияние диоксида углерода на интенсивность парникового эффекта.

Многое еще должно быть изучено о круговороте углерода и роли Мирового океана как огромного хранилища углекислого газа. Как было сказано выше, человечество каждый год добавляет 7 миллиардов тонн углерода в форме СО 2 к имеющимся 750 миллиардам тонн. Но только около половины наших выбросов - 3 миллиарда тонн - остаются в воздухе. Это можно объяснить тем, что большая часть СО 2 используется земными и морскими растениями, хоронится в морских осадочных породах, поглощается морской водой или по другому абсорбируется. Из этой большой части СО 2 (около 4 миллиардов тонн) океаном поглощается около двух миллиардов тонн атмосферного диоксида углерода каждый год.

Все это увеличивает число не отвеченных вопросов: Как именно морская вода взаимодействует с атмосферным воздухом, поглощая СО 2 ? Сколько еще углерода могут поглотить моря, и какой уровень глобального потепления может повлиять на их емкость? Какова способность океанов поглощать и сохранять тепло, задержанное изменением климата?

Роль облаков и суспензированных частиц в воздушных потоках, называемых аэрозолями не просто учесть при построении климатической модели. Облака затеняют земную поверхность, приводя к похолоданию, но в зависимости от их высоты, плотности и других условий, они так же могут задерживать тепло, отраженное от земной поверхности, повышая интенсивность парникового эффекта. Действие аэрозолей также интересно. Некоторые из них изменяют водяной пар, конденсируя его в маленькие капельки, образующие облака. Эти облака очень плотные и затеняют поверхность Земли неделями. То есть они блокируют солнечный свет, пока не выпадут с осадками.

Комбинированный эффект может быть огромен: извержение вулкана Пинатуба в 1991 в Филиппинах выбросило в стратосферу колоссальный объем сульфатов, что явилось причиной всемирного понижения температуры, которое длилось два года.

Таким образом, наши собственные загрязнения, вызванные, главным образом, сжиганием серосодержащего угля и масел, могут временно сгладить эффект глобального потепления. Специалисты оценивают, что в течение ХХ века аэрозоли снизили объем потепления на 20 %. В общем, температура поднималась с 1940-х, но с 1970 года снизилась. Эффект аэрозолей может помочь объяснить аномальное похолодание в середине прошлого века.

В 2006 году выбросы углекислого газа в атмосферу составили 24 миллиарда тонн. Очень активная группа исследователей возражает против мнения о том, что одной из причин глобального потепления является деятельность человека. По ее мнению, главное заключается в естественных процессах изменения климата и повышении солнечной активности. Но, по словам Клауса Хассельмана, руководителя Немецкого климатологического центра в Гамбурге, только 5 % можно объяснить природными причинами, а остальные 95 % - это техногенный фактор, вызванный деятельностью человека.

Некоторые ученые также не связывают увеличение объема СО 2 с повышением температуры. По словам скептиков, если винить в повышении температуры увеличение выбросов СО 2 , то температура должна была подняться в течение послевоенного экономического бума, когда ископаемое топливо сжигалось в огромных количествах. Однако Джерри Мэлмен, директор Геофизической лаборатории динамики жидкостей, вычислил, что увеличение использование угля и масел быстро увеличило содержание серы в атмосфере, вызывая похолодание. После 1970 года термический эффект длинного жизненного цикла СО 2 и метана подавил быстро распадающиеся аэрозоли, вызывая повышение температуры. Таким образом, можно заключить, что влияние диоксида углерода на интенсивность парникового эффекта огромно и неоспоримо.

Однако увеличивающийся парниковый эффект может не быть катастрофическим. В самом деле, высокие температуры могут приветствоваться там, где они достаточно редки. С 1900 года наибольшее потепление наблюдается от 40 до 70 0 северной широты, включая Россию, Европу, северную часть США, где раньше всего начинались промышленные выбросы парниковых газов. Большая часть потепления относится к ночному времени, прежде всего, из-за увеличения облачного покрова, который задерживал исходящее тепло. Как следствие посевной сезон увеличился на неделю.

Более того парниковый эффект может быть хорошей новостью для некоторых фермеров. Высокая концентрация СО 2 может иметь положительный эффект на растения, так как растения используют углекислый газ в процессе фотосинтеза, превращая его в живую ткань. Следовательно, больше растений означает больше поглощения СО 2 из атмосферы, замедляя глобальное потепление.

Это явление было исследовано американскими специалистами. Они решили создать модель мира с двойным содержанием СО 2 в воздухе. Для этого они использовали четырнадцатилетний сосновый лес в Северной Калифорнии. Газ нагнетался через трубки, установленные среди деревьев. Фотосинтез увеличился на 50-60 %. Но эффект вскоре стал обратным. Задыхающиеся деревья не справлялись с таким объемом углекислого газа. Преимущество в процессе фотосинтеза было потеряно. Это еще один пример как человеческие манипуляции приводят к неожиданным результатам.

Но эти небольшие положительные аспекты парникового эффекта не идут ни в какое сравнение с отрицательными. Взять хотя бы опыт с сосновым лесом, где объем СО 2 был увеличен вдвое, а к концу этого века прогнозируется увеличение концентрации СО 2 в четыре раза. Можно представить какими катастрофическими могут быть последствия для растений. А это в свою очередь повысит объем СО 2 , так как чем меньше растений, тем больше концентрация СО 2 .

Последствия парникового эффекта

парниковый эффект газы климат

С повышением температуры увеличится испарение воды из океанов, озер, рек и т.д. Так как нагретый воздух может содержать в себе больший объем водяного пара, это создает мощный эффект обратной связи: чем теплее становится, тем выше содержание водяного пара в воздухе, а это, в свою очередь, увеличивает парниковый эффект.

Человеческая деятельность мало влияет на объем водяного пара в атмосфере. Но мы выбрасываем другие парниковые газы, что делает парниковый эффект все более и более интенсивным. Ученые считают, что увеличение объема выбросов СО 2 , в основном от сжигания ископаемого топлива, объясняет, по крайней мере, около 60 % потепления на Земле, наблюдавшегося с 1850 года. Концентрация диоксида углерода в атмосфере возрастает примерно на 0,3 % в год, и сейчас составляет примерно на 30 % выше, чем до индустриальной революции. Если это выразить в абсолютных измерителях, то каждый год человечество добавляет примерно 7 миллиардов тонн. Несмотря на то, что это небольшая часть по отношению ко всему количеству углекислого газа в атмосфере - 750 миллиардов тонн, и еще меньшая по сравнению с количеством СО 2 , содержащимся в Мировом океане - примерно 35 триллионов тонн, она остается весьма значительной. Причина: естественные процессы находятся в равновесии, в атмосферу поступает такой объем СО 2 , который оттуда изымается. А человеческая деятельность только добавляет СО 2 .

Одним из основных парниковых газов считают диоксид углерода - углекислый газ (С02). Его роль до недавнего времени слишком подчеркивалась, на его долю относили до половины общего вклада в парниковый эффект. Однако сейчас пришли к мнению, что эта оценка была завышенной.

Инструментально доказано, что в последние десятилетия ежегодное накопление С0 2 в атмосфере составляет 0,4%. С начала XX в. уровень С0 2 в атмосфере увеличился на 31%. Эта величина существенна, чтобы повысить температуру. По самому оптимистичному сценарию, температура повысится в ближайшее столетие на 1,5-2°С, а но самому пессимистичному - почти на 6°С.

Каждый год в атмосферу из антропогенных источников поступает 6 млрд т диоксида углерода, из них 3 млрд т поглощаются растительностью в процессах фотосинтеза, оставшиеся 3 млрд т накапливаются. Общая сумма накоплений по вине человека за прошедшие 100 лет составила около 170 млрд т. Приведенные данные следует рассматривать в сопоставлении со 190 млрд т углекислого газа, которые ежегодно поступают в атмосферу вследствие естественных процессов. По оценкам ряда российских ученых, вклад антропогенной деятельности в глобальное потепление составляет лишь 10-15%, а остальное приходится на долю глобальных природных циклов. Поэтому усилия человечества на пути снижения выброса парниковых газов едва ли смогут заметно замедлить грядущее потепление.

Рост концентрации С0 2 не означает гибель для биосферы. Миллионы лет назад, в каменноугольный период, концентрация С0 2 была в 10 раз выше, чем сейчас. В тот период растительность буйно развивалась, деревья достигали больших размеров. Но для человеческой популяции условия были неблагоприятными. Предельный верхний уровень содержания С0 2 в атмосфере для человека не установлен.

Существуют разные гипотезы о причинах накопления С0 2 в атмосфере. Согласно первой, наиболее распространенной точке зрения углекислый газ накапливается в атмосфере как продукт сжигания органического топлива. Вторая гипотеза основной причиной роста содержания С0 2 считает нарушение функций микробных сообществ в почвах Сибири и части Северной Америки. Независимо от выбора гипотезы накопление диоксида углерода происходит во все увеличивающихся масштабах.

Большое воздействие на климат оказывают такие парниковые газы, как метан, оксиды азота и водяной пар.

До последнего времени недооценивалась роль метана (СН 4). Он активно участвует в парниковом эффекте. Кроме того, поднимаясь на высоту 15-20 км, метан под действием солнечных лучей разлагается на водород и углерод, который, соединяясь с кислородом, образует диоксид углерода. Это еще больше усиливает парниковый эффект.

В природе СН 4 образуется в болотах при гниении органики, его еще называют болотным газом. Метан также возникает в обширных мангровых зарослях в тропических областях. Рост концентрации СН 4 происходит в мире за счет разрушения биоты. Кроме того, он поступает в атмосферу из тектонических разломов на суше и на дне океана.

Антропогенные выбросы метана связаны с разведкой и добычей полезных ископаемых, со сгоранием минерального топлива в тепловых электростанциях и органического топлива в двигателях внутреннего сгорания транспортных средств, его выделением на животноводческих фермах. Использование азотных удобрений, выращивание риса, свалки бытовых отходов, утечки и неполное сгорание природного газа также ведут к росту выбросов метана и оксидов азота, которые являются мощными парниковыми газами. Содержание СН 4 в атмосфере, по инструментальным данным, возрастает на 1% в год. За прошедшие 100 лет рост составил 145%.

Оксиды азота накапливаются в атмосфере за год в пределах 0,2%, а общее накопление за период интенсивного промышленного развития составило около 15%. Увеличение содержания оксидов азота обусловливается сельскохозяйственной деятельностью и массовым уничтожением лесов.

Быстрое потепление климата на Земле приводит к ускорению кругооборота воды в природе, усилению испарения с водных поверхностей, что способствует накоплению водяного пара в атмосфере и активизации действия парникового эффекта. По мнению некоторых ученых, около 60% парникового эффекта вызывают пары воды. Чем больше их в тропосфере, тем сильнее парниковый эффект, а их концентрация в свою очередь зависит от приземных температур и площади водной поверхности.

Парниковые газы, которые находятся в атмосферах разных планет, приводят к образованию довольно опасного явления. Речь идет именно о парниковом эффекте. На самом деле ситуацию можно назвать парадоксальной. Ведь именно парниковые газы согрели нашу планету в результате чего на ней появились первые живые организмы. Но с другой стороны, сегодня эти газы вызывают множество проблем, связанных с экологией.

На протяжении многих миллионов лет Солнце нагревало планету Земля, медленно превращая её саму в источник энергии. Часть этого тепла уходила в космическое пространство, а часть отражалась газами в атмосфере и нагревала воздух, вокруг планеты. Аналогичный процесс, похожий на сохранение тепла под прозрачной плёнкой в теплице, учёные назвали «парниковым эффектом». А газы, приводящие к возникновению такого явления, назвали парниковыми.
В эпоху формирования земного климата, парниковый эффект возникал вследствие активной вулканической деятельности. Колоссальные объемы выбросов водяного пара и углекислого газа задерживались в атмосфере. Таким образом, наблюдался гиперпарниковый эффект, который нагрел воды Мирового океана практически до точки кипения. И лишь зеленая растительность, питающаяся углекислым газом атмосферы, помогла стабилизировать температурный режим нашей планеты.
Но глобальная индустриализация, а также увеличение производственных мощностей изменили не только химический состав парниковых газов, но и сам смысл данного процесса.

Основные парниковые газы

Парниковые газы являются газообразными составляющими атмосферы природного, или антропогенного происхождения. Ученых давно интересовал вопрос: какое излучение поглощают парниковые газы? В результате кропотливых исследований они выяснили, что эти газы поглощают и переизлучают инфракрасное излучение. Они поглощают и излучают радиацию в том же инфракрасном диапазоне, что и поверхность Земли, атмосфера и облака.
К главным парниковым газам Земли относятся:

  • водяной пар
  • углекислый газ
  • метан
  • галогенированные углеводороды
  • оксиды азота.

Углекислый газ (CO2) оказывает наиболее сильное влияние на климат нашей планеты. В самом начале индустриализации, а это 1750 год, его средняя глобальная концентрация в атмосфере достигала 280 ± 10 млн-1. И вообще в течение 10000 лет концентрация находилась на постоянном уровне. Однако результаты исследований говорят о том, что уже в 2005 году концентрация CO2 возросла на 35% и достигла 379 млн-1 и это за каких-то 250 лет.
Метан (СН4) находится на втором месте. Его концентрация возросла с 715 млрд-1 в доиндустриальный период до 1774 млрд-1 в 2005 году. Объем метана в атмосфере на протяжении 10000 лет плавно увеличивался с 580 млрд-1 до 730 млрд-1. А за последние 250 лет увеличился на 1000 млрд-1.
Закись азота (N2O). Объем атмосферной закиси азота в 2005 г. достигал 319 млрд-1 и возрос на 18% в сравнении с доиндустриальным периодом (270 млрд-1). Исследования ледниковых кернов говорят о том, что за 10000 лет объем N2O от естественных источников изменился меньше чем на 3%. В 21 веке почти 40% N2O, попадающего в атмосферу, обусловлено хозяйственной деятельностью, потому что это соединение является основой удобрений. Однако, стоит отметить, что N2O выполняет важную роль в химии атмосферы, потому что выступает источником NО2, который разрушает стратосферный озон. В тропосфере NО2 отвечает за образование озона и в существенно влияет на химический баланс.
Принадлежащий к числу парниковых газов тропосферный озон непосредственно влияет на климат через поглощение длинных волн радиации Земли и коротких волн радиации Солнца, а также посредством химических реакций, изменяющих объемы прочих парниковых газов, к примеру, метана. Тропосферный озон отвечает за образование важного окислителя парниковых газов - радикала - ОН.
Главная причина роста объемов тропосферного О3 кроется в повышении антропогенной эмиссии предшественников озона - химических веществ, которые нужны для его образования - прежде всего, углеводородов и окислов азота. Период жизни тропосферного озона составляет несколько месяцев, а это существенно ниже, чем у прочих парниковых газов (СО2, СН4, N2O).
Водяной пар также является очень важным естественным парниковым газом, который оказывает существенное влияние на парниковый эффект. Рост температуры воздуха приводит к росту содержания влаги в атмосфере при примерном сохранении относительной влажности, вследствие чего усиливается парниковый эффект, и температура воздуха продолжает повышаться. Водяной пар способствует росту облачности и изменению количества осадков. Хозяйственная деятельность человека оказывает влияние на эмиссию водяного пара, не более 1%. Водяной пар, вместе со способностью поглощать радиацию почти во всем инфракрасном диапазоне, тоже способствует образованию ОН - радикалов.
Стоит упомянуть и фреоны, парниковая активность которых в 1300-8500 раз выше, чем у углекислого газа. Источники фреонов - это различные холодильники и всяческие аэрозоли от антиперспирантов до спреев от комаров.

Источники парниковых газов

Выбросы парниковых газов происходят из двух категорий источников:

  • естественные источники. В эпоху отсутствия промышленности главными источниками парниковых газов в атмосфере были явления испарения воды из Мирового океана, вулканы и лесные пожары. Однако на сегодняшний день вулканы выбрасывают в атмосферу лишь примерно 0,15-0,26 млрд. тонн углекислого газа в год. Объем водяного пара, за аналогичный период, можно выразить в испарении 355 тысяч кубических километров воды
  • антропогенные источники. Вследствие интенсивной промышленной деятельности парниковые газы поступают в атмосферу во время сгорания ископаемого топлива (углекислый газ), в процессе разработок нефтяных месторождений (метан), вследствие утечки хладогентов и применения аэрозолей (фреоны), стартов ракет (оксиды азота), а также работе автомобильных двигателей (озон). Кроме этого, промышленная деятельность людей способствует уменьшению лесных насаждений, которые являются основными поглотителями углекислого газа на материках.

Сокращение парниковых газов

На протяжении последних ста лет человечество активно занимается разработкой единой программы действий, направленных на снижение объемов выбросов парниковых газов. Наиболее значимой составляющей экологической политики можно назвать введение нормативов на выхлопы топливных продуктов сгорания и уменьшение применения топлива посредством перехода автопрома на создание электромобилей.
Деятельность атомных электростанций, которым не нужен уголь или нефтепродукты, косвенно снижает объем углекислого газа в атмосфере. Расчет парниковых газов осуществляется по специальной формуле или в специальных программах, которые анализируют деятельность предприятий.
Значительно уменьшить или полностью запретить вырубку лесов - это также очень действенный метод в борьбе с парниковыми газами. В процессе своей жизни деревья поглощают колоссальные объемы углекислого газа. В вот в процессе вырубки деревья этот газ выделяют. Уменьшение территорий вырубки леса под пахотные земли в тропических государствах уже дало ощутимые результаты по оптимизации мировых показателей выбросов парниковых газов.
Очень радует экологов модная сегодня тенденция инвестировать в развитие разных видов возобновляемой энергии. Объемы ее использования в глобальных масштабах медленно, но постоянно растут. Она называется «зелёной энергией», потому что образуется в естественных регулярных процессах, происходящих в природе.
Человек сегодня не может увидеть или почувствовать негативное влияние парниковых газов. Но с этой проблемой вполне могут столкнуться уже наши дети. Если думать не только о себе, то можно присоединиться к решению данной проблемы уже сегодня. Нужно просто посадить дерево возле своего дома, своевременно потушить костёр в лесу, или при первой же возможности поменять вое авто на «заправленное» электричеством.

Категории источников летучих выбросов

Наименование сектора

Пояснение

Нефть и природный газ

Охватывает летучие выбросы от всех видов деятельности, связанных с нефтью и газом. Первичные источники этих выбросов могут включать летучие утечки из оборудования, потери при испарении, удалении газов, сжигании в факелах и случайном высвобождении.

Охватывает выбросы от вентиляции, горения и других летучих источников, связанных с разведкой, производством, передачей, совершенствованием и перегонкой сырой нефти и распределением продуктов сырой нефти.

Удаление газов

Выбросы при удалении соответствующих газов и отходящего газа/испарений на нефтяных объектах.

Сжигание в факелах

Выбросы при непродуктивном сжигании в факелах попутного газа на нефтяных объектах.

Все прочие

Летучие выбросы на нефтяных объектах от протечки оборудования, потерь при хранении, поломок трубопроводов, разрушении стен, наземных хранилищ, миграции газа к поверхности, к вентиляционным отверстиям, образование биогенного газа в накопителях отходов и прочие виды газов или испарений, высвобождаемые непреднамеренно, без целей сжигания в факелах и удаления.

Разведка

Летучие выбросы (исключая удаление газа и сжигание в факелах) от бурения скважин для нефти, тестирования бурильных колонн и завершения работ скважин.

Добыча и повышение качества

Летучие выбросы от добычи нефти (исключая удаление и сжигание газа в факелах) происходят из устий нефтяных скважин, из нефтяных песков или из нефтяных сланцев во время запуска системы транспортировки нефти. Сюда входят летучие выбросы, связанные с обслуживанием скважин, нефтяных песков или нефтяных сланцев, транспортировкой неочищенных нефтепродуктов (т.е., притекающих к скважине газов и жидкостей, эмульсии, нефтяных сланцев и нефтяных песков) к очистным сооружениям для экстракции и повышения качества, системам обратного нагнетания попутного газа и системам водоотведения. Летучие выбросы от установок для обогащения группируются с выбросами от производства, что предпочтительнее, чем группировка с выбросами от перегонки, так как установки для обогащения часто интегрируются с установками экстракции и их относительный вклад в выбросы трудно установить. Однако установки для обогащения также могут быть интегрированы с установками очистки, когенерационными агрегатами или прочими промышленными объектами, и их относительные вклады в выбросы в этих случаях определить сложно.

Транспортировка

Летучие выбросы (исключая удаление и сжигание газа в факелах), связаны с транспортировкой товарной сырой нефти (включая стандартную, тяжелую и синтетическую нефть и битум) для повышения качества и перегонки. Системы транспортировки могут включать трубопроводы, танкерные суда, автоцистерны и железнодорожные цистерны. Потери при испарении в процессе хранения, заполнения и выгрузки, а также летучие утечки из этого оборудования являются первичными источниками этих выбросов.

Перегонка

Летучие выбросы (исключая удаление и сжигание газа в факелах) на нефтеперегонных заводах. Нефтеперегонные установки обрабатывают сырую нефть, газоконденсаты и синтетическую нефть и производят конечные продукты очистки (например, и в первую очередь, разные виды топлива и смазочные материалы). Там, где установки для очистки интегрированы с другими объектами (например, установками для обогащения или когенерационными установками) их относительные вклады в выбросы может оказаться сложно определить.

Распределение нефтепродуктов

Сюда включаются летучие выбросы (исключая удаление и сжигание газа в факелах) от транспортировки и распределения очищенных нефтепродуктов, включая конечные станции трубопроводов и распределительные станции. Потери при испарении в процессе хранения, заполнения и выгрузки, а также летучие утечки из оборудования являются первичными источниками этих выбросов.

Летучие выбросы от нефтяных систем (исключая удаление и сжигание газа в факелах, не учтенные в вышеприведенных категориях. Включает летучие выбросы от проливания и других случаев случайного высвобождения, установки по обработке отработанного масла и установки по удалению отходов нефтедобычи.

Природный газ

Охватывает выбросы от удаления газов, сжигания в факелах и других летучих источников, связанных с разведкой, производством, передачей, хранением и распределением природного газа (включая как попутный, так и природный газ).

Удаление газов

Выбросы при удалении природного газа и отходящего газа/испарений на газовых объектах.

Сжигание в факелах

Выбросы при сжигании в факелах природного газа и отходящего газа/испарений на газовых объектах.

Все прочие

Летучие выбросы на газовых объектах от протечки оборудования, потерь при хранении, поломок трубопроводов, разрушении стен, наземных хранилищ, миграции газа к поверхности, к вентиляционным отверстиям, образование биогенного газа в накопителях отходов и прочие виды газов или испарений, высвобождаемые непреднамеренно, без целей сжигания в факелах или удаления.

Разведка

Летучие выбросы (исключая удаление газа и сжигание в факелах) от бурения газовых скважин, тестирования бурильных колонн и завершения работы скважин.

Летучие выбросы (исключая удаление газа и сжигание в факелах) из газовых скважин через входные отверстия на устройствах переработки газа или, если обработка не требуется, в точках стыковки систем транспортировки газа. Включает летучие выбросы, связанные с обслуживанием скважин, сбором газа, переработкой и деятельностью по избавления от попутной воды и кислых газов.

Переработка

Летучие выбросы (исключая удаление газа и сжигание в факелах) от установок по переработке газа.

Транспортировка и хранение

Летучие выбросы от систем, используемых для транспортировки переработанного природного газа к покупателям (например, промышленным потребителям и системам распределения природного газа). Летучие выбросы от хранилищ природного газа должны также включаться в данную категорию. Выбросы из установок по удалению жидкостей из природного газа в системах газоснабжения должно учитываться как часть переработки природного газа (сектор 1.B.2.b.iii.3). Летучие выбросы, относящиеся к транспортировке жидкостей природного газа должны учитываться в категории 1.B.2.a.iii.3.

Распределение

Летучие выбросы (исключая удаление газа и сжигание в факелах) от распределения газа конечным потребителям.

Летучие выбросы от систем снабжения природным газом (исключая удаление и сжигание газа в факелах) не учтенные в вышеприведенных категориях. Сюда могут входить выбросы от фонтанирования скважин, повреждений трубопроводов или окапывания.

  • Полезные материалы и статьи монтажнику кондиционеров и систем вентиляции →
  • Влияние хладагентов на истощение озонового слоя и глобальное потепление →
  • Парниковые газы

    

    Главным парниковым газом является водяной пар (H 2 O), который ответственен примерно за две трети природного парникового эффекта. Другие основные парниковые газы – это углекислый газ (СО 2), метан (СН 4), азотистый оксид (N 2 O) и фторированные парниковые газы. Эти газы регулируются Киотским Протоколом.

    ХФУ и ГХФУ – это также парниковые газы, но регулируемые скорее Монреальским, чем Киотским Протоколом.

    Стратосферный озон сам является парниковым газом. Таким образом, истощение озона послужило смягчению некоторых аспектов по изменению климата, в то время как восстановление озонового слоя добавит климатических изменений.

    Углекислый газ

    Основной участник усиления (искусственного) парникового эффекта это диоксид углерода (СО 2). В промышленных странах СО 2 представляет более, чем 80% выбросов парниковых газов.

    В настоящее время, в мире выделяется более 25 млрд. тонн углекислого газа каждый год. СО 2/sub> может оставаться в атмосфере от 50 до 200 лет, в зависимости от того, как он возвращается в оборот земли и океанов.

    Метан

    Второй наиболее важный парниковый газ для усиления парникового эффекта – это метан СН 4 . С начала промышленной революции концентрации атмосферного метана удвоились и вносят 20% вложений в усиление эффекта парниковых газов. В промышленных странах метан типично составляет 15% выбросов парниковых газов.

    Антропогенные выбросы метана связаны с горной промышленностью, сжиганием органического топлива, скотоводства, выращивание риса и мусорные свалки.
    ПГП метана в 23 раза больше, чем у СО 2 .

    Закись азота

    Закись азота (N 2 O) естественно высвобождается из океанов и тропических лесов и бактериями в почвах. Источники влияния человека включают азотистые удобрения, сжигание органических топлив и промышленное производство химикатов, использующих азот, например, обработка сточных вод.

    В индустриальных странах N 2 O несет ответственность примерно за 6% выбросов парниковых газов. Как СО 2 и метан, закись азота – это парниковый газ, чьи молекулы поглощают тепло, которое пытается испариться в космос. N 2 O имеет в 310 раз больший потенциал, чем СО 2 .

    С начала индустриальной революции, концентрации закиси азота в атмосфере увеличились на 16% и вносят вклад от 4 до 6 % в усиление парникового эффекта.

    Фторированные парниковые газы

    Финальная группа парниковых газов включает в себя фторированные составляющие, такие, как гидрофторуглероды (ГФУ), которые используются, как хладагенты и пенообразующие агенты, перфторированные углероды (ПФУ), которые выделяются во время производства алюминия; и серные гексафлориды (СГФ-SF 6), которые используются в электронной промышленности.

    Это единственные парниковые газы, которые не производятся в природе.

    Атмосферные концентрации малы, они составляют около 1,5% в целом от выбросов парникового газа индустриальных стран. Однако, они чрезвычайно мощные; они имеют в 1000-4000 раз больший потенциал, чем СО 2 , а некоторые – более чем в 22000 раз.

    ГФУ – одна из альтернатив ГХФУ в охлаждении, воздушном кондиционировании и пенообразовании. Последствия этих мощных парниковых способностей являются, таким образом, одним фактором, который должен быть учтен при выборе альтернатив и развитии стратегий ликвидации.