Первый закон Ньютона (закон инерции). Инерциальные системы отсчета

Выпуск 18

Восемнадцатая серия видеоуроков физики посвящена одному из законов, открытому великим Исааком Ньютоном, а именно — закону инерции Ньютона. Во многом благодаря действию этого закона, наш мир таков, каким мы привыкли его видеть. Также Даниил Эдисонович расскажет юным телезрителям о силе трения, которая также вносит немалый вклад в устройство нашего мироздания.

Закон инерции Ньютона

Инерция — основное свойство материальных тел. А вы знаете, в чём оно заключается? В одной из прошлых передач Даниил Эдисонович рассказывал о таком физическом понятии, как масса. Масса — это мера инертности тела. То есть, инерция напрямую зависит от массы. Закон инерции Ньютона называют ещё Первым законом Ньютона. Свободное тело, на которое не действуют силы со стороны других тел, находится в состоянии покоя или равномерного прямолинейного движения (понятие скорости здесь применяется к центру масс тела в случае непоступательного движения). Иными словами, телам свойственна инерция, то есть явление сохранения скорости, если внешние воздействия на них скомпенсированы. Иными словами, существуют такие системы отсчета, относительно которых тело (материальная точка) при отсутствии на него внешних воздействий (или при их взаимной компенсации) сохраняет состояние покоя или равномерного прямолинейного движения. Системы отсчёта, в которых выполняется закон инерции Ньютона, называют инерциальными системами отсчёта (ИСО). Явлением инерции также является возникновение фиктивных сил инерции в неинерциальных системах отсчета. Впервые закон инерции был сформулирован Галилео Галилеем, который после множества опытов заключил, что для движения свободного тела с постоянной скоростью не нужно какой-либо внешней причины. До этого общепринятой была иная точка зрения (восходящая к Аристотелю), которая гласила, что свободное тело находится в состоянии покоя, а для движения с постоянной скоростью необходимо приложение постоянной силы. Впоследствии Ньютон сформулировал закон инерции в качестве первого из трёх своих знаменитых законов. Инерция — это не только стремление тела к сохранению покоя, но и стремление сохранить движение, если уж оно начало двигаться. А что ещё мешает телу двигаться, кроме силы инерции? Может быть, вам уже приходилось слышать о трении? Трение — это сила, которая возникает при взаимодействии поверхности одного тела с поверхностью другого тела. Также трение возникает при движении тела в газообразной или жидкой среде. Сила трения — это сила, возникающая в месте соприкосновения тел и препятствующая их относительному движению. Причинами возникновения силы трения являются шероховатость соприкасающихся поверхностей и взаимное притяжение молекул этих поверхностей.

). Иными словами, телам свойственна ине́рция (от лат. inertia - «бездеятельность», «косность»), то есть явление сохранения скорости, если внешние воздействия на них скомпенсированы.

Первый закон Ньютона с точки зрения современных представлений можно сформулировать так: существуют такие системы отсчета, относительно которых тело (материальная точка) при отсутствии на него внешних воздействий (или при их взаимной компенсации) сохраняет состояние покоя или равномерного прямолинейного движения.

Системы отсчёта, в которых выполняется закон инерции, называют инерциальными системами отсчёта (ИСО).

Явлением инерции также является возникновение фиктивных сил инерции в неинерциальных системах отсчета.

Впервые закон инерции был сформулирован Галилео Галилеем , который после множества опытов заключил, что для движения свободного тела с постоянной скоростью не нужно какой-либо внешней причины. До этого общепринятой была иная точка зрения (восходящая к Аристотелю): свободное тело находится в состоянии покоя, а для движения с постоянной скоростью необходимо приложение постоянной силы.

Принцип относительности Галилея: во всех инерциальных системах отсчета все физические процессы протекают одинаково(если условия для всех тел одинаковы). В системе отсчета, приведенной в состояние покоя или равномерного прямолинейного движения относительно инерциальной системы отсчета (условно - «покоящейся») все процессы протекают точно так же, как и в покоящейся системе.

Следует отметить что понятие инерциальной системы отсчета - абстрактная модель (некий идеальный объект рассматриваемый вместо реального объекта. Примерами абстрактной модели служат абсолютно твердое тело или невесомая нить), реальные системы отсчета всегда связаны с каким-либо объектом и соответствие реально наблюдаемого движения тел в таких системах с результатами расчетов будет неполным.

См. также

Литература

Ссылки

  • Masreliez, C J; Dynamic incremental scale transition with application to physics and cosmology , Physica Scripta (oct 2007)
  • Masreliez C. J. , Motion, Inertia and Special Relativity - a Novel Perspective, Physica Scripta, (dec 2006)

Wikimedia Foundation . 2010 .

Смотреть что такое "Инерции закон" в других словарях:

    Один из осн. законов механики, согласно к рому при отсутствии внеш. воздействий (сил) или когда действующие силы взаимно уравновешены тело сохраняет неизменным состояние своего движения или покоя относительно инерциальной системы отсчёта. В… … Физическая энциклопедия

    См. Ньютона законы … Большой Энциклопедический словарь

    См. Ньютона законы. * * * ИНЕРЦИИ ЗАКОН ИНЕРЦИИ ЗАКОН, см. Ньютона законы (см. НЬЮТОНА ЗАКОНЫ) … Энциклопедический словарь

    Квадратичных форм теорема, утверждающая, что при любом способе приведения квадратичной формы с действительными коэффициентами к сумме квадратов посредством линейной замены переменных где Q невырожденная матрица с действительными коэффициентами,… … Математическая энциклопедия

    Первый закон Ньютона (см. Ньютона законы механики) … Большой энциклопедический политехнический словарь

    Первый Ньютона закон … Естествознание. Энциклопедический словарь

    Один из основных законов механики, согласно которому при отсутствии внешних воздействий (сил) или когда действующие силы взаимно уравновешены, тело сохраняет неизменным состояние своего движения или покоя относительно инерциальной системы … Большая советская энциклопедия

    В физике первый закон Ньютона. см. статью Инерция Закон инерции в математике см. раздел «Свойства» в статье «Квадратичная форма» (закон инерции Сильвестра) … Википедия

    ЗАКОН ИНЕРЦИИ - см … Большая политехническая энциклопедия

    Сила инерции фиктивная сила, которую можно ввести в неинерциальной системе отсчёта так, чтобы законы механики в ней совпадали с законами инерциальных систем. В математических вычислениях введения этой силы происходит путём преобразования… … Википедия

Книги

  • ИндуктоМеханика , Г. К. Гребенщиков. В книге представлены модели зарядов и основных взаимодействий - электрического, магнитного, гравитационного, сильного и слабого, представлены модели инертной и гравитационной масс, модель…

Исаак Ньютон сформулировал закон инерции, который гласит, что если физическому телу ничего не мешает (равнодействующая всех сил рав­на нулю), то оно продолжит равномерное движение (инерция движения) или будет оставаться в состоянии покоя (инерция покоя).

Идея, заложенная в этом законе, оказалась настолько содержательной, что неявно получила статус универсальной. Ссылки на инерцию можно най­ти не только в физике, но и в психологии, экономике, во многих других на­уках и даже - в самой человеческой жизни.


С практической точки зрения, всякий раз, когда на основе ожидания продолжения чего-то прежнего прогнозируется будущее течение событий (цепь неприятностей или успехов, тенденция положения к ухудшению или улучшению и т.д.), - это, по существу, в той или иной форме и мере и есть ставка на закон инерции.

Неудивительно, что он давно уже обнаружен и в движении биржевых цен. Здесь любое развитие событий можно представить, как произвольную комбинацию двух состояний:
инерции покоя (результат отсутствия каких-либо заслуживаю­щих внимания информационных вводных);
инерции движения, которое когда-то возникло под воздействи­ем определенного импульса любой природы: макроэкономика, психология, слухи-страшилки, воля случая и т.д., а теперь, выйдя из периода покоя, продолжается.

В фактическом признании существования инерции применительно к поведению рынка преуспели и техники. Это выражается, в частности, в том, насколько высоко на пьедестал почета возведено явление тренда в дви­жении цен. В 60-х годах появился целый ряд научных работ, в которых при­водилось математическое обоснование существования тенденции и ее со­хранности. Идея тренда живет и здравствует по сей день.

Кроме того, надежды технических аналитиков именно на инерцию явно просматриваются в сигналах некоторых систем чтения поведения рынка.

Если рассматривать пространства случайных событий и, в частности, наше дополнительное измерение, то там, надо полагать, тоже действует какая-то своя инерция.

Таким образом, с методической точки зрения различные сценарии (конфи­гурации) развития событий в дополнительном измерении, в том числе и такие наиболее вероятные, как тренды и волны, удобно рассматривать в ка­честве проявления некой разновидности инерции, понимая, однако, су­ществующую здесь известную долю условности.

Как движение графика, так и его зависание (отсутствие вы­раженного направления) в дополнительном измерении - это разные проявления инерции.

В самом общем виде формулировка закона инерции применительно к дополнительному измерению может звучать примерно так:
если нечто (движение или покой) началось, то, скорее всего, оно будет продолжаться еще некоторое время.

Разумеется, в каждой конкретной серии испытаний будет складываться своя неповторимая конфигурация кривой. Но всегда можно обнаружить самые разнообразные следы инерции движения и/или покоя в виде тех или иных тенденций.

Это несложно увидеть на графике случайного блуждания, построенном по первым 1000 случайным числам:

На уровне микроскопического анализа приведенного рисунка мож­но видеть многократные переходы инерции движения в зависание и обратно.

С прикладной точки зрения важность данного закона заключается в том, что он позволяет внести в хаос случайности долю упорядочен­ности.

Иначе говоря, если в движении кривой дополнительного измерения обнаруживаются элементы порядка, то, исходя из закона инерции, можно строить расчет на наиболее вероятном сценарии - сохранение текущего положения в течение какого-то времени. Именно на этой основе можно за­ тем принимать соответствующие практические решения.

О каком порядке может идти речь в условиях неопределенности?

Действи­тельно, всякое упоминание упорядоченности при рассмотрении случайных событий может показаться весьма неуместным.

И все же, своя упорядоченность в случайных событиях существует.

Она вполне зримо проявляется хотя бы в том, что, согласно расчетам, в рам­ках принятой математической модели есть только два наиболее вероятных сценария развития событий (тренд и полуволна).

Можно обозначить по крайней мере три источника упорядоченности, проявляющейся в виде закона инерции:
случайные совпадения (иногда они складываются в удивитель­но осмысленный порядок);
исходное соотношение исходных вероятностей преимуществен­ но в пользу успеха (р) или неудачи (q), что заранее опреде­ляет упорядоченное тяготение исходов к соответствующему сум­марному результату (менее вероятное событие будет происхо­дить реже, чем более вероятный исход) ;
удачливость игрока, которая проявляет себя в конфигурации, со­гласно теоремам арксинуса (в классической теории вероятнос­тей говорится об относительной трудности возвращения точ­ки блуждания в начало координат, поскольку, согласно объяс­нению В. Феллера, если уж точка случайно отклонилась от нулевого уровня, то ей труднее вернуться обратно).

Итак, хотя пуассоновское блуждание беспамятно, оно подчиняется за­кону инерции движения, который проявляется, прежде всего, в том, что всякое состояние (некое направление движения или покой) может продол­жаться еще в течение некоторого времени, так сказать, по инерции.

Коротко говоря, благодаря закону инерции случайные пространства вы­глядят не столь уж хаотично.

Конечно, вероятностный характер этой упорядоченности означает и не­ определенность. В заданной серии испытаний неопределенность возникает по двум основным пунктам:
какая тенденция будет иметь место;
как долго она будет продолжаться.

И на сей счет мы можем делать лишь вероятностные суждения исходя из действующих закономерностей чисто случайных пространств.

Под тенденцией в расширительном понимании мы имеем в виду не только сохранение определенных графических фигур, по которым можно судить о направлении будущего движения или покое.

Проявления инерции можно ожидать также и в тенденции к сохра­нению во времени любых обнаруженных правил или закономерностей блуждания, которые носят не только графический, но и какой-то иной характер.

Время действия инерции.

Это наиболее важный параметр, от которого зависит процесс принятия решений в дополнительном измерении.

Сразу подчеркнем, что продолжительность времени действия инерции как параметра, имеющего конкретную величину, - явление само по себе неопределенное. Мы никогда заранее не знаем не только то, какого вида инерция возникнет в следующий момент, но и сколько она будет длиться. Мож­но быть уверенным только в том, что это, как принято говорить при ана­лизе поведения рынка, будет продолжаться до тех пор, пока не закончится.

Мы рассматриваем время действия инерции как величину чисто случайную, которая, следовательно, сама должна подчиняться закону инер­ции и всем действующим вероятностным закономерностям.

Методические следствия: Рождение и смерть разных тенденций в дополнительном измерении происходит по воле случая, который будет да­вать о себе знать все новыми вариантами. Важно суметь вовремя их обнару­жить и оседлать.

Рассмотренные выше понятия и закономерности, которым подчиняются наиболее вероятные конфигурации кривой в дополнительном измерении, в качестве следствий позволяют сформулировать, по меньшей мере, два вы­вода, имеющих непосредственное методическое приложение.

Первое следствие:
если в ходе наблюдения обнаруживается некоторая тенденция к сохранению определенного направления движения, то, вероят­нее всего, оно будет по инерции продолжаться.

Поэтому второе следствие:
если на каком-то этапе наблюдения обнаруживается неопреде­ленность в направлении (отсутствие тенденции), то она будет по инерции сохраняться в течение некоторого времени.

Кроме того, если понимание инерции применять к более широкому кругу явлений, то сказанное выше можно дополнить еще следующим положением:
если при анализе случайного движения на каком-то участке на­блюдения удается выявить какую-то частную закономерность или неопределенность, то такая ситуация, вероятнее всего, бу­дет сохранять свою инерцию в течение еще некоторого про­странственно-временного периода.

Особо подчеркнем, что для предметной разработки методов необходимо с помощью достаточно понятных и однозначно понимаемых критериев точ­но определить понятия тенденция и неопределенность движения.

При этом придется прояснить содержание параметров наблюдения, ко­торые описывают те пределы, где:
кончается неопределенность и начинается направление движения;
кончается выраженность направления движения и начинается неопределенность.

Если в этих понятиях не будет достигнуто необходимой четкости, то затруднительной станет и разработка соответствующих прикладных методик.

Наконец, затронем еще один методический вопрос, который возникает в связи с практическим приложением закона инерции: имеет ли дополни­тельное измерение преимущества в сравнении с применением закона не­посредственно в традиционных пространствах?

На наш взгляд, ответ положительный.

Причина в том, что в дополнительном измерении, как уже ранее подчер­кивалось, действует только воля чистого случая. В то же время чистота традиционных пространств в этом смысле значительно подпорчена пси­хологией участников рынка.

Явление, которому посвящена наша сегодняшняя беседа, встречается в разных жизненных ситуациях. Мы с удовольствием его используем, учитываем и частенько ругаем.

Речь пойдет об инерции. Постараемся разобраться, что скрывается за этим названием.

Что же такое инерция

Наблюдая полёт копья, брошенного рукой атлета, падение всадника через голову споткнувшейся лошади; созерцая камни, веками неподвижно лежащими на одних и тех же местах - греческие мыслители задумывались, что общего в этих явлениях?

Данная им формулировка явления инерции известна как I закон Ньютона.

«Инер­ция - это фи­зи­че­ское яв­ле­ние со­хра­не­ния ско­ро­сти тела по­сто­ян­ной, если на него не дей­ству­ют дру­гие тела или их дей­ствие ском­пен­си­ро­ва­но».

Это означает, что, благодаря инерции, тела, находящиеся в покое, продолжают покоиться, а движущиеся продолжают свое движение, пока на них не окажут воздействие внешние силы.

Например, автомобиль может находиться в покое в двух случаях, если на горизонтальном участке дороги его двигатель выключен, либо его двигатель включен, но силы сопротивления уравновесили силу тяги двигателя, т. е. скомпенсировали её.

Теперь вернемся к нашему всаднику, перелетающему через голову споткнувшейся лошади. Лошадь, споткнувшись, резко теряет скорость, а невезучий всадник… по инерции продолжает движение.

По этой же причине при ДТП водитель, пренебрегающий ремнями безопасности, получает удар о лобовое стекло.

Почему, поскользнувшись при ходьбе, мы падаем назад? Тело по инерции сохраняет прежнюю скорость, а ноги на скользком участке быстренько «убегают» вперед.

Формула силы инерции

Количественной характеристикой явления инерции является сила инерции.

Для расчета этой силы используют формулу:

  • F ин - сила инерции;
  • m - масса тела;
  • a - ускорение.

Знак минус указывает на то, что сила инерции противодействует силе, вызвавшей изменение скорости тела.

Понятие инертности в физике

Итак, инерция - это физическое явление. С ним тесно связано еще одно понятие - инертность. Под инертностью в физике понимают свойства тел противодействовать мгновенному изменению направления или скорости движения.

Любое тело не может мгновенно изменить свою скорость, однако, одни тела это делают быстрее, другие - медленнее. Для остановки гружёного и порожнего самосвалов, движущихся с одинаковой скоростью, требуется разное время.

Это происходит потому, что тело с большей массой более инертно, и ему на изменение скорости требуется больше времени. То есть мерой инертности в физике является масса тела.

Инертные люди, инертные газы

Термин «инертный» широко используется в химии. Он относится к химическим элементам, которые при обычных условиях не вступают в химические реакции. Например, благородные газы аргон, ксенон и др.

Этот термин может быть применен и к поведению человека. Инертные люди отличаются равнодушием к окружающему миру. Они противятся любым переменам, как в их собственной судьбе, так и в работе. Они ленивы и безынициативны.

Инертность вращающихся объектов

Все приведенные ранее примеры относились к поступательно движущимся телам. А как же быть с вращающимися объектами? Скажем, с вентилятором, с маховиком в двигателе внутреннего сгорания или детской игрушке. Ведь после выключения электрического вентилятора его лопасти ещё некоторое время по инерции продолжают крутиться.

Насколько тела инертны во время вращения определяет момент инерции. Он зависит от массы тела, его геометрических размеров и расстояния до оси вращения. Изменение этого расстояния влияет на скорость вращения тела. Это используют спортсмены - фигуристы, поражая зрителей продолжительным вращением с изменением скорости.

Специальные расчёты позволяют определить оптимальные размеры механизма и допустимую скорость вращения, чтобы не допустить разрыва вращающихся частей.

Т.е. момент инерции во вращательном движении играет ту же роль, что и масса при поступательном движении. Но в отличие от массы момент инерции можно изменять, как это делают фигуристы - то широко разводя руки, то прижимают их к груди.

Инерция вокруг нас

Именно это явление используют:

  • для сбрасывания ртутного столбика в медицинском термометре и выбивания пыли из ковров;
  • для продолжения движения после разбега на коньках, лыжах, велосипеде;
  • для экономии горючего при езде на автомобиле;
  • в принципе работы артиллерийских детонаторов и т. д.

Это лишь небольшая часть из всех применений инерции. Но не следует забывать о возможной опасности, которую таит это явление природы. Надпись на заднем борту грузовика «Водитель, сохраняй дистанцию», напоминает, что транспорт мгновенно остановить нельзя.

И при торможении впереди едущего автомобиля, следующая за ним машина, остановиться мгновенно не может. По этой же причине категорически запрещено перебегать дорогу перед движущимся транспортом.

Теперь вы легко ответите на вопрос, почему при торможении автомобилей обязательно включается задний красный свет, почему при повороте водитель обязательно сбрасывает скорость.

В спортзале и на катке, в цирке и в мастерской - инерция сопровождает нас всюду. Присмотритесь.

Если это сообщение тебе пригодилось, буда рада видеть тебя