Интеграция алгебраических и геометрических методов в решении задач. Алгебраические методы синтеза

Если исходить из соотношений между искомыми и данными задачи, то условие задачи на построение может быть выражено аналитически.

Аналитическое выражение задачи на построение в виде уравнения, а его решения в виде корней этого уравнения помогают найти геометрическое решение, а также определить, с помощью каких инструментов оно может быть выполнено.

Решение задач алгебраическим методом сводится к построению:

  • среднего пропорционального двух данных отрезков х = 4аЬ
  • четвертого пропорционального к трем данным отрезкам, выра-

. „ Ъс

жаемого формулой х = -;

По алгебраической сумме данных отрезков x = a±b,x-a + b-c + d,

x = 3a±2b и т.д.; _

По формулам типа х = 1а + Ь.

Алгебраический метод решения геометрических задач на построение состоит в следующем:

  • 1) неизвестные величины, фигурирующие в условии задачи, обозначают буквами х, у, z и т.д.;
  • 2) составляют уравнения, связывающие эти неизвестные с данными в задаче величинами а, Ь, с, ...;
  • 3) решают составленные уравнения;
  • 4) исследуют полученные ответы;
  • 5) выполняют требуемое построение.

Прежде чем переходить к решению задач на построение алгебраическим методом, рассмотрим построения некоторых отрезков, заданных соотношениями между длинами других отрезков.

1. Иногда в геометрических задачах на построение отношение двух величин дается в виде а: b ; а 3: Ь 3 ; а 4: Ь 4 и т.д.

Покажем, что любое из этих отношений можно заменить отношением двух отрезков.

Задача 6.47. Построить отрезок, заданный отношением а п: Ь п, где

п е N.

Решение

Начертим две произвольные взаимно перпендикулярные прямые KL и MN (рис. 6.52) и обозначим буквой О точку их пересечения. На прямых KL и MN от точки О отложим отрезки ОА и ОА х, соответственно равные данным отрезкам Ъ и а. Соединив точки А и А ь восставим в точке А г перпендикуляр к АА Х KL в некоторой точке Л 2 . В точке А 2 восставим перпендикуляр к А 2 А 1 и продолжим его до пересечения с прямой MN в точке А 3 и т.д.

Определим величину каждого из следующих отношений: ОА х: ОА; ОА 2 : ОА х; ОА 3: ОА г и т.д.

Так как прямоугольные треугольники ОАА х, ОА,А 2 , ОА^А 3 ,... подобны, то, значит:

ОА, и ,

По построению, - L = -, а поэтому в силу равенств (*) получим ОА b

Определим величину отношения Оно не изменится, если мы

каждый из его членов разделим на одну и ту же величину ОА ь а поэтому

т т ОА, а О Ап а ОА 2 а ОА b

Но из равенств -- = - и -- = - усматриваем, что -- = - и-= -.

ОАЬОА х Ъ ОА, Ъ ОА, а

В силу последних двух равенств мы можем равенство (**) переписать так:

ОА 2 _ а 2 ОА ~ Ъ 2 "

Аналогичными рассуждениями найдем и другие отношения.

2. Рассмотрим задачу на построение среднего пропорционального двух данных отрезков, т.е. отрезка -Jab.

Задача 6.48. Построить среднее пропорциональное отрезков а и Ь. Решение

На одной прямой отложим последовательно отрезки АС = а и СВ = b (рис. 6.53)

Рис. 6.53

На отрезке АВ как на диаметре построим окружность ofiC, 1.

В точке С восставим перпендикуляр к прямой АВ.

Имеем NC = -Jab. Действительно, AANB - прямоугольный.

По известной теореме AACN подобен ANCB, а значит, откуда

NC 2 = АС СВ, или в других обозначениях NC 2 =ab. Окончательно имеем NC--Jab.

3. При решении задач на построение очень часто приходится строить отрезок, который является четвертым пропорциональным трех заданных отрезков. Рассмотрим решение этой задачи.

Задача 6.49. Даны три отрезка а, Ь, с. Построить такой отрезок х,

а с что - = -.

Решение

Возьмем любой угол О. На одной стороне угла отложим отрезки ОА = а и ОС = с, а на другой - отрезок ОВ-b (рис. 6.54)

Через точку С проведем прямую р || АВ. Она пересечет луч ОВ в точке D. Докажем, что OD - искомый отрезок х. Треугольники ОАВ

и OCD подобны. Поэтому т.е. OD = х.


Рис. 6.54

В частном случае эта задача позволяет разделить отрезок на п равных частей. Обозначим данный отрезок через Ь. Возьмем любой отрезок с, и пусть а - пс (рис. 6.55).


Рис. 6.55

„ ас b Ъ 1 .

Поскольку - = -, то х = - с = - с = - Ъ. ох а пс п

4. Рассмотрим более сложное отношение отрезков.

Задача 6.50. Построить отрезок, заданный отношением 2 [а: 2 /b, где п е N.

Решение

Допустим, что отношение величин задано в виде [а: -Jb , где а и Ъ - данные отрезки.

Для определения тех двух отрезков, отношение которых равно Va: Vb, поступим следующим образом.

На произвольной прямой от выбранной точки К отложим последовательно два отрезка: KN-а иNM = b (рис. 6.56)


Рис. 6.56

На отрезке КМ, как на диаметре, построим полуокружность КРМ.

В точке N восставим перпендикуляр NN" к отрезку КМ. Прямая NN" пересекает дугу КРМ в некоторой точке L.

Соединяем точку ЬсКиМ. Отрезки KL и LM - искомые, т.е.

Действительно, имеем-=--. Но AKLM подобен ALMN, а по-

KL LN KL 2 LN 2

этому-=-и, значит, -=--, но из последнего равенства

LM NM LM NM 2

KN LN 2 KL 2 KN

и равенства-=-- вытекает, что-- =-. Извлекая квадратный

NM NM 2 LM 2 NM

корень из обеих частей последнего равенства, найдем:

Чтобы получить два отрезка, отношение которых равно [а: yfb, необходимо сначала построить такие два отрезка тип, отношение кото-

рых определяется равенством - = -j=, а затем посредством такого же

построения найти отрезки р и q, которые определяются равенством р _ yfm Ч Vn

Аналогичными построениями можно найти отрезки, отношение которых равно 2 fa: 2 yх 2 + h h 2 , то из равенства (*) получим

Построение. 1. Строим отрезок у = yj{2h b) 2 -h a 2 (рис. 6.61).

Рис. 6.61

2. Строим х = ^^- (рис. 6.62).

Рис. 6.62

3. Наконец, строим искомый равнобедренный треугольник АВС по основанию АС =2хи высоте DB = h b (рис. 6.63).

Рис. 6.63

Доказательство. Нужно доказать, что в построенном равнобедренном треугольнике АВС высоты BD -h b и АЕ- h a . Первое равенство очевидно, а справедливость второго вытекает из обратимости всех формул, приведенных в анализе. _

Исследование. Замечаем, что отрезок у = yl(.2h b) 2 -h 2 можно построить лишь в том случае, если (2/i b) 2 -h a 2 >0, или 2h b >h a .

При этом условии можно построить отрезок х и, следовательно, искомый треугольник АВС. Так как два равнобедренных треугольника, имеющих равные основания и равные высоты, равны, то задача имеет единственное решение.

Замечание. Задача допускает более простое решение другим способом. Если через точку D провести прямую, параллельную высоте АЕ и пересекающую сторону ВС в точке F, то треугольник DFB можно построить по катету 0,5h a и гипотенузе h b , что приведет к построению искомого треугольника.

Задача 6.57. Через данную вне круга точку А провести такую секущую, которая разделилась бы этой окружностью в данном отношении.

Решение

Анализ. Допустим, что задача решена: секущая AL удовлетворяет условию задачи (рис. 6.64). Проведем из точки А секущую АС, проходящую через центр О данного круга. Так как точка А нам дана, то, значит, нам известны отрезки AD и АС. Обозначим буквой х длину отрезка АК. Если из точки А, находящейся вне круга, проведем секущие, то произведение всей секущей на ее внешнюю часть есть величина постоянная, а потому


Рис. 6.64

Из чертежа усматриваем, что AL = х + LK.

л шс.. пх

А так как по условию х: LK = m : п, т.е. ЬК = -, то, значит, AL = x + - -

= -(т + п ). т

Поэтому равенство (*) примет такой вид: х-(m + п) = AD ? АС, откуда

Построение. 1. Исходя из формулы (**) известным построением определим отрезок х.

  • 2. Из точки А делаем на данной окружности засечку К радиусом, равным найденному х.
  • 3. Соединив точки А и К и продолжив эту прямую, получим искомую секущую.

Заметим, что мы не привели рассуждения, которые имеют место к решению этой задачи на этапах доказательства и исследования (предоставляем читателю провести эти этапы самостоятельно).

Задача 6.58. Найти вне данного круга такую точку, чтобы касательная, проведенная из нее к этой окружности, была вдвое меньше секущей, проведенной из той же точки через центр.

Решение

Анализ (рис. 6.65). Обозначим буквой х расстояние до искомой точки от центра О окружности. Как известно, АВ 2 -DA ? АС (1), но DA = х - г (2), АС = х + г (3) и, значит, АВ 2 = (х - г) (х + г) = х 2 - г 2 и АВ = 1х 2 -г 2 (4).

Рис. 6.65

Так как по условию АС = 2АВ, то из формул (3) и (4) имеем х + г - = 21х 2 -г 2 , откуда х 2 + 2гх + г 2 = 4х 2 - 4г 2 , или Зх 2 - 2гх - 5г 2 = 0. Следовательно,

т.е. х а = - г и х 2 =-г.

В данной задаче х не может быть отрицательной величиной, а потому второй корень отбрасываем.

Построение. Продолжим один из диаметров (CD) данной окружности

и на нем отложим от точки D отрезок DA, равный -г (DA = АО - OD = 5 2 3

Г - г = -г (6)).

Точка А - искомая.

Доказательство. АС = х + г =-г + г, т.е. АС =-г (7).

.- /2 8 4 АС

Из формул (1), (6), (7) находим: AB = y/DA-AC = J-r--r=-r =

что подтверждает правильность сделанного построения (этап исследования предлагаем читателю провести самостоятельно).

Алгебраический метод

Возможны два случая для решения задач алгебраическим методом:

1. матрица имеет седловую точку;

2. матрица не имеет седловую точку.

В первом случае решение - это пара стратегий, образующих седловую точку игры. Рассмотрим второй случай. Решения здесь следует искать в смешанных стратегиях:

Отыщем стратегии и. При использовании первым игроком своей оптимальной стратегии второй игрок может, например, применить две такие чистые стратегии

При этом в силу свойства, если один из игроков применяет оптимальную смешанную стратегию, а другой - любую чистую, входящую в его оптимальную смешанную стратегию с вероятностью не равной нулю, то математическое ожидание выигрыша всегда остается неизменным и равным цене игры, т.е.

Выигрыш должен в каждом из этих случаев быть равен цене игры V. В таком случае справедливы такие соотношения:

Систему уравнений, аналогичную (2.5), (2.6) можно составить и для оптимальной стратегии второго игрока:

Принимая во внимание условие нормировки:

Решим совместно уравнение (1.37) - (1.41) относительно неизвестных можно решать и не все сразу, а по три: отдельно (1.36), (1.38), (1.40) и (1.37), (1.39), (1.41). В результате решения получим:

Графический метод

Приближенное решение игры 22 можно довольно просто получить воспользовавшись графическим методом. Суть его заключается в следующем:

Рисунок 1.1- нахождение участка единичной длинны

Выделить на оси абсцисс участок единичной длины. Левый конец его будет изображать первую стратегию первого игрока, а правый вторую. Все промежуточные точки соответствуют смешанным стратегиям первого игрока, причем длина отрезка справа от точки равна вероятности применения первой стратегии, а длина отрезка слева от - вероятности применения второй стратегии первым игроком.

Проведены две оси I-I и II-II. На I-I будем откладывать выигрыш при использовании первым игроком первой стратегии, на II-II при использовании им второй стратегии. Пусть, например, второй игрок применил свою первую стратегию, тогда на оси I-I следует отложить величину, а на оси II-II - величину

При любой смешанной стратегии первого игрока его выигрыш определится величиной отрезка. Линия I-I соответствует применению первой стратегии вторым игроком, будем её называть первой стратегией второго игрока. Аналогично можно построить и вторую стратегию второго игрока. Тогда в целом графическое отображение матрицы игры примет такой вид:

Рисунок 1.2 - нахождение цены игры

Следует однако отметить, что это построение проводилось для первого игрока. Здесь длина отрезка ровна цене игры V.

Линия 1N2 называется нижней границей выигрыша. Здесь наглядно видно, что точка N соответствует максимальной величине гарантированного выигрыша первого игрока.

1. Общие замечания к решению задач алгебраическим методом.

2. Задачи на движение.

3. Задачи на работу.

4. Задачи на смеси и проценты.

    Использование алгебраического метода для нахождения арифметического пути решения текстовых задач.

1. При решении задач алгебраическим методом искомые величины или другие величины, зная которые можно определить искомые, обозначают буквами (обычно х, у, z ). Все независимые между собой соотношения между данными и неизвестными величинами, которые либо непосредственно сформулированы в условии (в словесной форме), либо вытекают из смысла задачи (например, физические законы, которым подчиняются рассматриваемые величины), либо следуют из условия и некоторых рассуждений, записываются в виде равенства неравенств. В общем случае эти соотношения образуют некоторую смешанную систему. В частных случаях эта система может не содержать неравенств либо уравнений или она может состоять лишь из одного уравнения или неравенства.

Решение задач алгебраическим методом не подчиняется какой-либо единой, достаточно универсальной схеме. Поэтому всякое указание, относящееся ко всем задачам, носит самый общий характер. Задачи, которые возникают при решении практических и теоретических вопросов, имеют свои индивидуальные особенности. Поэтому их исследование и решение носят самый разнообразный характер.

Остановимся на решении задач, математическая модель которых задается уравнением с одним неизвестным.

Напомним, что деятельность по решению задачи состоит из четырех этапов. Работа на первом этапе (анализ содержания задачи) не зависит от выбранного метода решения и не имеет принципиальных отличий. На втором этапе (при поиске пути решения задачи и составлении плана ее решения) в случае применения алгебраического метода решения осуществляются: выбор основного соотношения для составления уравнения; выбор неизвестного и введение обозначения для него; выражение величин, входящих в основное соотношение, через неизвестное и данные. Третий этап (осуществление плана решения задачи) предполагает составление уравнения и его решение. Четвертый этап (проверка решения задачи) осуществляется стандартно.

Обычно при составлении уравнений с одним неизвестным х придерживаются следующих двух правил.

Правило I . Одна из данных величин выражается через неизвестное х и другие данные (то есть составляется уравнение, в котором одна часть содержит данную величину, а другая – ту же величину, выраженную посредством х и других данных величин).

Правило II . Для одной и той же величины составляются два алгебраических выражения, которые затем приравниваются друг к другу.

Внешне кажется, что первое правило проще второго.

В первом случае всегда требуется составить одно алгебраическое выражение, а во втором – два. Однако часто встречаются задачи, в которых удобнее составить два алгебраических выражения для одной и той же величины, чем выбрать уже известную и составить для нее одно выражение.

Процесс решения текстовых задач алгебраическим способом выполняется по следующему алгоритму:

1. Сначала выбирают соотношение, на основании которого будет составлено уравнение. Если задача содержит более двух соотношений, то за основу для составления уравнения надо взять то соотношение, которое устанавливает некоторую связь между всеми неизвестными.

    Затем выбирают неизвестное, которое обозначают соответствующей буквой.

    Все неизвестные величины, входящие в выбранное для составления уравнения соотношение, необходимо выразить через выбранное неизвестное, опираясь на остальные соотношения, входящие в задачу кроме основного.

4. Из указанных трех операций непосредственно вытекает составление уравнения как оформление словесной записи при помощи математических символов.

Центральное место среди перечисленных операций занимает выбор основного соотношения для составления уравнений. Рассмотренные примеры показывают, что выбор основного соотношения является определяющим при составлении уравнений, вносит логичную стройность в порою расплывчатый словесный текст задачи, дает уверенность в ориентации и предохраняет от беспорядочных действий для выражения всех входящих в задачу величин через данные и искомые.

Алгебраический метод решения задач имеет огромное практическое значение. С его помощью решают самые разнообразные задачи из области техники, сельского хозяйства, быта. Уже в средней школе уравнения применяются учащимися при изучении физики, химии, астрономии. Там, где арифметика оказывается бессильной или, в лучшем случае, требует крайне громоздких рассуждений, там алгебраический метод легко и быстро приводит к ответу. И даже в так называемых «типовых» арифметических задачах, сравнительно легко решаемых арифметическим путем, алгебраическое решение, как правило, является и более коротким, и более естественным.

Алгебраический метод решения задач позволяет легко показать, что некоторые задачи, отличающиеся друг от друга лишь фабулой, имеют не только одни и те же соотношения между данными и искомыми величинами, но и приводят к типичным рассуждениям, посредством которых устанавливаются эти соотношения. Такие задачи дают лишь различные конкретные интерпретации одного и того же математического рассуждения, одних и тех же соотношений, то есть имеют одну и ту же математическую модель.

2. К группе задач на движение относятся задачи, в которых говорится о трех величинах: пути (s ), скорости (v ) и времени (t ). Как правило, в них речь идет о равномерном прямолинейном движении, когда скорость постоянна по модулю и направлению. В этом случае все три величины связаны следующим соотношением: S = vt . Например, если скорость велосипедиста 12 км/ч, то за 1,5 ч. он проедет 12 км/ч  1,5 ч = 18 км. Встречаются задачи, в которых рассматривается равноускоренное прямолинейное движение, то есть движение с постоянным ускорением (а). Пройденный путь s в этом случае вычисляется по формуле: S = v 0 t + at 2 /2, где v 0 начальная скорость движения. Так, за 10 с падения с начальной скоростью 5 м/с и ускорением свободного падения 9,8 м 2 /с тело пролетит расстояние, равное 5 м/с  10с + 9,8 м 2 /с  10 2 с 2 /2 = 50 м + 490 м = 540 м.

Как уже отмечалось, в ходе решения текстовых задач и в первую очередь в задачах, связанных с движением, весьма полезно сделать иллюстративный чертеж (построить вспомогательную графическую модель задачи). Чертеж следует выполнить так, чтобы на нем была видна динамика движения со всеми встречами, остановками и поворотами. Грамотно составленный чертеж позволяет не только глубже понять содержание задачи, но и облегчает со­ставление уравнений и неравенств. Примеры таких чертежей бу­дут приведены ниже.

Обычно в задачах на движение принимаются следующие соглашения.

    Если специально не оговорено в задаче, то движение на отдельных участках считается равномерным (будь то движение по прямой или по окружности).

    Повороты движущихся тел считаются мгновенными, то есть происходят без затрат времени; скорость при этом также меняется мгновенно.

Данную группу задач, в свою очередь, можно разбить на задачи, в которых рассматриваются движения тел: 1) навстречу друг другу; 2) в одном направлении («вдогонку»); 3) в противоположных направлениях; 4) по замкнутой траектории; 5) по течению реки.

    Если расстояние между телами равно S , а скорости тел равны v 1 и v 2 (рис. 16 а ), то при движении тел навстречу друг другу время, через которое они встретятся, равно S /(v 1 + v 2).

2. Если расстояние между телами равно S , а скорости тел равны v 1 и v 2 (рис. 16 б ), то при движении тел в одну сторону (v 1 > v 2) время, через которое первое тело догонит второе, равно S /(v 1 v 2).

3. Если расстояние между телами равно S , а скорости тел равны v 1 и v 2 (рис. 16 в ), то, отправившись одновременно в противоположных направлениях, тела будут через время t находиться на расстоянии S 1 = S + (v 1 + v 2 ) t .

Рис. 16

4. Если тела движутся в одном направлении по замкнутой траектории длиной s со скоростями v 1 и v 2 , то время, через которое тела опять встретятся (одно тело догонит другое), отправившись одновременно из одной точки, находится по формуле t = S /(v 1 v 2) при условии, что v 1 > v 2 .

Это следует из того, что при одновременном старте по замкнутой траектории в одном направлении тело, скорость которого больше, начинает догонять тело, скорость которого меньше. В первый раз оно догоняет его, пройдя расстояние на S большее, чем другое тело. Если же оно обгоняет его во второй, в третий раз и так далее, это означает, что оно проходит расстояние на 2S , на 3S и так далее большее, чем другое тело.

Если тела движутся в разных направлениях по замкнутой траектории длиной S со скоростями v 1 и v 2 , то время, через которое они встретятся, отправившись одновременно из одной точки, находится по формуле t = v (v 1 + v 2). В этом случае сразу после начала движения возникает ситуация, когда тела начинают двигаться навстречу друг другу.

5. Если тело движется по течению реки, то его скорость относительно берега и слагается из скорости тела в стоячей воде v и скорости течения реки w : и = v + w . Если тело движется против течения реки, то его скорость и = v w . Например, если скорость катера v = 12 км/ч, а скорость течения реки w = 3 км/ч, то за 3 ч. по течению реки катер проплывет (12 км/ч + 3 км/ч)  3 ч. = 45 км, а против течения – (12 км/ч – 3 км/ч)  3 ч. = 27 км. Считают, что скорость предметов, имеющих нулевую скорость движения в стоячей воде (плот, бревно и т. п.), равна скорости течения реки.

Рассмотрим несколько примеров.

Пример .Из одного пункта в одном направлении через каждые 20 мин. выезжают автомобили. Второй автомобиль едет со скоростью 60 км/ч, а скорость первого на 50% больше скорости второго. Найдите скорость движения третьего автомобиля, если известно, что он обогнал первый автомобиль на 5,5 ч позже, чем второй.

Решение . Пусть х км/ч – скорость третьего автомобиля. Скорость первого автомобиля на 50% больше скорости второго, значит, она равна

При движении в одном направлении время встречи находится как отношение расстояния между объектами к разности их скоростей. Первый автомобиль за 40 мин. (2/3 ч) проедет 90  (2/3) = 60 км. Следовательно, третий его догонит (они встретятся) через 60/(х – 90) часов. Второй за 20 мин. (1/3 ч) проедет 60  (1/3) = 20 км. Значит, третий его догонит (они встретятся) через 20/(х – 60) ч. (рис. 17).

П
о условию задачи

Рис. 17

После несложных преобразований получим квадратное уравнение 11х 2 – 1730х + 63000 = 0, решив которое найдем

Проверка показывает, что второй корень не удовлетворяет условию задачи, так как в этом случае третий автомобиль не догонит другие автомобили. Ответ: скорость движения третьего автомобиля 100 км/ч.

Пример .Теплоход прошел по течению реки 96 км, вернулся обратно и некоторое время простоял под погрузкой, затратив на все 32 ч. Скорость течения реки равна 2 км/ч. Определите скорость теплохода в стоячей воде, если время погрузки составляет 37,5% от времени, затраченно­го на весь путь туда и обратно.

Решение . Пусть х км/ч – скорость теплохода в стоячей воде. Тогда (х + 2) км/ч – его скорость по течению; (х – 2) км/ч – против течения; 96/(х + 2) ч. – время движения по течению; 96/(х – 2) ч. – время движения против течения. Так как 37,5% от общего количества времени теплоход стоял под погрузкой, то чистое время движения равно 62,5%  32/100% = 20 (ч.). Следовательно, по условию задачи имеем уравнение:

Преобразовав его, получим: 24(х – 2 + х + 2) = 5(х + 2)(х – 2) => 5х 2 – 4х – 20 = 0. Решив квадратное уравнение, находим: х 1 = 10; х 2 = -0,4. Второй корень не удовлетворяет условию задачи.

Ответ: 10 км/ч – скорость движения теплохода в стоячей воде.

Пример . Автомобиль проехал путь из города А в город С через город В без остановок. Расстояние АВ, равное 120 км, он проехал с постоянной скоростью на 1 ч. быстрее, чем расстояние ВС, равное 90 км. Определите среднюю скорость движения автомобиля от города А до города С, если известно, что скорость на участке АВ на 30 км/ч больше скорости на участке ВС.

Решение . Пусть х км/ч – скорость автомобиля на участке ВС.

Тогда (х + 30) км/ч – скорость на участке АВ, 120/(х + 30) ч, 90/х ч – время, закоторое автомобиль проезжает путиАВ и ВС соответственно.

Следовательно, по условию задачи имеем уравнение:

.

Преобразуем его:

120х + 1(х + 30)х = 90(х + 30) => х 2 + 60х – 2700 = 0.

Решив квадратное уравнение, находим: х 1 = 30, х 2 = -90. Второй корень не удовлетворяет условию задачи. Значит, скорость на участке ВС равна 30 км/ч, на участке АВ – 60 км/ч. Отсюда следует, что расстояние АВ автомобиль проехал за 2 ч. (120 км: 60 км/ч = 2 ч.), а расстояние ВС – за 3 ч. (90 км: 30 км/ч = 3 ч.), поэтому все расстояние АС он проехал за 5 ч. (3 ч. + 2 ч. = 5 ч.). Тогда средняя скорость движения на участке АС, протяженность которого 210 км, равна 210 км: 5 ч. = 42 км/ч.

Ответ: 42 км/ч – средняя скорость движения автомобиля на участке АС.

    К группе задач на работу относятся задачи, в которых говорится о трех величинах: работе А , времени t , в течение которого производится работа, производительности Р – работе, произведенной в единицу времени. Эти три величины связаны уравнением А = Р t . К задачам на работу относят и задачи, связанные с наполнением и опорожнением резервуаров (сосудов, баков, бассейнов и т. п.) с помощью труб, насосов и других приспособлений. В качестве произведенной работы в этом случае рассматривают объем перекачанной воды.

Задачи на работу, вообще говоря, можно отнести к группе задач на движение, так как в задачах такого типа можно считать, что вся работа или полный объем резервуара играют роль расстояния, а производительности объектов, совершающих работу, аналогичны скоростям движения. Однако по фабуле эти задачи естественным образом различаются, причем часть задач на работу имеют свои специфические приемы решения. Так, в тех задачах, в которых объем выполняемой работы не задан, вся работа принимается за единицу.

Пример. Две бригады должны были выполнить заказ за 12 дней. После 8 дней совместной работы первая бригада получила другое задание, поэтому вторая бригада заканчивала выполнение заказа еще 7 дней. За сколько дней могла бы выполнить заказ каждая из бригад, работая отдельно?

Решение . Пусть первая бригада выполняет задание за х дней, вторая бригада – за y дней. Примем всю работу за единицу. Тогда 1/х – производительность первой бригады, a 1/y второй. Так как две бригады должны выполнить заказ за 12 дней, то получим первое уравнение 12(1/х + 1/у ) = 1.

Из второго условия следует, что вторая бригада работала 15 дней, а первая – только 8 дней. Значит, второе уравнение имеет вид:

8/х + 15/у = 1.

Таким образом, имеем систему:

Вычтем из второго уравнения первое, получим:

21/y = 1 => у = 21.

Тогда 12/х + 12/21 = 1 => 12/ х – = 3/7 => х = 28.

Ответ: за 28 дней выполнит заказ первая бригада, за 21 день – вторая.

Пример . Рабочий А и рабочий В могут выполнить работу за 12 дней, рабочий А и рабочий С – за 9 дней, рабочий В и рабочий С – за 12 дней. За сколько дней они выполнят работу, работая втроем?

Решение . Пусть рабочий А может выполнить работу за х дней, рабочий В – за у дней, рабочий С – за z дней. Примем всю работу за единицу. Тогда 1/х, 1/ y и 1/z производительности рабочих А, В и С соответственно. Используя условие задачи, приходим к следующей системе уравнений, представленной в таблице.

Таблица 1

Преобразовав уравнения, имеем систему из трех уравнений с тремя неизвестными:

Сложив почленно уравнения системы, получим:

или

Сумма это совместная производительность рабочих, поэтому время, за которое они выполнят всю работу, будет равно

Ответ: 7,2 дня.

Пример . В бассейн проведены две трубы – подающая и отводя­щая, причем через первую трубу бассейн наполняется на 2 ч дольше, чем через вторую вода из бассейна выливается. При заполненном на одну треть бассейне были открыты обе трубы, и бассейн оказался пустым спустя 8 ч. За сколько часов через одну первую трубу может наполниться бассейн и за сколько часов через одну вторую трубу может осушиться полный бассейн?

Решение . Пусть V м 3 – объем бассейна, х м 3 /ч – производительность подающей трубы, у м 3 /ч – отводящей. Тогда V / x ч. – время, необходимое подающей трубе для заполнения бассейна, V / y ч. – время, необходимое отводящей трубе на осушение бассейна. По условию задачи V / x V / y = 2.

Так как производительность отводящей трубы больше производительности наполняющей, то при включенных обеих трубах будет происходить осушение бассейна и одна треть бассейна осушится за время (V /3)/(y x ), которое по условию задачи равно 8 ч. Итак, условие задачи может быть записано в виде системы двух уравнений с тремя неизвестными:

В задаче необходимо найти V / x и V / y . Выделим в уравнениях комбинацию неизвестных V / x и V / y , записав систему в виде:

Вводя новые неизвестные V / x = а и V / y = b , получаем следующую систему:

Подставляя во второе уравнение выражение а = b + 2, имеем уравнение относительно b :

решив которое найдем b 1 = 6, b 2 = -8. Условию задачи удовлетворяет первый корень 6, = 6 (ч.). Из первого уравнения последней системы находим а = 8 (ч), то есть первая труба наполняет бассейн за 8 ч.

Ответ: через первую трубу бассейн наполнится через 8 ч., через вторую трубу бассейн осушится через 6 ч.

Пример . Одна тракторная бригада должна вспахать 240 га, а другая на 35% больше, чем первая. Первая бригада, вспахивая ежедневно на 3 га меньше второй, закончила работу на 2 дня раньше, чем вторая бригада. Сколько гектаров вспахивала каждая бригада ежедневно?

Решение . Найдем 35 % от 240 га: 240 га  35 % /100 % = 84 га.

Следовательно, вторая бригада должна была вспахать 240 га + 84 га = 324 га. Пусть первая бригада вспахивала ежедневно х га. Тогда вторая бригада вспахивала ежедневно (х + 3) га; 240/х – время работы первой бригады; 324/(х + 3) – время работы второй бригады. По условию задачи первая бригада закончила работу на 2 дня раньше, чем вторая, поэтому имеем уравнение

которое после преобразований можно записать так:

324х – 240х – 720 = 2х 2 + => 2х 2 – 78х + 720 = 0 => х 2 – 39х + 360 = 0.

Решив квадратное уравнение, находим х 1 = 24, х 2 = 15. Это норма первой бригады.

Следовательно, вторая бригада вспахивала в день 27 га и 18 га соответственно. Оба решения удовлетворяют условию задачи.

Ответ: 24 га в день вспахивала первая бригада, 27 га – вторая; 15 га в день вспахивала первая бригада, 18 га – вторая.

Пример . В мае два цеха изготовили 1080 деталей. В июне первый цех увеличил выпуск деталей на 15%, а второй увеличил выпуск деталей на 12%, поэтому оба цеха изготовили 1224 детали. Сколько деталей изготовил в июне каждый цех?

Решение . Пусть х деталей изготовил в мае первый цех, у деталей – второй. Так как в мае изготовлено 1080 деталей, то по условию задачи имеем уравнение x + y = 1080.

Найдем 15% от х :

Итак, на 0,15х деталей увеличил выпуск продукции первый цех, следовательно, в июне он выпустил х + 0,15 х = 1,15 x деталей. Аналогично найдем, что второй цех в июне изготовил 1,12 y деталей. Значит, второе уравнение будет иметь вид: 1,15 x + 1,12 у = 1224. Таким образом, имеем систему:

из которой находим х = 480, у = 600. Следовательно, в июне цеха изготовили 552 детали и 672 детали соответственно.

Ответ: первый цех изготовил 552 детали, второй – 672 детали.

4. К группе задач на смеси и процентыотносятся задачи, в которых речь идет о смешении различных веществ в определенных пропорциях, а также задачи на проценты.

Задачи на концентрацию и процентное содержание

Уточним некоторые понятия. Пусть имеется смесь из п различных веществ (компонентов) А 1 А 2 , ..., А n соответственно, объемы которых равны V 1 , V 2 , ..., V n . Объем смеси V 0 складывается из объемов чистых компонентов: V 0 = V 1 + V 2 + ... + V n .

Объемной концентрацией вещества А i (i = 1, 2, ..., п) в смеси называется величина с i , вычисляемая по формуле:

Объемным процентным содержанием вещества А i (i = 1, 2, ..., п) в смеси называется величина p i , вычисляемая по формуле р i = с i , 100%. Концентрации с 1, с 2 , ..., с n , являющиеся безразмерными величинами, связаны равенством с 1 + с 2 + ... + с n = 1, а соотноше­ния

показывают, какую часть полного объема смеси составляют объе­мы отдельных компонентов.

Если известно процентное содержание i -го компонента, то его концентрация находится по формуле:

то есть Pi это концентрация i -го вещества в смеси, выраженная в процентах. Например, если процентное содержание вещества составляет 70%, то его соответствующая концентрация равна 0,7. И наоборот, если концентрация равна 0,33, то процентное содержание равно 33%. Таким образом, сумма р 1 + р 2 + …+ р n = 100%. Если известны концентрации с 1 , с 2 , ..., с n компонентов, составляющих данную смесь объема V 0 , то соответствующие объемы компонентов находятся по формулам:

Аналогичным образом вводятся понятия весовые (массовые) кон центрации компонентов смеси и соответствующие процентные со­держания. Они определяются как отношение веса (массы) чистого вещества А i , в сплаве к весу (массе) всего сплава. О какой концентрации, объемной или весовой, идет речь в конкретной задаче, всегда ясно из ее условия.

Встречаются задачи, в которых приходится пересчитывать объемную концентрацию на весовую или наоборот. Для того чтобы это сделать, необходимо знать плотности (удельные веса) компонентов, составляющих раствор или сплав. Рассмотрим для примера двухкомпонентную смесь с объемными концентрациями компонентов с 1 и с 2 1 + с 2 = 1) и удельными весами компонентов d 1 и d 2 . Масса смеси может быть найдена по формуле:

в которой V 1 и V 2 объемы составляющих смесь компонентов. Весовые концентрации компонентов находятся из равенств:

которые определяют связь этих величин с объемными концентрациями.

Как правило, в текстах таких задач встречается одно и то же повторяющееся условие: из двух или нескольких смесей, содержащих компоненты A 1 , A 2 , А 3 , ..., А n , составляется новая смесь путем перемешивания исходных смесей, взятых в определенной пропорции. При этом требуется найти, в каком отношении компоненты А 1, А 2 , А 3 , ..., А n войдут в получившуюся смесь. Для решения этой задачи удобно ввести в рассмотрение объемное или весовое количество каждой смеси, а также концентрации составляющих ее компонентов А 1, А 2 , А 3 , ..., А n . С помощью концентраций нужно «расщепить» каждую смесь на отдельные компоненты, а затем указанным в условии задачи способом составить новую смесь. При этом легко подсчитать, какое количество каждого компонента входит в получившуюся смесь, а также полное количество этой смеси. После этого определяются концентрации компонентов А 1, А 2 , А 3 , ..., А n в новой смеси.

Пример .Имеются два куска сплава меди и цинка с процентным содержанием меди 80% и 30% соответственно. В каком отношении нужно взять эти сплавы, чтобы, переплавив взятые куски вместе, получить сплав, содержащий 60% меди?

Решение . Пусть первого сплава взято х кг, а второго – у кг. По условию концентрация меди в первом сплаве равна 80/100 = 0,8, во втором – 30/100 = 0,3 (ясно, что речь идет о весовых концентрациях), значит, в первом сплаве 0,8х кг меди и (1 – 0,8)х = 0,2х кг цинка, во втором – 0,3 у кг меди и (1 – 0,3)y = 0,7у кг цинка. Количество меди в получившемся сплаве равно (0,8  х + 0,3  у) кг, а масса этого сплава составит (х + у) кг. Поэтому новая концентрация меди в сплаве, согласно определению, равна

По условию задачи эта концентрация должна равняться 0,6. Следова­тельно, получаем уравнение:

Данное уравнение содержит два неизвестных х и у. Однако по условию задачи требуется определить не сами величины х и у, а только их отношение. После несложных преобразований получаем

Ответ: сплавы надо взять в отношении 3: 2.

Пример .Имеются два раствора серной кислоты в воде: первый – 40%-ный, второй – 60%-ный. Эти два раствора смешали, после чего добавили 5 кг чистой воды и получили 20%-ный раствор. Если бы вместо 5 кг чистой воды добавили 5 кг 80%-ного раствора, то получили бы 70%-ный раствор. Сколько было 40%-ного и 60%-ного растворов?

Решение . Пусть х кг – масса первого раствора, у кг – второго. Тогда масса 20%-ного раствора (х + у + 5) кг. Так как в х кг 40%-ного раствора содержится 0,4х кг кислоты, в у кг 60%-ного раствора содержится 0,6y кг кислоты, а в (х + у + 5) кг 20%-ного раствора содержится 0,2(х + у + 5) кг кислоты, то по условию имеем первое уравнение 0,4х + 0,6y = 0,2(х +у + 5).

Если вместо 5 кг воды добавить 5 кг 80%-ного раствора, то получится раствор массой (х + у + 5) кг, в котором будет (0,4х + 0,6у + 0,8  5) кг кислоты, что составит 70% от (х + у + 5) кг.

Оценки по курсу находятся

Система выставления оценок по курсу

Экзамен

Программа курса

Повторение некоторых разделов дискретной математики

  1. Булевы функции, их запись, изображения на булевом кубе
  2. Дизъюнктивные нормальные формы (ДНФ): сокращённые, тупиковые, кратчайшие
  3. Алгоритмы построения ДНФ: метод Нельсона, метод Блейка, критерий поглощения

Алгоритмы, основанные на вычислении оценок (АВО)

  1. Тестовые алгоритмы
  2. Алгоритмы с представительными наборами
  3. Алгоритмы вычисления оценок (АВО), обобщения АВО, эффективные формулы для оценок

Алгебраический подход к решению задач классификации

Дискретные (логические) процедуры распознавания

  1. Постановка задачи распознавания по прецедентам. Сущность дискретного (логического) подхода к задачам распознавания. Общие принципы построения дискретных (логических) процедур распознавания в случае целочисленных данных. Понятие корректного элементарного классификатора. Модели дискретных (логических) алгоритмов распознавания, основанные на построении корректных элементарных классификаторов.
  2. Построение элементарных классификаторов в тестовых алгоритмах распознавания и алгоритмах голосования по представительным наборам на основе поиска покрытий булевых матриц. Построение элементарных классификаторов в алгоритмах голосования по представительным наборам на основе преобразования нормальных форм логических функций (на примере бинарных признаков). Задача дуализации. Основные подходы к оценке эффективности алгоритмов дуализации.
  3. Алгебро-логический подход к построению корректных процедур распознавания на базе произвольных (не обязательно корректных) элементарных классификаторов. Понятие (монотонного) корректного набора элементарных классификаторов. Общая схема работы логического корректора. Подходы к снижению вычислительной сложности на этапе обучения логического корректора. Практические модели логических корректоров.
  4. Методы повышения эффективности дискретных (логических) процедур распознавания. Оценка информативности признаков, значений признаков, выделение шумящих признаков и обучающих объектов, не являющихся типичными для своего класса.

Модели данных и метрические методы обработки данных

Логико-статистические модели в распознавании

  1. Трёхкомпонентное разложение ошибки. Bias-Variance дилемма. Разложение ошибки для выпуклых комбинаций предикторов. Несократимые комбинации. Разложение ошибки для компоненты сдвига и вариационной компоненты обобщённой ошибки.
  2. Методы верификации закономерностей, основанные на перестановочных тестах. Метод оптимальных достоверных разбиений.
  3. Метод континуального голосования в модели АВО.
  4. Метод статистически взвешенных синдромов.

Литература

  1. Дискретная математика и математические вопросы кибернетики / Под ред. С.В. Яблонского и О.Б. Лупанова. – М.: Наука, 1974. – 312с (глава про ДНФ)
  2. Яблонский С.В. Введение в дискретную математику. 4-е издание, стереотипное - М.: Высшая школа, 2003. - 484 с (в конце книги - в приложение про ДНФ).
  3. Дьяконов A.Г. . - МАКСПресс, 2010. (9 глава).
  4. Дьяконов А.Г. Алгебраические замыкания модели АВО, операторы разметки и теория систем эквивалентностей . Москва, 2009. (параграфы 1.1-1.2)
  5. Дюкова Е.В. Дискретные (логические) процедуры распознавания: принципы конструирования, сложность реализации и основные модели // Учебное пособие для студентов Математических факультетов педвузов. М: МПГУ 2003 г. 30 с.
  6. Сенько О.В., Докукин А.А. Оптимальные выпуклые корректирующие процедуры в задачах высокой размерности. ЖВМиМФ, Т. 51, №9 с.1751-1760, 2011
  7. Senko O.V., Dokukin A.A. Optimal forecasting based on convex correcting procedures. in New trends in classification and data mining, (2010), Sofia,Bulgaria:ITHEA
  8. Senko O.V., Kuznetsova A.V. The Optimal Valid Partitioning Procedures // “InterStat”, Statistics in Inter- net. 2006.
  9. Сенько О.В. Алгоритм голосования по множеству операторов вычисления оценок континуальной мощности. В сб. Вопросы кибернетики. Москва, 1989.
  10. Senko O., Kuznetsova A. A recognition method based on collective decision making using systems of regularities of various types // Pattern Recognition and Image Analysis, MAIK Nauka/Interperiodica. Vol. 20, No. 2, 2010, pp. 152-162.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ «ГОРНО-АЛТАЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

Физико-математический факультет

44.03.05 Педагогическое образование профиль математика и информатика

Кафедра математики и методики преподавания математики

КУРСОВАЯ РАБОТА

АЛГЕБРАИЧЕСКИЙ МЕТОД ПОСТРОЕНИЯ ГЕОМЕТРИЧЕСКИХ ЗАДАЧ НА ПОСТРОЕНИЕ

Бедарева Мария Николаевна

Научный руководитель доцент

Н.А.Пахаева

Горно-Алтайск 2016

Введение

Заключение

Введение

Геометрические построения являются весьма существенным элементом изучения геометрии.

Одним из важных методов, применяемых в школьном курсе геометрии, является алгебраический метод решения задач на построение. Уже в 6-7 классах учащиеся неоднократно применяли алгебру при решении задач вычислительного характера и задач на доказательство с целью упрощения решения. Алгебра дает очень удобный и хороший способ решения геометрических вопросов аналитическим путем.

Алгебраический метод решения задач на построение - один из важнейших методов теории конструктивных задач. Именно с помощью этого метода решаются вопросы, связанные с разрешимостью задач тем или иным набором инструментов.

Кроме того, это один из самых мощных методов, позволяющий решать многие задачи, решение которых обычными способами затруднительно. Метод прекрасно демонстрирует тесную взаимосвязь алгебры и геометрии.

Целью данной курсовой работы является раскрытие темы алгебраический метод решения задач на построение, обзор задач на построение и схемы их решения, а так же построение отрезков, заданных основными формулами. алгебраический задача решение геометрия

1. Алгебраический метод решения геометрических задач на построение

Сущность метода заключается в следующем. Решение задач на построение сводится к построению некоторого отрезка (или нескольких отрезков). Величину искомого отрезка выражают через величины известных отрезков с помощью формулы. Затем строят искомый отрезок по полученной формуле.

Пример 1 . Провести окружность через две точки А и В так, чтобы длина касательной к ней, проведённой из точки С равнялась а .

Анализ . Пусть через точки А и В проведена окружность так, что касательная к ней из точки С равняется а . Так как через три точки можно провести окружность, то проведём СВ и определим положение точки К . Полагаем СК = х и СВ = с ; тогда по свойству касательной сх = а 2 .

Построение.

1. для построения х чертим полуокружность на ВС и дугу (С, а);

2. опустим LK BC;

3. с КС = а 2 ; поэтому х = КС , и точка К будет искомая;

4. восстановив перпендикуляры из середин АВ и КВ до их пересечения найдём искомый центр О ;

5. чертим окружность (О, ОА );

МС - искомая касательная.

Доказательство . МС 2 = СВ КС = и МС = а , как и требовалось.

Исследование. Выражение a с - условие существования решения нашей задачи, так как только при этом условии дуга (С, а) пересечёт окружность СLB .

Пример 2. Из вершин данного треугольника как из центров опишите три окружности, касающиеся попарно внешним образом.

Анализ. Пусть АВС - данный треугольник, а, b, c - его стороны, х, у, z - радиусы искомых окружностей. Тогда x + y = c , y + z = a , z + x = b . Поэтому, откуда

Построение.

1. проводим окружность S1(A, x);

2. S2(B, c - x);

3. S3(C, b - x).

Доказательство . Найдём сумму радиусов окружностей S 1 и S 3 :

(c-x) +(b-x)=(c+b)-2x=(c+b)-(c+b-a) = ВС .

Получили, что сумма радиусов равна расстоянию между их центрами, что и доказывает касание окружностей S 2 и S 3 .

Исследование. Задача всегда однозначно разрешима, поскольку:

1. в треугольнике АВС сумма сторон b + c > a , и поэтому отрезок х может быть построен;

2. c > x , потому что (так как a + c > b );

3. b > x , так как.

2. Задачи на построение и схема их решения

Если условия задач могут быть выражены с помощью алгебраических соотношений или уравнений, то задача на построение получает аналитическое изображение. Аналитическое решение задачи позволяет найти и геометрическое решение, т.е. само построение.

Задачи 1-2 используют при решении признак разрешимости задач на построение.

Задача 1. Отсечь с помощью циркуля и линейки от угла в 7 угол в 3.

Решение. Достаточно отложить угол в 7 51 раз последовательно по часовой (против часовой) стрелки. В сумме получается угол в 751=357, тем самым получим угол в 3. Теперь достаточно от угла в 7 отсечь этот угол в 3 откладыванием соответствующей дуги.

Задача 2. Можно ли построить угол в 1, имея шаблон угла величиной:

а) 17; б) 19; в) 27.

Решение:

а) 1753 1805=1 да;

б) 1919 1802=1 да;

в) x, y Z число 27х +180у кратно 9 и поэтому не может равняться 1 нет.

Если а, b, c суть данные отрезки, то с помощью циркуля и линейки нетрудно построить a+b, a b, . Например, среднее геометрическое отрезков х= имеет следующее построение :

Рисунок 1 Схема построения к Задаче №2

На произвольной прямой отложим данные отрезки а и b так, чтобы конец одного совпадал с началом другого (и эта точка была единственной их общей точкой). Разделим АС пополам точкой О и радиусом равным половине отрезка АС, построим окружность с центром в точке О . Из точки восставляем перпендикуляр к отрезку АС . Точку пересечения перпендикуляра и окружности обозначим D. ВD=х= .

Доказательство. В прямоугольном АDC :

Задача 3. Построить отрезок х= .

Рисунок 2 Схема построения к Задаче №3

Построение:

1. На произвольной прямой АВ отметим точку М.

2. Проведем MN AB.

3. MC = b , C MN .

4. E= (C, a )АВ , a b

5. EM=

Задача 4. Построить х=

Указание. Строим и затем х= .

Задача 5. Построить корни квадратного уравнения.

Решение. Для того, чтобы корни уравнения выражали определенные отрезки, необходимо, чтобы все члены уравнения были второго измерения, т.е. свободный член выражался квадратом некоторой величины. Пусть дано уравнение х 2 +ax+b 2 =0. Решив это уравнение, находим:

Рисунок 3 Схема построения к Задаче №5

Используя решение задачи 3 строим ЕМ= Из центра Е радиусом ЕМ проводим окружность. Получим

Решение возможно, если.

Рисунок 4 Схема построения№2 к Задаче №5

Другое решение : корни уравнения можно построить пользуясь свойством перпендикуляра, проведенного из точки окружности на диаметр. Отложив АВ = а, опишем на АВ как на диаметре окружность и проведем MN||AB до пересечения с окружностью в точке L. Проводим LC AB; отрезки АС и СВ выражают корни уравнения, т.к. АС+СВ=а, АС СВ=LC 2 =b 2

Задача 6. В АВС провести МN||AC так, чтобы разность МВ и NC равнялась данному отрезку d.

Решение. Чтобы знать положение точки М , надо знать длину ВМ ; обозначим эту длину через х. Из подобия BMN и ВАС имеем: ВМ:ВN=AB:BC или, т.к. ВN=BC CN=a (x d ),

, xa = ca cx + cd , .

Решая это уравнение. Находим.

Рисунок 5 Схема построения к Задаче №5

Построение. Отрезок х должен лежать на стороне с , а против х должна быть сторона а+d, против стороны с сторона а+с . Поэтому на продолжении ВС откладываем СК=d и CL=c , соединяем L c A и через К проводим КМ||LA , получим искомую точку М . Проводим MN||AC.

Доказательство. Из подобия ВМК ВАL имеем: ВМ:АВ=ВК:ВL , или ВМ: с= (а+d ):(a+c ). Сравнивая эту пропорцию с пропорцией (*), видим, что ВМ=х.

Докажем, что ВМ NC=d. Действительно, из пропорции NC:BC=AM:AB находим:

Исследование. Задача разрешима, если d c.

3. Построение отрезков заданных основными формулами

Применение алгебраического метода к решению геометрических задач сводится к следующему алгоритму:

* составлению уравнения по условиям задачи;

* решению полученного уравнения относительно буквы, означающей искомый отрезок;

* исследованию полученной формулы;

* построению отрезка по полученной формуле.

Если решение задачи сводится к построению какого-либо отрезка, то можно принять этот отрезок за х и решить вначале задачу на вычисление, т.е. выразить х через известные отрезки x = f(a, b, c, …) . Далее остается построить отрезок х по этой формуле.

Алгебраический метод универсален и применим к любой задаче на построение, но не всегда дает наиболее простое решение. Метод используется также для доказательства (не)разрешимости задачи на построение с помощью линейки и циркуля.

Пусть через a, b, c, … обозначены заданные отрезки, а через x, y, z, … - искомые.

Построение отрезков по формулам, представляющим собой сумму, разность (x = a ± b), а также умножение или деление на целое число (x = ka, x = a/k) сводится к сложению или вычитанию отрезков, увеличению отрезка в заданное число раз и делению отрезка на заданное число равных частей.

Построение отрезков по формулам

сводится к построению прямоугольного треугольника по его катетам, либо гипотенузе и катету. В первом случае х - гипотенуза, во втором - катет.

Построение отрезка по формуле сводится к нахождению четвертого пропорционального отрезка. Для этого используется теорема о пересечении сторон угла параллельными прямыми.

Рисунок 6 Теорема о пересечении сторон угла параллельными прямыми

Построение отрезка по формуле удобно выполнять, используя теорему о перпендикуляре, опущенном из произвольной точки окружности на ее диаметр.

Рисунок 7 Теорема о перпендикуляре, опущенном из произвольной точки окружности на ее диаметр

Построение отрезков по формулам, являющимся комбинациями приведенных выше формул, выполняется введением вспомогательных неизвестных отрезков и последовательным их построением. Формулы сложного вида представляются в виде суперпозиции (комбинации) перечисленных выше формул. Например:

Если не задан единичный отрезок, то по формулам x = a2, x = 1/a, построить отрезок х невозможно. Если единичный отрезок задан, то построение осуществляется просто:

Приведем примеры построения отрезков, выраженных формулами.

Пример 1.

где y = a + b, z = b - c, t = a + c.

Пример 2.

где y = a + b , z = a + c .

Заключение

В ходе работы над курсовой работой была рассмотрена тема алгебраический метод решения задач на построение.

Были разобраны задачи на построение и схемы их решения, а так же рассмотрена тема построение отрезков, заданных основными формулами.

Задания на построение составляют базу для работы, развивающей навыки построения фигур, способствующей формированию умения читать и понимать чертеж, устанавливать связи между его частями, и недостаточность этой системы обусловливает плохое развитие пространственного и логического мышления ученика, низкий уровень его графической культуры. Эти недостатки не позволяют ученику эффективно изучать многие разделы математики. Так же работая с литературой, я пришла к выводу, что:

1) необходимо уделять больше внимания изучению задач на построение, так как при грамотном использовании они являются мощным средством развития логического мышления учащихся;

2) геометрические задачи на построение не нужно рассматривать как что-то отдельное, независимое от остального курса геометрии. Процессы обучения решению задач и изучение геометрии неразрывно связаны. Причем связь эта должна быть двусторонней, то есть необходимо не только обучать решению задач на построение, используя ранее полученные знания, но и, наоборот, использовать конструктивные задачи при изучении геометрии.

Из выше перечисленного следует, что данную тему можно рассматривать с учениками старших классов на спецкурсах.

Список использованной литературы

1. Атанасян Л.С., Базылев В.Т.. Геометрия I часть. М.: Просвящение, 1986. 352 с.

2. Атанасян Л.С., Базылев В.Т.. Геометрия II часть. М.: Просвящение, 1987. 336 с.

3. Канатников А.Н., Крищенко А.П. Аналитическая геометрия, 2-е изд. М.: Изд-во МГТУ им. Н.Э. Баумана, 2000. 388 с.

4. Лидский В., Овсянников Л., Тулайков А., Шабунин М. Задачи по элементарной математике, пятое издание, М.: Наука, 1968. 412 с.

Размещено на Allbest.ru

...

Подобные документы

    Методика нахождения различных решений геометрических задач на построение. Выбор и применение методов геометрических преобразований: параллельного переноса, симметрии, поворота (вращения), подобия, инверсии в зависимости от формы и свойств базовой фигуры.

    курсовая работа , добавлен 13.08.2011

    Понятия максимума и минимума. Методы решения задач на нахождение наибольших и наименьших величин (без использования дифференцирования), применение их для решения геометрических задач. Использование замечательных неравенств. Элементарный метод решения.

    реферат , добавлен 10.08.2014

    Общие аксиомы конструктивной геометрии. Аксиомы математических инструментов. Постановка задачи на построение, методика решения задач. Особенности методик построения: одним циркулем, одной линейкой, двусторонней линейкой, построения с помощью прямого угла.

    курс лекций , добавлен 18.12.2009

    Построение угла равного данному, биссектрисы данного угла, середины отрезка, перпендикулярных прямых, треугольника по трем элементам. Теорема Фалеса и геометрическое место точек. Построение с использованием свойств движений. Метод геометрических мест.

    дипломная работа , добавлен 24.06.2011

    Разработка простого метода для решения сложных задач вычислительной и прикладной математики. Построение гибкого сеточного аппарата для решения практических задач. Квазирешетки в прикладных задачах течения жидкости, а также применение полиномов Бернштейна.

    дипломная работа , добавлен 25.06.2011

    Обзор и характеристика различных методов построения сечений многогранников, определение их сильных и слабых сторон. Метод вспомогательных сечений как универсальный способ построения сечений многогранников. Примеры решения задач по теме исследования.

    презентация , добавлен 19.01.2014

    Постановка начально-краевых задач фильтрации суспензии с нового кинетического уравнения при учете динамических факторов различных режимов течения. Построение алгоритмов решения задач, составление программ расчетов, получение численных результатов на ЭВМ.

    диссертация , добавлен 19.06.2015

    Основные понятия математического моделирования, характеристика этапов создания моделей задач планирования производства и транспортных задач; аналитический и программный подходы к их решению. Симплекс-метод решения задач линейного программирования.

    курсовая работа , добавлен 11.12.2011

    Применение метода инверсии при решении задач на построение в геометрии. Решение задачи Аполлония, лемма об антипараллельных прямых. Инвариантные окружности и сохранение углов при инверсии. Недостатки применения инверсии и работа инверсора Гарта.

    дипломная работа , добавлен 30.09.2009

    Составление четкого алгоритма, следуя которому, можно решить большое количество задач на нахождение угла между прямыми, заданными точками на ребрах многогранника. Условия задач по теме и примеры их решения. Упражнения для решения подобного рода задач.