Сила действующая на электрон в магнитном поле. Движение электрона в однородном поперечном поле

Национальная безопасность – состояние защищенности жизненно важных интересов личности, общества и государства от внутренних и внешних угроз, способность государства сохранять свой суверенитет и территориальную целостность и выступать субъектом международного права.

Национальная безопасность и военная политика государства

Под безопасностью понимается отсутствие опасности (или защита от нее). Внутренняя безопасность имеет отношение к опасностям, воздействующим на общество или государство изнутри. Внешняя безопасность определяется из отсутствия (или заблаговременных мер против) нападения извне.

В зависимости от возможных последствий, с одной стороны, и активных финансовых затрат – с другой – ныне большую значимость с точки зрения политической безопасности приобретают заблаговременные мероприятия против нападения извне. Существует необходимость предотвращать активные действия, в особенности угрожающие применением или применяющие военную силу и подвергающие опасности самостоятельное развитие общества или существование государства и его граждан.

По мере развития человеческого общества усложнялись связи между народами. Преимущественно аграрный характер экономики предопределял традиционное восприятие земли, пригодной к хозяйственному освоению, как к главной ценности, за обладание которой велась борьба. Споры и конфликты между государствами на протяжении тысячелетий перерастали в войны. Военная сила государства или этноса до промышленной революции лишь приблизительно соответствовала уровню социально-экономического развития и считалась самостоятельной категорией. Не случайно «варварские» племена не раз громили цивилизованные государства, а кочевники – оседлые народы.

Средства, которые служат внешней безопасности, являются средствами преимущественно военного рода. Даже в конце XX века нисколько не утратили своего значения официальных средств внешней безопасности военные силы и вооружение. В рамках процесса разрядки между Западом и Востоком, шедшего в последние годы, ни одно государство не было готово отказаться от военных приготовлений как основы внешней безопасности. Наоборот, в качестве «основания готовности к разрядке» и предпосылки для «мира» официально служит «гарантированная обороноспособность и паритет вооруженных сил» и «система взаимного устрашения».

Понятия безопасности личности, общества и государства не во всем совпадают. Безопасность личности означает реализацию ее неотъемлемых прав и свобод. Для общества безопасность состоит в сохранении и умножении его материальных и духовных ценностей.

Национальная безопасность применительно к государству предполагает внутреннюю стабильность, надежную обороноспособность, суверенитет, независимость, территориальную целостность.


В современных условиях, когда сохраняется опасность ядерной войны, национальная безопасность является неотъемлемой частью всеобщей безопасности. Всеобщая безопасность вплоть до настоящего времени еще в значительной мере основывается на принципах «сдерживания путем устрашения» противостояния ядерных держав. Подлинно всеобщую безопасность невозможно обеспечить за счет ущемления интересов каких-либо государств, ее можно достичь лишь на принципах партнерства и сотрудничества. Поворотным пунктом в формировании новой системы всеобщей безопасности стало признание мировым сообществом невозможности победы и выживания в ядерной войне.

Литература

  1. Введение в политологию /Гаджиев К.С., Каменская Г.Н, Родионов А.Н. и др. – М., 1994.
  2. Гаджиев К.С. Политическая наука: Пособие для преподавателей, аспирантов и студентов гуманитарных факультетов. – М., 1994.
  3. Даниленко В.И. Современный политологический словарь – М., 2000.
  4. Краснов Б.И. Основы политологии. – М., 1994.
  5. Основы политической науки: Учебное пособие для высших учебных заведений /Под ред. В.П. Пугачева. В 2 ч. – М., 1994.
  6. Панарин А.С., Василенко И.А. Политология. Общий курс. – М., 2003.
  7. Политология: Конспект лекций /Отв. ред. Ю.К. Краснов. – М., 1994.

2.1. Движение электрона в электрическом поле. Во всех электронных приборах электронные потоки подвергаются воздействию электрического поля. Взаимодействие движущихся электронов с электрическим полем является основным процессом в электронных приборах.

На рис.8,а изображено электрическое поле между двумя плоскими электродами . Они могут представлять собой катод и анод электровакуумного диода или любые два соседних электрода многоэлектродного прибора.

Представим себе, что из электрода, имеющего более низкий потенциал, например из катода, вылетает электрон с некоторой начальной скоростью V 0 .

Рассмотрим движение электрона в однородном магнитном поле. Если неоднородность поля незначительна, или если нет необходимости в получении точных количественных оценок, то для изучения движения в неоднородном поле также можно пользоваться более простыми законами, полученными для однородного поля.

Пусть электрон влетает в однородное магнитное поле с начальной скоростью V 0 , направленной перпендикулярно магнитным силовым линиям, рис. 5. В этом случае на электрон действует сила Лоренца F, которая перпендикулярна вектору V 0 и вектору магнитной индукции В, а численно равна:

При V 0 =0 сила F также равна нулю (на неподвижный электрон магнитное поле не действует). Сила F искривляет траекторию электрона в дугу окружности. Так как сила F действует под прямым углом к скорости V 0 , она не совершает работы. Энергия электрона и его скорость не изменяются. Изменяется лишь направление движения.


Направление движения электрона определяется следующему мнемоническому правилу: поворот электрона совпадает с вращательным движением винта, который ввинчивается в направлении магнитных силовых линий. Это правило часто называют правилом буравчика.

Известно, что движение тела по окружности с постоянной скоростью происходит под действием направленной к центру (центростремительной) силы. В нашем случае в качестве центростремительной выступает сила Лоренца F. Из механики известно, что центростремительная сила может быть рассчитана по формуле:

где r – радиус окружности вращения электрона. Приравняв центростремительную силу, получаемую из последнего выражения к выражению для силы Лоренца, получим:

.

Откуда найдем радиус:

Чем больше скорость электрона, тем больше и радиус окружности, описываемой им в магнитном поле. Выйдя за пределы магнитного поля, электрон летит равномерно и прямолинейно по инерции. Если же радиус окружности мал, то электрон может описывать в магнитном поле замкнутые окружности.

Рассмотрим случай, когда электрон влетает в магнитное поле под любым углом, рис. 6. Выберем координатную плоскость так, чтобы вектор начальной скорости электрона V 0 лежал в этой плоскости и чтобы ось Х совпадала по направлению с вектором В. Разложим V 0 на составляющие V x и V y . Движение электрона со скоростью V x эквивалентно току вдоль силовых линий. На такой ток магнитное поле не действует. Следовательно скорость V x не испытывает никаких изменений. Если бы электрон имел только эту скорость, он бы двигался прямолинейно и равномерно. Влияние поля на скорость V y такое же, как и в первом случае, отображенном на рис. 6. имея только скорость V y электрон двигался бы по окружности в плоскости, перпендикулярной магнитным силовым линиям.




Результирующее движение электрона происходит по винтовой линии (по спирали). В зависимости о значений B, V x и V y , эта спираль более или менее растянута. Радиус спирали легко определить по последней формуле, подставив в нее скорость V y .

Пример первый: пусть сначала имеется постоянное поле в направлении . Ему соответствуют два стационарных состояния с энергиями . Добавим небольшое поле в направлении . Тогда уравнения получатся такими же, как в нашей старой задаче о двух состояниях. Опять, в который раз, получается знакомый уже нам переброс, и уровни энергии немного расщепляются. Пусть, далее, -компонента поля начнет меняться во времени, скажем, как . Тогда уравнения станут такими, как для молекулы.аммиака и колеблющемся электрическом пале (см. гл. 7). И тем же способом, что и прежде, вы можете рассчитать процесс во всех деталях. При этом вы увидите, что колеблющееся поле приводит к переходам от -состояния к -состоянию и обратно, если только горизонтальное поле колеблется с частотой, близкой к резонансной, . Это приводит к квантовомеханической теории явлений магнитного резонанса, описанной нами в гл. 35 (вып. 7).

Можно еще сделать мазер, в котором используется система со спином . Прибор Штерна - Герлаха создает пучок частиц, поляризованных, скажем, в направлении , и они потом направляются в полость, находящуюся в постоянном магнитном поле. Колеблющиеся в полости поля, взаимодействуя с магнитным моментом, вызовут переходы, которые будут снабжать полость энергией.

Рассмотрим теперь второй пример. Пусть у нас имеется магнитное поле , направление которого характеризуется полярным углом и азимутальным углом (фиг. 8.10). Допустим еще, что имеется электрон, спин которого направлен по полю. Чему равны амплитуды и для этого электрона? Иными словами, обозначая состояние электрона , мы хотим написать

,

где и равны

а и обозначают то же самое, что раньше обозначалось и (по отношению к выбранной нами оси ).

Ответ на этот вопрос также содержится в наших общих уравнениях для систем с двумя состояниями. Во-первых, мы знаем, что раз спин электрона параллелен , то электрон находится в стационарном состоянии с энергией . Поэтому и , и должны изменяться как [см. уравнение (7.18)]; и их коэффициенты и даются формулой (8.5):

Вдобавок и должны быть нормированы так, чтобы было . Величины и мы можем взять из (8.22), используя равенства

Тогда мы имеем

(8.25).

Кстати, скобка во втором уравнении есть просто , так что проще писать

(8.28)

Подставляя эти матричные элементы в (8.24) и сокращая на , находим

Зная это отношение и зная условие нормировки, можно найти и , и . Сделать это нетрудно, но мы сократим нуть, прибегнув к одному трюку. Известно, что и Значит, (8.27) совпадает с

. (8.28)

Один из ответов, следовательно, таков:

. (8.29)

Он удовлетворяет и уравнению (8.28), и условию

Вы знаете, что умножение и на произвольный фазовый множитель ничего не меняет. Обычно формуле (8.29) предпочитают более симметричную запись, умножая на . Принято писать так:

. (8.30)

Это и есть ответ на наш вопрос. Числа и - это амплитуды того, что электрон будет замечен спином вверх или вниз (но отношению к оси ), если известно, что его спин направлен вдоль оси . [Амплитуды и равны просто и , умноженным на .]

Заметьте теперь занятную пещь. Напряженность магнитного поля нигде в (S.30) не появляется. Тот же результат, разумеется, получится в пределе, если поле устремить к нулю. Это означает, что мы дали общий ответ на вопрос, как представлять частицу, спин которой направлен вдоль произвольной оси. Амплитуды (8.30) - это проекционные амплитуды для частиц со спином , подобные проекционным амплитудам для частиц со спином 1, приведенным в гл. 3 [уравнения (3.38)]. Теперь мы сможем находить для фильтрованных пучков частиц со спином амплитуды проникновения через тот или иной фильтр Штерна - Герлаха.

Пусть представляет состояние со спином, направленным по оси вверх, а - состояние со спином вниз. Если представляет состояние со спином, направленным вверх по оси , образующей с осью углы и , то в обозначениях гл. 3 мы имеем

Эти результаты эквивалентны тому, что мы нашли из чисто геометрических соображений в гл. 4 [уравнение (4.36)], (Если вы в свое время решили пропустить гл. 4, то вот перед вами один из ее существенных результатов.)

Напоследок вернемся еще раз к тому примеру, о котором уже не раз говорилось. Рассмотрим такую задачу. "Сперва имеется электрон с определенным образом направленным спином, затем на 25 минут включается магнитное поле в направлении , а затем выключается. Каким окажется конечное состояние? Опять представим состояние в виде линейной комбинации . Но в нашей задаче состояния с определенной энергией являются одновременно нашими базисными состояниями и . Значит, и меняются только по фазе. Мы знаем, что

Мы сказали, что вначале у спина электрона было определенное направление. Это означает, что вначале и были двумя числами, определяемыми формулами (8.30). Переждав секунд, новые и мы получим из прежних умножением соответственно на / и . Что это будут за состояния? Узнать это легко, ведь это все равно, что измеить угол , вычтя из него , и не трогать угол .

Это значит, что к концу интервала времени состояние будет представлять электрон, выстроенный в направлении, отличающемся от первоначального только поворотом вокруг оси на угол . Раз этот угол пропорционален , то можно говорить, что направление спина прецессирует вокруг оси с угловой скоростью . Этот результат мы уже получали раньше несколько раз, но не так полно и строго. Теперь мы получили полное и точное квантовомеханическое описание прецессии атомных магнитов.. И неважно, какая физика там была первоначально - молекула ли аммиака или что другое, - вы можете перевести ее на язык соответствующей задачи об электроне. Стало быть, если мы в состоянии решить в общем случае задачу об электроне, мы уже решили все задачи о двух состояниях., и изменяйте скорость вращения так, чтобы она все время была пропорциональна напряженности (фиг. 8.11). Если все время это делать, вы остановитесь на какой-то конечной ориентации спиновой оси, и амплитуды и получатся просто как ее проекции [при помощи (8.30)] на вашу систему координат.

Фигура 8.11. Направление спина электрона и изменяющемся магнитном поле прецессирует с частотой вокруг оси, параллельной

Вы видите, что задача эта чисто геометрическая: надо заметить, где закончились все ваши вращения. Хотя сразу видно, что для этого требуется, но эту геометрическую задачу (отыскание окончательного итога вращений с переменным вектором угловой скорости) нелегко в общем случае решить явно. Во всяком случае, мы в принципе видим общее решение любой задачи для двух состояний. В следующей главе мы глубже исследуем математическую технику обращения с частицами спина и, следовательно, обращения с системами, обладающими двумя состояниями, в общем случае.

Цель работы. Определение удельного заряда электрона по известной траектории пучка электронов в электрическом и переменноммагнитном полях.

Приборы и принадлежности: э кспериментальная установка марки «PHYWE» фирмы HYWE Systems GmbH & Co. (Германия) в составе: электронно-лучевая трубка; катушки Гельмгольца (1 пара); источник питания универсальный (2 шт.); цифровой мультиметр (2 шт.); разноцветные соединительные шнуры.

Введение

Удельным зарядом элементарной частицы называют отношение заряда частицы к её массе. Эта характеристика широко применяется для идентификации частиц, так как позволяет отличать друг от друга разные частицы, имеющие одинаковые заряды (например, электроны от отрицательно заряженных мюонов, пионов и др.).

Удельный заряд электронаотносится к фундаментальным физическим постоянным, таким как заряд электронае , скорость света с , постоянная Планка h и др. Его теоретическое значение составляет величину = (1,75896 ± 0,00002)∙10 11 Кл∙кг -1 .

Многочисленные экспериментальные методы определения удельного заряда частиц основаны на исследованиях особенностей их движения в магнитном поле. Дополнительные возможности представляет использование конфигурации магнитного и электрического полей и варьирование их параметров. В данной работе определяется удельный заряд электрона на экспериментальной установке марки «PHYWE» немецкого производства. В ней для изучения траекторий движения электронов в магнитном поле реализован метод, основанный на сочетании возможностей варьирования параметров однородных магнитного и электрического полей при их взаимно перпендикулярной конфигурации. Данное методическое пособие разработано с использованием документации, поставленной в комплекте с установкой.

Магнитное поле. Опыты показывают, что магнитное поледействует на движущиеся в нём заряженные частицы. Силовой характеристикой, определяющей подобное его действие, является магнитная индукция – векторная величина В . Магнитное поле изображают с помощью силовых линий магнитной индукции, касательные к которым в каждой точке совпадают с направлением вектора B . При однородном магнитном поле вектор B постоянен по величине и направлению в любой точке поля. Сила, действующая на заряд q , движущийся со скоростью V в магнитном поле, была определена немецким физиком Г. Лоренцем (сила Лоренца). Она выражается формулой

F л = q [ V B ] или F л = |q |VB sin α (1)

где α угол, образованный вектором скорости V движущейся частицы и вектором индукции магнитного поля В .

На неподвижный электрический заряд магнитное поле не действует. В этом его существенное отличие от поля электрического.

Направление силы Лоренца определяется с помощью правила «левой руки». Если ладонь левой руки расположить так, чтобы в неё входил вектор B , а четыре вытянутых пальца направить вдоль

направления движения положительных зарядов (q >0), совпадающие с направлением тока I (), то отогнутый большой палец

Рис.1

покажет направление силы, действующей на положительный заряд (q >0) (рис. 1). В случае отрицательных зарядов (q < 0) направления тока I и скорости V движения противоположны. Направление силы Лоренца определяется по направлению тока. Таким образом, сила Лоренца перпендикулярна вектору скорости, поэтому модуль скорости не будет меняться под действием этой силы. Но при постоянной скорости, как следует из формулы (1), остаётся постоянным и значение силы Лоренца. Из механики известно, что постоянная сила, перпендикулярная скорости, вызывает движение по окружности, то есть является центростремительной. При отсутствии других сил, согласно второму закону Ньютона, она сообщает заряду центростремительное или нормальное ускорение . Траектория движения заряда в однородном магнитном поле приVB представляет собой окружность (рис.2), радиус которой r определяется из условия

где α – угол между векторами V и B .

В случае α = 90 0 , sinα = 1 из формулы (2) радиус круговой траектории заряда определяется формулой

Работа, совершаемая над движущейся зарядом в магнитном поле постоянной силой Лоренца, равна

ΔА = F л. Δ r

или ΔА = F л. Δr cosβ , (4)

где β – угол между направлением векторов силы F л. и направлением вектора перемещения Δ r .

Так как всегда выполняется условие F л Δ r , β = 90 0 и cos β = 0, то работа, совершаемая силой Лоренца, как следует из (4), всегда равна нулю. Следовательно, абсолютное значение скорости заряда и его кинетическая энергия при движении в магнитном поле остаются постоянными.

Период вращения (время одного полного оборота), равен

Подставив в (5) вместо радиуса r его выражение из (3), получим, что кругообразное движение заряженных частиц в магнитном поле обладает важной особенностью: период обращения не зависит от энергии частицы, зависит только от индукции магнитного поля и величины, обратной удельному заряду:

Если магнитное поле однородно, но начальная скорость заряженной частицы V направлена под углом α к силовым линиям В , то движение можно представить как суперпозицию двух движений: равномерного прямолинейного в направлении, параллельном магнитному полю со скоростью V // = V cosα и равномерного

вращения под действием силы Лоренца в плоскости, перпендикулярной магнитному полю cо скоростью V = V sinα .

В результате траектория движения частицы будет представлять собой винтовую линию (рис.3).

Шаг винтовой линии равен расстоянию, пройденному зарядом вдоль поля со скоростью V // за время, равное периоду вращения

h = V Т cos , (7)

Подставив это выражение для Т в (7), получим

. (8)

Ось спирали параллельна силовым линиям магнитного поля B .

Электрическое поле. На точечный заряд q , помещённый в электрическое поле, характеризующееся вектором напряжённости E , действует сила

F = q E , (9)

Направление силы F совпадает с направлением вектора E , если заряд положительный, и противоположно E в случае отрицательного заряда. В однородном электрическом поле вектор напряжённости в любой точке поля постоянен по величине и направлению. Если движение происходит только вдоль силовых линий однородного электрического поля, оно является равноускоренным прямолинейным.

По второму закону Ньютона F = m a уравнение движения заряда в электрическом поле выражается формулой

q E = (10)

Предположим, что точечный отрицательный заряд, двигающийся первоначально вдоль оси Х со скоростью V , попадает в однородное электрическое поле между пластинами плоского конденсатора, как показано на рис. 4.

Движение заряда вдоль оси X является равномерным, его кинематическое уравнение x = x 0 + Vt (x 0 начальная координата, t время),V = const , x 0 = 0. Время пролёта зарядом конденсатора с длиной пластин равно .

Движение вдоль оси Y определяется электрическим полем внутри конденсатора. Если зазор между пластинами мал по сравнению с их длиной, краевыми эффектами можно пренебречь и электрическое поле в пространстве между пластинами считатьоднородным (Е y = const). Движение заряда будет равноускоренным V y = V 0 y + at . У скорение определяется с формулой (10). Выполнив интегрирование (10), получим , где С постояннаяинтегрирования. При начальном условии (t = 0) V 0 y = 0 получим C = 0. .

Траектория и характер движения заряженной частицы в однородном электрическом поле плоского конденсатора подобны аналогичным характеристикам движения в гравитационном поле брошенного горизонтально тела. Отклонение заряженной частицы вдоль оси Y равно . С учётом характера действующей силы оно зависит отсогласно формуле.

При перемещении заряда в электрическом поле между точками, имеющими разность потенциалов U , электрическим полем совершается работа, вследствие чего заряд приобретает кинетическую энергию. В соответствии с законом сохранения энергии

Если на движущийся электрический заряд помимо магнитного поля с индукцией В действует и электрическое поле с напряжённостью E , то результирующая сила F , определяющая его движение, равна векторной сумме силы, действующей со стороны электрического поля и силы Лоренца

F эм = q E + q [V B ]. (11)

Это выражение называется формулой Лоренца.

В данной лабораторной работе исследуется движение электронов в магнитном и электрическом полях. Все соотношения, рассмотренные выше для произвольного заряда, справедливы и для электрона.

Считаем, что начальная скорость электрона равняется нулю. Попадая в электрическое поле, заряд ускоряется в нём, и, пройдя разность потенциалов U , приобретает некоторую скорость V . Её можно определить из закона сохранения энергии. В случае нерелятивистских скоростей (V << скорости света c ) имеющего вид

где е = –1,6∙10 -19 Кл – заряд электрона, m e = 9,1∙10 -31 кг – его масса.

Из (12) скорость электрона

Подставляя её в (3), получим формулу для нахождения радиуса окружности, по которой движется электрон в магнитном поле:

Таким образом, зная разность потенциалов U , ускоряющую электроны при их движении в электрическом поле до нерелятивистских скоростей, индукцию однородного магнитного поля B , в котором эти электроны движутся, описывая круговую траекторию, и, экспериментально определяя радиус указанной круговой траектории r , можно вычислить удельный заряд электрона по формуле

В некоторых электровакуумных приборах используется движение электронов в магнитном поле.

Рассмотрим случай, когда электрон влетает в однородное магнитное поле с начальной скоростью v0, направленной перпендикулярно магнитным силовым линиям. В этом случае на движущийся электрон действует так называемая сила Лоренца F, которая перпендикулярна вектору н0 и вектору напряженности магнитного поля Н. Величина силы F определяется выражением: F= ev0H.

При v0 = 0 сила Рравна нулю, т. е. на неподвижный электрон магнитное поле не действует.

Сила F искривляет траекторию электрона в дугу окружности. Поскольку сила F действует под прямым углом к скорости н0, она не совершает работы. Энергия электрона и его скорость не изменяются по величине. Происходит лишь изменение направления скорости. Известно, что движение тела по окружности (вращение) с постоянной скоростью получается благодаря действию направленной к центру центростремительной силы, которой именно и является сила F.

Направление поворота электрона в магнитном поле в соответствии с правилом левой руки удобно определяется по следующим правилам. Если смотреть в направлении магнитных силовых линий, то электрон движется по часовой стреле. Иначе говоря, поворот электрона совпадает с вращательным движением винта, который ввинчивается по направлению магнитных силовых линий.

Определим радиус r окружности, описываемой электроном. Для этого воспользуемся выражением для центростремительной силы, известным из механики: F = mv20/r. Приравняем его значению силы F = ev0H: mv20/r = ev0H. Теперь из этого уравнения можно найти радиус: r= mv0/(eH).

Чем больше скорость электрона v0, тем сильнее он стремится двигаться прямолинейно по инерции и радиус искривления траектории будет больше. С другой стороны, с увеличением Н растет сила F, искривление траектории возрастает и радиус окружности уменьшается.

Выведенная формула справедлива для движения в магнитном поле частиц с любыми массами и зарядом.

Рассмотрим зависимость rот mи e. Заряженная частица с большей массой mсильнее стремится лететь по инерции прямолинейно и искривление траектории уменьшится, т. е. rстанет больше. А чем больше заряд e, тем больше сила F и тем сильнее искривляется траектория, т. е. ее радиус становится меньше.

Выйдя за пределы магнитного поля, электрон дальше летит по инерции по прямой линии. Если же радиус траектории мал, то электрон может описывать в магнитном поле замкнутые окружности.

Таким образом, магнитное поле изменяет только направление скорости электронов, но не ее величину, т. е. между электроном и магнитным полем нет энергетического взаимодействия. По сравнению с электрическим полем действие магнитного поля на электроны является более ограниченным. Именно поэтому магнитное поле применяется для воздействия на электроны значительно реже, нежели электрическое поле.