Рисование химических формул онлайн. Составления названий органических соединений по структурной формуле

На основе этих идей А. М. Бутлеров разработал принципы построения графических формул химических веществ. Для этого требуется знать валентность каждого элемента, которую изображают на рисунке в виде соответствующего числа чёрточек. Пользуясь этим правилом, легко установить, возможно или невозможно существование вещества с определённой формулой. Так, существует соединение, называемое метаном и имеющее формулу СН 4 . Соединение с формулой СН 5 невозможно, так как для пятого водорода у углерода уже не найдётся свободной валентности.

Рассмотрим сначала принципы строения наиболее просто устроенных органических соединений. Их называют углеводородами, так как в их состав входят только атомы углерода и водорода (рис. 138). Самым простым из них является упомянутый метан, в котором есть всего один атом углерода. Прибавим к нему ещё один такой же атом и посмотрим, как будет выглядеть молекула вещества, называемого этаном. У каждого атома углерода одна валентность занята его собратом – другим углеродным атомом. Теперь надо заполнить водородом оставшиеся валентности. У каждого атома осталась по три свободных валентных связи, к которым и присоединим по одному атому водорода. Получилось вещество, имеющее формулу С 2 Н 6 . Прибавим к нему ещё один атом углерода.


Рис. 138. Полные и сокращённые структурные формулы органических соединений

Теперь мы видим, что у среднего атома осталось только две свободных валентности. К ним мы присоединим по атому водорода. А к крайним углеродным атомам добавим, как и прежде, по три атома водорода. Получим пропан – соединение с формулой С 3 Н 8 . Такую цепочку можно продолжать, получая всё новые и новые углеводороды.

Но углеродные атомы необязательно должны располагаться в молекуле в линейном порядке. Допустим, что мы хотим добавить к пропану ещё один углеродный атом. Оказывается, это можно сделать двумя способами: присоединить его либо к крайнему, либо к среднему атому углерода пропана. В первом случае мы получим бутан с формулой С 4 Н 10 . Во втором случае общая, так называемая эмпирическая, формула будет такой же, но изображение на рисунке, называемое структурной формулой , будет выглядеть иначе. И название вещества будет несколько иное: не бутан, а изобутан.

Вещества, имеющие одну и ту же эмпирическую, но разные структурные формулы, называют изомерами , а способность вещества существовать в виде различных изомеров – изомерией . Мы, например, употребляем в пищу различные вещества, имеющие одну и ту же формулу С 6 Н 12 О 6 , но структурные формулы они имеют различные и носят разные названия: глюкоза, фруктоза или галактоза.

Углеводороды, которые мы рассмотрели, называют предельными. В них все атомы углерода связаны между собой одинарной связью. Но так как атом углерода четырёхвалентен и имеет четыре валентных электрона, то теоретически он может образовывать двойные, тройные и даже четверные связи. Четверные связи между атомами углерода в природе не существуют, тройные встречаются редко, а вот двойные присутствуют во многих органических веществах, в том числе и в углеводородах. Соединения, в которых имеются двойные или тройные связи между атомами углерода, называют непредельными или ненасыщенными углеводородами. Возьмём снова молекулу углеводорода, содержащую два атома углерода, но соединим их с помощью двойной связи (см. рис. 138). Мы видим, что теперь у каждого атома углерода осталось по две свободных связи, к каждой из которых он может присоединить по одному атому водорода. Получаемое соединение имеет формулу С 2 Н 4 и называется этиленом. Этилен, в отличие от этана, имеет меньше атомов водорода при том же числе углеродных атомов. Поэтому углеводороды, имеющие двойную связь, и называют ненасыщенными в том смысле, что они не насыщены водородом.

Пример 2.2.

Написать структурную формулу для соединения 2,4,5 триметил- 3-этилгексан. Написать брутто-формулу этого соединения.

1. Записывается главная (самая длинная углеродная цепь), т.е. записывается углеродный скелет алкана стоящего в конце предложенного названия. В данном примере это гексан и номеруются все углеродные атомы:

С – С – С – С – С – С

2. В соответствии с цифрами, указанными в формуле, расставляются все заместители.

С - С - С - С - С - С

СН 3 С 2 Н 5 СН 3 СН 3

3. Соблюдая условия четырехвалентности углеродных атомов, заполняют оставшиеся свободные валентности атомов углерода в углеродном скелете атомами водорода:

СН 3 – СН – СН - СН - СН - СН 3

СН 3 С 2 Н 5 СН 3 СН 3

4. Количество углеродных атомов в данном соединении 11. Брутто-формула этого соединения С 11 Н 24

Изомерия алканов. Вывод структурных формул изомеров .

Молекулы, имеющие одинаковый состав, но различающиеся различным строением называются изомерами. Изомеры отличаются друг от друга химическими и физическими свойствами.

В органической химии существует несколько видов изомерии. Предельным алифатическим углеводородам – алканам характер один, самый простой вид изомерии. Этот вид изомерии называется структурной или изомерия углеродного скелета.

В молекулах метана, этана и пропана может быть только один единственный порядок соединения атомов углерода:

Н Н Н Н Н Н

│ │ │ │ │ │

Н – С – Н Н - С - С - Н Н - С - С - С - Н

│ │ │ │ │ │

Н Н Н Н Н Н

Метан этан пропан

Если в молекуле углеводорода содержится больше трех атомов, то порядок соединения их между собой может быть различен. Например, бутан С 4 Н 8 , может содержать два изомера: линейный и разветвленный.



Пример 2.3. Составить и назвать все возможные изомеры пентана С 5 Н 12 .

При выводе структурных формул отдельных изомеров можно поступать следующим образом.

1. Согласно общему числу углеродных атомов в молекуле (5) вначале записываю прямую углеродную цепь – углеродный скелет:

2. Затем «отщепляя» по одному крайнему атому углерода, располагают их у оставшихся в цепи углеродов так, чтобы получить максимально возможное количество совершенно новых структур. При отщеплении одного углеродного атома от пентана может быть получен только еще один изомер:

3. Получить другой изомер, переставляя «вынутый» из цепи углерод нельзя, так как при перестановке его к третьему углеродному атому главной цепи по правилам составления названий нумерацию главной цепи нужно будет провести справа налево. При отщеплении двух углеродных атомов от пентана может быть получен еще один изомер:

4. Соблюдая условия четырехвалентности углеродных атомов, заполняют оставшиеся свободные валентности атомов углерода в углеродном скелете атомами водорода

(см. пример 2.2.)

Примечание: необходимо понимать, что «изогнув» произвольно молекулу, нельзя получить новый изомер. Образование изомеров наблюдается лишь в том случае, когда нарушается первоначальное строение соединения. Например, приведенные ниже соединения

С – С – С - С – С и С – С – С

не являются изомерами, это углеродный скелет одного и того же соединения пентана.

3. ХИМИЧЕСКИЕ СВОЙСТВА ПРЕДЕЛЬНЫХ УГЛЕВОДОРОДОВ

(задачи №№ 51 – 75)

Литература:

Н.Л. Глинка. Общая химия. – Л.: Химия, 1988, гл.XV, п. 164, с. 452 – 455.

Пример 3.1. На примере пентана охарактеризуйте химические свойства алканов. Укажите условия протекания реакций и назовите продукты реакций.

Решение:

1. Основные реакции алканов – реакции замещения водорода, идущие по свободно-радикальному механизму.

1.1. Галогенирование h n

СН 3 – СН 2 – СН 2 – СН 2 – СН 3 + Cl 2 ¾¾® СН 3 – СН 2 – СН 2 – СН 2 – СН 2 Сl + HСl

пентан 1-хлорпентан

СН 3 – СН 2 – СН 2 – СН 2 – СН 3 + Cl 2 ¾¾® СН 3 – СН – СН 2 – СН 2 – СН 3 + HСl

2-хлорпентан

СН 3 – СН 2 – СН 2 – СН 2 – СН 3 + Cl 2 ¾¾® СН 3 – СН 2 – СН – СН 2 – СН 3 + HСl

3-хлорпентан

На первой стадии реакции в молекуле пентана замещение атома водорода будет происходить как у первичного, так и у вторичного атома углерода, в результате чего образуется смесь изомерных монохлорпроизводных.

Однако энергия связи атома водорода с первичным атомом углерода больше, чем со вторичным атомом углерода и больше, чем с третичным атомом углерода, поэтому легче идет замещение атома водорода, связанного с третичным атомом углерода. Данное явление называется селективностью. Оно выражено ярче у менее активных галогенов (брома, иода). При повышении температуры селективность ослабляется.

1.2. Нитрование (реакция М.М. Коновалова)

НNО 3 = ОНNО 2 Катализатор Н 2 SO 4 конц.

В результате реакции образуется смесь нитропроизводных.

t = 120-150 0 С

СН 3 – СН 2 – СН 2 – СН 2 – СН 3 + ОНNО 2 ¾¾® СН 3 – СН 2 – СН 2 – СН 2 – СН 2 NO 2 + H 2 O

пентан 1-нитропентан

t = 120-150 0 С

СН 3 – СН 2 – СН 2 – СН 2 – СН 3 + ОНNО 2 ¾¾® СН 3 – СН – СН 2 – СН 2 – СН 3 + H 2 O

NO 2 2-нитропентан

t = 120-150 0 С

СН 3 – СН 2 – СН 2 – СН 2 – СН 3 + ОНNО 2 ¾¾® СН 3 – СН 2 – СН – СН 2 – СН 3 + H 2 O

NO 2 3-нитропентан

1.3. Реакция сульфирования Концентрированная Н 2 SO 4 = ОНSO 3 Н

СН 3 – СН 2 – СН 2 – СН 2 – СН 3 + ОНSO 3 Н ® СН 3 – СН 2 – СН 2 – СН 2 – СН 2 SO 3 Н + H 2 O

пентан 1-сульфопентан

2. Реакция полного окисления – горение.

С 5 Н 12 + 8(О 2 + 3,76 N 2) ® 5СО 2 + 6Н 2 О + 8×3,76N 2

3. Термическое разложение

С 5 Н 12 ® 5С + 6Н 2

4. Крекинг – реакция расщепления с образованием алкана и алкена

СН 3 – СН 2 – СН 2 – СН 2 – СН 3 ¾¾® СН 3 – СН 3 + СН 2 = СН – СН 3

пентан этан пропен

5. Реакция изомеризации

СН 3 – СН 2 – СН 2 – СН 2 – СН 3 ¾¾® СН 3 ¾ С ¾ СН 3

CН 3 2,2-диметилпропан

Пример 3.2. Охарактеризуйте способы получения алканов. Напишите уравнения реакций, с помощью которых можно получить пропан.

Решение:

1. Крекинг алканов

СН 3 – СН 2 – СН 2 – СН 2 – СН 2 – СН 3 ® СН 3 – СН 2 – СН 3 + СН 2 = СН – СН 3

гексан пропан пропен

2. Реакция Вюрца

CH 3 – Cl + 2Na + Cl – СН 2 – СН 3 ® СН 3 – СН 2 – СН 3 + 2NaCl

хлорметан хлорэтан пропан

3. Восстановление галогенпроизводных алканов

3.1. Восстановление водородом

СН 3 – СН 2 – СН 2 – I + H – H ® СН 3 – СН 2 – СН 3 + HI

1-иодпропан водород пропан

3.2. Восстановление галогеноводородом

СН 3 – СН 2 – СН 2 – I + H – I ® СН 3 – СН 2 – СН 3 + I 2

1-иодпропан иодо- пропан иод

сплавление

СН 3 – СН 2 – СН 2 – С = О + NaOH ¾¾¾® СН 3 – СН 2 – СН 3 + Na 2 CO 3

натриевая соль \ гидроксид пропан карбонат

бутановой кислоты ОNa натрия натрия (сода)

5. Гидрирование непредельных углеводородов

5.1. Гидрирование алкенов

СН 2 = СН – СН 3 + Н 2 ® СН 3 – СН 2 – СН 3

пропен пропан

5.2. Гидрирование алкинов

СН º С – СН 3 + 2Н 2 ® СН 3 – СН 2 – СН 3

Структурная формула представляет собой графическое изображение химического строения вещества. В ней указывается порядок расположения атомов, а также связь между отдельными частями вещества. К тому же структурные формулы веществ наглядно демонстрируют валентности всех атомов, включенных в молекулу.

Особенности написания структурной формулы

Для составления потребуется бумага, ручка, периодическая система элементов Менделеева.

Если нужно нарисовать графическую формулу аммиака, нужно учитывать, что водород способен образовывать только одну связь, поскольку его валентность равна единице. Азот находится в пятой группе (главной подгруппе), имеет на внешнем энергетическом уровне пять валентных электронов.

Три из них он использует для образования простых связей с атомами водорода. В итоге структурная формула будет представлять собой следующий вид: в центре находится азот, вокруг него располагаются атомы водорода.

Инструкция по написанию формул

Чтобы структурная формула была написана правильно для определенного химического вещества, важно иметь представление о строении атома, валентности элементов.

Именно с помощью данного понятия можно изображать графическое строение органических и неорганических веществ.

Органические соединения

Органическая химия предполагает использование графического строения химических веществ разных классов при написании химических реакций. Структурная формула составляется на основе теории строения органических веществ Бутлерова.

Она включает в себя четыре положения, согласно которым записываются структурные формулы изомеров, выдвигается предположение о химических свойствах анализируемого вещества.

Пример составления структур изомеров

Изомерами называют в органической химии вещества, которые имеют одинаковый качественный и количественный состав, но отличаются по расположению атомов в молекуле (структуре), химической активности.

Вопросы, касающиеся составления графического строения органических веществ, включены в вопросы единого государственного экзамена, проводимого в 11 классе. Например, нужно составить, а также дать название структурных формул изомеров состава С 6 Н 12 . Как справиться с подобной задачей?

Для начала нужно понять, к какому классу органических веществ, могут принадлежать вещества с таким составом. Учитывая, что общую формулу C n H 2n имеют сразу два класса углеводородов: алкены и циклоалканы, нужно составить структуры всех возможных веществ для каждого класса.

Для начала можно рассмотреть формулы всех углеводородов, принадлежащих к классу алкенов. Они характеризуются наличием одной кратной (двойной) связи, что должно быть отражено при составлении структурной формулы.

Учитывая, что в молекуле шесть атомов углерода, составляем главную цепь. После первого углерода ставим двойную связь. Пользуясь первым положением теории Бутлерова, для каждого атома углерода (валентность четыре) ставим необходимое количество водородов. Называя полученное вещество, используем систематическую номенклатуру, получаем гексен-1.

Оставляем в главной цепи шесть углеродных атомов, перемещаем положение двойной связи после второго углерода, получаем гексен-2. Продолжая передвигать по структуре кратную связь, составляем формулу гексена-3.

Пользуясь правилами систематической номенклатуры, получаем 2 метилпентен-1; 3 метилпентен-1; 4 метилпентен-1. Затем перемещаем кратную связь после второго углерода в главной цепи, а алкильный радикал располагаем у второго, затем у третьего углеродного атома, получая 2 метилпентен-2, 3 метилпентен-2.

Аналогичным образом продолжаем составлять и называть изомеры. Рассмотренные структуры представляют собой два вида изомерии: углеродного скелета, положения кратной связи. Необязательно указывать по отдельности все водородные атомы, можно использовать варианты сокращенных структурных формул, суммируя каждого атома углерода число водорода, указывая их соответствующими индексами.

Учитывая, что у алкенов и циклоалканов сходна общая формула, при составлении структур изомеров необходимо учитывать этот факт. Сначала можно составить структуру замкнутого циклогексана, затем посмотреть возможные изомеры боковой цепи, получив метилциклопентан, диметилциклобутан, и т. д.

Линейные структуры

Структурные формулы кислот являются типичными представителями подобного строения. Предполагается указание каждого отдельного атома при создании их графических формул, указанием черточками числа валентностей между атомами.

Заключение

По готовым структурным формулам можно определить валентность каждого элемента, входящего в состав вещества, предположить возможные химические свойства молекулы.

После того как была разработана теория строения органических веществ Бутлерова, удалось объяснить различие в свойствах между веществами, которые имеют одинаковый качественный и количественный составом явлением изомерии. Пользуясь определением валентности, периодической системой элементов Менделеева, можно представить в графическом виде любое неорганическое и органическое вещество. В органической химии структурные формулы составляют для того, чтобы понять алгоритм протекания химических превращений и объяснить их суть.

Задача.

Сложные органические формулы довольно трудоемки в рисовании их обычными методами WORD. Для решения этой задачи созданы специальные химические редакторы. Они различаются по специализации и своим возможностям, по степени сложности интерфейса и работы в них и т.д. На этом занятии мы должны познакомиться с работой одного из таких редакторов, подготовив файл документа с необходимыми формулами.

Общая характеристика редактора ChemSketh

Химический редактор ChemSketch из пакета программ ACD/Labs канадской фирмы «Advanced Chemistry Development» по функциональным возможностям не уступает редактору ChemDraw и даже кое в чем его превосходит. В отличие от ChemDraw (объем памяти 60 мегабайт) ChemSketch занимает всего около 20 мегабайт дискового пространства. Немаловажно и то, что документы, созданные с помощью ChemSketch, занимают небольшой объем - всего несколько килобайт. Этот химический редактор более ориентирован на работу с органическими формулами среднего уровня сложности (имеется большая библиотека готовых формул), но в нем удобно составлять также химические формулы неорганических веществ. С его помощью можно оптимизировать молекулы в трехмерном пространстве, вычислять расстояния и валентные углы между атомами в молекулярной структуре и многое другое.