Вероятность произведения достоверного и случайного событий. Что такое случайность

1. Случайные события

Теория вероятностей - это раздел математики изучающий закономерности массовых случайных событий.

Случайным называется событие, наступление которого нельзя гарантировать. Случайность того или иного события определяется множеством причин, которые существуют объективно, но учесть их все, а также степень их влияния на изучаемое событие, невозможно. К таким случайным событиям относятся: выпадание того или иного числа при бросании игральной кости, выигрыш в лотереи, коли­чество больных, записавшихся на прием к врачу и т.п.

И хотя в каждом конкретном случае трудно предсказать исход испытания, при достаточно большом числе наблюдений можно установить наличие некоторой закономерности. Подбрасывая монету, можно заметить, что число выпадания орла и решки примерно одинаково, а при бросании игральной кости различные грани также появляются, примерно одинаково. Это говорит о том, что случайным явлениям присущи свои закономерности, но они проявляются лишь при большом количестве испытаний. Правильность этого подтверждает закон больших чисел, который лежит в основе теории вероятностей.

Рассмотрим основные термины и понятия теории вероятностей.

Испытанием называется совокупность условий, при которых может произойти данное случайное событие.

Событие - это факт, который при осуществлении определенных условий может произойти или нет. События обозначают большими буквами латинского алфавита А, В, С...

Например, событие А - рождение мальчика, событие В – выигрыш в лотерее, событие С - выпадение цифры 4 при бросании игральной кости.

События бывают достоверные, невозможные и случайные.

Достоверное событие - это событие, которое в результате испытания непременно должно произойти.

Например, если на игральной кости на всех шести гранях. нанести цифру 1, тогда выпадение цифры 1, при бросании кости, есть событие достоверное.

Невозможное событие - это событие, которое в результате испытания не может произойти.

Например, в ранее рассмотренном примере - это выпадение любой цифры, кроме 1.

Случайное событие - это событие, которое при испытаниях может произойти или не произойти. Те или иные события реализуются с различной возможностью.

Например, завтра днем ожидается дождь. В этом примере наступление дня является испытанием, а выпадение дождя - случайное событие.

События называются несовместными, если в результате данного испытания появление одного из них исключает появление другого.

Например, при бросании монеты выпадение одновременно орла и решки есть события несовместные.

События называются совместными, если в результате данного испытания появление одного из них не исключает появление другого.


Например, при игре в карты появление валета и масти пик - события совместные.

События называются равновозможными, если нет оснований считать, что одно из них происходит чаше, чем другое!

Например, выпадение любой грани игрального кубика есть равновозможные события.

События образуют полную группу событий, если в результате испытания обязательно произойдет хотя бы одно из них и любые два из них несовместны.

Например, при 10 выстрелах в мишень возможно от 0 до 10 попаданий. При бросании игрального кубика может выпасть цифра от 1 до 6. Эти события образуют полную группу.

События, входящие в полную группу попарно несовместных и равновозможных событий, называются исходами, или элементарными событиями. Согласно определению достоверного события, можно считать, что событие, состоящее в появлении одного, неважно какого, из событий полной группы, есть событие достоверное.

Например, при бросании одного игрального кубика выпадает число меньше семи. Это пример достоверного события.

Частным случаем событий, образующих полную группу, являются противоположные события.

Два несовместных события А и (читается «не А») называются противоположными, если в результате испытания одно из них должно обязательно произойти.

Например, если стипендия начисляется только при получении на экзамене хороших и отличных оценок, то события «стипендия» и «неудовлетворительная или удовлетворительная оценка» - противоположные.

Событие А называется благоприятствующим событию В, если появление события А влечет за собой появление события В.

Например, при бросании игрального кубика появлению нечетного числа благоприятствуют события, связанные с выпадением чисел 1,3 и 5.

2. Операции над событиями

Операции над событиями аналогичны операциям над множествами.

Суммой нескольких событий называется событие, состоящее в наступлении хотя бы одного из них в результате испытания.

Сумма событий может быть обозначена знаками «+», «È», «или».

На рисунке 1 представлена геометрическая интерпретация с помощью диаграмм Эйлера-Венна. Сумме событий А + В будет соответствовать вся заштрихованная область.

рис.1

Область пересечения событий А и В соответствует совместным событиям, которые могут произойти одновременно. Аналогично для событий А, В и С имеются совместные события А и В; А и С; В и С; А и В и С, которые могут про изойти одновременно.

Например, в урне находятся белые, красные и синие шары. Возможны следующие события: А - вынут белый шар; В - вынут красный шар; С - вынут синий шар. Событие В + С означает, что произошло событие - вынут цветной шар или вынут не белый шар.

Произведением нескольких событий называется событие которое состоит в совместном наступлении всех этих событий в результате испытания.

Произведение событий может быть обозначено знаками «х», «∩», «и».

Геометрическая интерпретация произведения событий представлена на рис. 2.

рис.2

Произведением событий А и В будет заштрихованная область пересечения площадей А и В. А для трех событий А и В и С - общая площадь, одновременно входящая во все три события.

Например, пусть из колоды карт наугад извлекается карта. Событие А - вынута карта пиковой масти; В - вынут валет. Тогда событие А×В означает событие - вынут валет пик.

Разностью двух событий А-В называется событие, состоящее из исходов, входящих в А, но не входящих в В.

На рис. 3 представлена иллюстрация разности событий с помощью диаграмм Эйлера-Венна.

рис.3

Разностью двух событий А-В является заштрихованная область А без той части, которая входит в событие В. Разность между произведением событий А и В и событием С будет совместная площадь события А и события В без совместной с нею площадью события С.

Например, пусть при бросании игрального кубика событие А - появление четных чисел (2,4,6), а событие В - чисел-кратных 3, т.е. (3, 6). Тогда событие А-В появление чисел (2,4).

3. Определение вероятности события

Случайные события реализуются с различной возможностью. Одни происходят чаще, другие - реже. Для количественной оценки возможностей реализации события вводится понятие вероятности события.

Вероятность события - это число, характеризующее степень возможности появления события при многократном повторении испытаний.

Вероятность обозначается буквой Р (от англ. probability - вероятность). Вероятность является одним из основных понятий теории вероятностей. Существует несколько определений этого понятия.

Классическое определение вероятности заключается в следующем. Если известны все возможные исходы испытания и нет оснований считать, что одно случайное событие появлялось бы чаще других, т.е. события равновозможны и несовместны, то имеется возможность аналитического определения вероятности события.

Вероятностью Р(А) события А называется отношение числа благоприятствующих исходов т к общему числу равновозможных несовместных исходов п:

Свойства вероятности:

1. Вероятность случайного события А находится между 0 и 1.

2. Вероятность достоверного события равна 1.

.

3. Вероятность невозможного события равна 0.

.

Глава 1. Основные понятия и формулы теории вероятностей ………………………………………….. 5

§ 1. Предмет теории вероятностей. Случайные

события ………………………………………. 5

§ 2. Вероятность случайного события …………... 8

§ 3 Алгебра событий …………………………….. 12

§ 4 Формула сложения вероятностей …………… 17

§ 5 Аксиоматический подход к теории

вероятностей ………………………………… 19

§ 6 Классическая схема теории вероятностей …. 24

§ 7 Геометрические вероятности ……………….. 26

§ 8 Условная вероятность. Независимость

случайных событий …………………………. 29

§ 9 Формула полной вероятности. Формулы

Байеса ……………………………………….... 39

§ 10 Комбинаторика ………………………………. 42

§ 11 Схема Бернулли ……………………………..... 49

§ 12 Вероятности при больших значениях n .

Глава 2. Случайные величины и их характеристики 62

§ 1 Случайная величина и её функция

распределения.................................................. 62

§ 2 Дискретные случайные величины................. 67

§ 3 Непрерывные случайные величины.............. 70

§ 4 Функции от случайной величины.................. 78

§ 5 Системы случайных величин ………………. 81

§ 6 Независимые случайные величины ………... 89

§ 7 Математическое ожидание случайной

величины …………………………………….. 94

§ 8 Дисперсия случайной величины ………….... 109

§ 9. Корреляционный момент и корреляция

случайных величин ……………………………. 113

Глава 3. Закон больших чисел и центральная

предельная теорема ……………………… 119

§ 1 НеравенствоЧебышева ……………………... 119

§ 2 Закон больших чисел ………………………... 123

§ 3 Центральная предельная теорема Ляпунова и

её следствия …………………………………129

Задачи по теории вероятностей …………………… 138

Индивидуальные задания № 1 по теории

вероятностей …………………………………………… 153

Индивидуальные задания № 2 по теории

вероятностей …………………………………………... 166

Таблица значений функции …….. 183

Таблица значений для функции

................................................... 185

Степени числа e ....................................................... 188

Таблица значений функции ………………..... 189

Глава I. Основные понятия и формулы теории вероятностей.

Предмет теории вероятностей. Случайные события.

Предметом теории вероятностей являются модели опытов (экспериментов, наблюдений, испытаний), которые осуществляются, как только создаются определённые совокупности условий.

Примеры опытов:

1) бросание монеты 20 раз,

2) покупка лотерейного билета,

3) приход утром (между 8 и 9 часами) на станцию метро «Новогиреево»,

На практике часто встречаются такие ситуации, когда исход проводимого нами опыта нельзя предсказать заранее с полной уверенностью. Например (смотри примеры опытов выше)

1) невозможно предсказать, что герб выпадет ровно 9 раз, или герб выпадет от 7 до 15 раз

2) выпадет ли выигрыш на лотерейный билет с таким-то номером

3) мы будем ждать электропоезд от 20 до 80 секунд

Во всех подобных ситуациях мы вынуждены считать результат опыта зависящего от случая, рассматривать его как случайное событие .

Определение. Некоторое событие называется случайным по отношению к данному опыту, если при осуществлении этого опыта оно может наступить, а может и не наступить.

Примером случайного события может служить выпадение герба ровно 9 раз в опыте с бросанием монеты 20 раз, выигрыш проданному лотерейному билету, будем ждать поезд от 20 до 80 секунд, совпадение даты рождения (в опыте) у двух наугад выбранных студентов на лекции по теории вероятностей и в данной аудитории.

Случайные события обозначаются в дальнейшем А , В , С и т.д.

Замечание. Согласно данному выше определению, событие считают случайным, если его наступление в результате опыта представляет собой лишь одну из двух возможностей – оно либо наступит, либо не наступит.

События, которые в результате данного опыта всегда наступают, называется достоверными (обозначение I), которые никогда не наступают – невозможными событиями (обозначение Ø).

Теория вероятностей рассматривает модели таких опытов, которые могут быть повторены в одних и тех же условиях (достаточно) неограниченное число раз, т.е. мы будем предполагать, что в принципе возможно создать много раз одни и те же условия, осуществляющие данный опыт.

Случайные события, наступление которых возможно в такого рода опытах, называются массовыми случайными событиями.

Массовые случайные события следует отличать от единичных, обладающих той особенностью, что опыт, с которым связаны эти события, принципиально невоспроизводим. Например, событие «1 января 2010 г. в Москве шел снег» является в этом смысле единичным (исключительным), так как воспроизвести наступление указанного дня много раз невозможно. В то же время событие « 1 января в Москве шёл снег» (без упоминания о годе) является несомненно, массовым: ведь наблюдать погоду в Москве 1 января можно много раз (в течение многих лет).

В самых общих словах предмет теории вероятностей может быть определён следующим образом:

Теория вероятностей занимается изучением закономерностей, присущих массовым случайным событиям .

Оказывается, и случайные события подчиняются некоторым (вероятностным) закономерностям. Исход каждого опыта по отношению к данному событию является случайным, неопределённым. Однако средний результат большого числа опытов утрачивает случайный характер, становится закономерным.

Например, рассмотрим опыт с бросанием данной монеты. Предположим, что бросание производится много раз подряд. Оказывается «доля» (средний результат) тех бросаний, при которых выпадает герб (т.е. отношение числа таких бросаний к числу всех бросаний) с увеличением числа бросаний приближается к (или другому числу – это зависит от состояния монеты).

Приведём другой пример. В сосуде заключён газ. Находясь в беспрерывном движении, молекулы газа ударяются друг о друга и вследствие этого постоянно меняют величину и направление своей скорости. Казалось бы, отсюда следует, что давление газа на стенки сосуда, обусловленное ударами отдельных молекул о стенки, должно меняться случайным, неконтролируемым образом. Однако это не так: давление газа подчиняется строгой закономерности (закону Бойля-Мариотта). Причина этой закономерности кроется в том, что давление газа на стенки сосуда есть средний результат воздействия большого числа молекул. Случайные особенности, свойственные движению отдельных молекул, в массе (поскольку молекул много) взаимно погашаются, нивелируются и возникает некоторая средняя закономерность.

Именно эта устойчивость среднего результата, его независимость от колебаний отдельных слагаемых (отдельных исходов опыта) и обуславливает широту применения теории вероятностей. Физика, биология, медицина, лингвистика и т.д.- все эти области науки используют (одни в большей степени, другие в меньшей) понятия и выводы теории вероятностей и родственных ей дисциплин - математической статистики, теории информации и т.д.

Перейдём теперь к простейшей, самой главной закономерности в случайных событиях, в конечном счёте, составляющей основу всех приложений теории вероятностей к практике.


Похожая информация.


Изначально, будучи всего лишь собранием сведений и эмпирических наблюдений за игрой в кости, теория вероятности стала основательной наукой. Первыми, кто придал ей математический каркас, были Ферма и Паскаль.

От размышлений о вечном до теории вероятностей

Две личности, которым теория вероятностей обязана многими фундаментальными формулами, Блез Паскаль и Томас Байес, известны как глубоко верующие люди, последний был пресвитерианским священником. Видимо, стремление этих двух ученых доказать ошибочность мнения о некой Фортуне, дарующей удачу своим любимчикам, дало толчок к исследованиям в этой области. Ведь на самом деле любая азартная игра с ее выигрышами и проигрышами — это всего лишь симфония математических принципов.

Благодаря азарту кавалера де Мере, который в равной степени был игроком и человеком небезразличным к науке, Паскаль вынужден был найти способ расчета вероятности. Де Мере интересовал такой вопрос: "Сколько раз нужно выбрасывать попарно две кости, чтобы вероятность получить 12 очков превышала 50%?". Второй вопрос, крайне интересовавший кавалера: "Как разделить ставку между участниками незаконченной игры?" Разумеется, Паскаль успешно ответил на оба вопроса де Мере, который стал невольным зачинателем развития теории вероятностей. Интересно, что персона де Мере так и осталась известна в данной области, а не в литературе.

Ранее ни один математик еще не делал попыток вычислять вероятности событий, поскольку считалось, что это лишь гадательное решение. Блез Паскаль дал первое определение вероятности события и показал, что это конкретная цифра, которую можно обосновать математическим путем. Теория вероятностей стала основой для статистики и широко применяется в современной науке.

Что такое случайность

Если рассматривать испытание, которое можно повторить бесконечное число раз, тогда можно дать определение случайному событию. Это один из вероятных исходов опыта.

Опытом является осуществление конкретных действий в неизменных условиях.

Чтобы можно было работать с результатами опыта, события обычно обозначают буквами А, B, C, D, Е…

Вероятность случайного события

Чтобы можно было приступить к математической части вероятности, нужно дать определения всем ее составляющим.

Вероятность события - это выраженная в числовой форме мера возможности появления некоторого события (А или B) в результате опыта. Обозначается вероятность как P(A) или P(B).

В теории вероятностей отличают:

  • достоверное событие гарантированно происходит в результате опыта Р(Ω) = 1;
  • невозможное событие никогда не может произойти Р(Ø) = 0;
  • случайное событие лежит между достоверным и невозможным, то есть вероятность его появления возможна, но не гарантирована (вероятность случайного события всегда в пределах 0≤Р(А)≤ 1).

Отношения между событиями

Рассматривают как одно, так и сумму событий А+В, когда событие засчитывается при осуществлении хотя бы одного из составляющих, А или В, или обоих - А и В.

По отношению друг к другу события могут быть:

  • Равновозможными.
  • Совместимыми.
  • Несовместимыми.
  • Противоположными (взаимоисключающими).
  • Зависимыми.

Если два события могут произойти с равной вероятностью, то они равновозможные .

Если появление события А не сводит к нулю вероятность появление события B, то они совместимые.

Если события А и В никогда не происходят одновременно в одном и том же опыте, то их называют несовместимыми . Бросание монеты - хороший пример: появление решки - это автоматически непоявление орла.

Вероятность для суммы таких несовместимых событий состоит из суммы вероятностей каждого из событий:

Р(А+В)=Р(А)+Р(В)

Если наступление одного события делает невозможным наступление другого, то их называют противоположными. Тогда одно из них обозначают как А, а другое - Ā (читается как «не А»). Появление события А означает, что Ā не произошло. Эти два события формируют полную группу с суммой вероятностей, равной 1.

Зависящие события имеют взаимное влияние, уменьшая или увеличивая вероятность друг друга.

Отношения между событиями. Примеры

На примерах гораздо проще понять принципы теории вероятностей и комбинации событий.

Опыт, который будет проводиться, заключается в вытаскивании шариков из ящика, а результата каждого опыта - элементарный исход.

Событие - это один из возможных исходов опыта - красный шар, синий шар, шар с номером шесть и т. д.

Испытание №1. Участвуют 6 шаров, три из которых окрашены в синий цвет, на них нанесены нечетные цифры, а три других - красные с четными цифрами.

Испытание №2. Участвуют 6 шаров синего цвета с цифрами от одного до шести.

Исходя из этого примера, можно назвать комбинации:

  • Достоверное событие. В исп. №2 событие «достать синий шар» достоверное, поскольку вероятность его появления равна 1, так как все шары синие и промаха быть не может. Тогда как событие «достать шар с цифрой 1» - случайное.
  • Невозможное событие. В исп. №1 с синими и красными шарами событие «достать фиолетовый шар» невозможное, поскольку вероятность его появления равна 0.
  • Равновозможные события. В исп. №1 события «достать шар с цифрой 2» и «достать шар с цифрой 3» равновозможные, а события «достать шар с четным числом» и «достать шар с цифрой 2» имеют разную вероятность.
  • Совместимые события. Два раза подряд получить шестерку в процессе бросания игральной кости - это совместимые события.
  • Несовместимые события. В том же исп. №1 события «достать красный шар» и «достать шар с нечетным числом» не могут быть совмещены в одном и том же опыте.
  • Противоположные события. Наиболее яркий пример этого - подбрасывание монет, когда вытягивание орла равносильно невытягиванию решки, а сумма их вероятностей - это всегда 1 (полная группа).
  • Зависимые события . Так, в исп. №1 можно задаться целью извлечь два раза подряд красный шар. Его извлечение или неизвлечение в первый раз влияет на вероятность извлечения во второй раз.

Видно, что первое событие существенно влияет на вероятность второго (40% и 60%).

Формула вероятности события

Переход от гадательных размышлений к точным данным происходит посредством перевода темы в математическую плоскость. То есть суждения о случайном событии вроде "большая вероятность" или "минимальная вероятность" можно перевести к конкретным числовым данным. Такой материал уже допустимо оценивать, сравнивать и вводить в более сложные расчеты.

С точки зрения расчета, определение вероятности события - это отношение количества элементарных положительных исходов к количеству всех возможных исходов опыта относительно определенного события. Обозначается вероятность через Р(А), где Р означает слово «probabilite», что с французского переводится как «вероятность».

Итак, формула вероятности события:

Где m - количество благоприятных исходов для события А, n - сумма всех исходов, возможных для этого опыта. При этом вероятность события всегда лежит между 0 и 1:

0 ≤ Р(А)≤ 1.

Расчет вероятности события. Пример

Возьмем исп. №1 с шарами, которое описано ранее: 3 синих шара с цифрами 1/3/5 и 3 красных с цифрами 2/4/6.

На основании этого испытания можно рассматривать несколько разных задач:

  • A - выпадение красного шара. Красных шаров 3, а всего вариантов 6. Это простейший пример, в котором вероятность события равна Р(А)=3/6=0,5.
  • B - выпадение четного числа. Всего четных чисел 3 (2,4,6), а общее количество возможных числовых вариантов - 6. Вероятность этого события равна Р(B)=3/6=0,5.
  • C - выпадение числа, большего, чем 2. Всего таких вариантов 4 (3,4,5,6) из общего количества возможных исходов 6. Вероятность события С равна Р(С)=4/6=0,67.

Как видно из расчетов, событие С имеет большую вероятность, поскольку количество вероятных положительных исходов выше, чем в А и В.

Несовместные события

Такие события не могут одновременно появиться в одном и том же опыте. Как в исп. №1 невозможно одновременно достать синий и красный шар. То есть можно достать либо синий, либо красный шар. Точно так же в игральной кости не могут одновременно появиться четное и нечетное число.

Вероятность двух событий рассматривается как вероятность их суммы или произведения. Суммой таких событий А+В считается такое событие, которое состоит в появлении события А или В, а произведение их АВ - в появлении обоих. Например, появление двух шестерок сразу на гранях двух кубиков в одном броске.

Сумма нескольких событий являет собой событие, предполагающее появление, по крайней мере, одного из них. Произведение нескольких событий - это совместное появление их всех.

В теории вероятности, как правило, употребление союза "и" обозначает сумму, союза "или" - умножение. Формулы с примерами помогут понять логику сложения и умножения в теории вероятностей.

Вероятность суммы несовместных событий

Если рассматривается вероятность несовместных событий, то вероятность суммы событий равна сложению их вероятностей:

Р(А+В)=Р(А)+Р(В)

Например: вычислим вероятность того, что в исп. №1 с синими и красными шарами выпадет число между 1 и 4. Рассчитаем не в одно действие, а суммой вероятностей элементарных составляющих. Итак, в таком опыте всего 6 шаров или 6 всех возможных исходов. Цифры, которые удовлетворяют условие, - 2 и 3. Вероятность выпадения цифры 2 составляет 1/6, вероятность цифра 3 также 1/6. Вероятность того, что выпадет цифра между 1 и 4 равна:

Вероятность суммы несовместимых событий полной группы равна 1.

Так, если в опыте с кубиком сложить вероятности выпадения всех цифр, то в результате получим единицу.

Также это справедливо для противоположных событий, например в опыте с монетой, где одна ее сторона - это событие А, а другая - противоположное событие Ā, как известно,

Р(А) + Р(Ā) = 1

Вероятность произведения несовместных событий

Умножение вероятностей применяют, когда рассматривают появление двух и более несовместных событий в одном наблюдении. Вероятность того, что в нем появятся события A и B одновременно, равна произведению их вероятностей, или:

Р(А*В)=Р(А)*Р(В)

Например, вероятность того, что в исп. №1 в результате двух попыток два раза появится синий шар, равна

То есть вероятность наступления события, когда в результате двух попыток с извлечением шаров будет извлечены только синие шары, равна 25%. Очень легко проделать практические эксперименты этой задачи и увидеть, так ли это на самом деле.

Совместные события

События считаются совместными, когда появление одного из них может совпасть с появлением другого. Несмотря на то что они совместные, рассматривается вероятность независимых событий. К примеру, бросание двух игральных костей может дать результат, когда на обеих из них выпадает цифра 6. Хотя события совпали и появились одновременно, они независимы друг от друга - могла выпасть всего одна шестерка, вторая кость на нее влияния не имеет.

Вероятность совместных событий рассматривают как вероятность их суммы.

Вероятность суммы совместных событий. Пример

Вероятность суммы событий А и В, которые по отношению к друг другу совместные, равняется сумме вероятностей события за вычетом вероятности их произведения (то есть их совместного осуществления):

Р совместн. (А+В)=Р(А)+Р(В)- Р(АВ)

Допустим, что вероятность попадания в мишень одним выстрелом равна 0,4. Тогда событие А - попадание в мишень в первой попытке, В - во второй. Эти события совместные, поскольку не исключено, что можно поразить мишень и с первого, и со второго выстрела. Но события не являются зависимыми. Какова вероятность наступления события поражения мишени с двух выстрелов (хотя бы с одного)? Согласно формуле:

0,4+0,4-0,4*0,4=0,64

Ответ на вопрос следующий: "Вероятность попасть в цель с двух выстрелов равна 64%".

Эта формула вероятности события может быть применима и к несовместным событиям, где вероятность совместно появления события Р(АВ) = 0. Это значит, что вероятность суммы несовместных событий можно считать частным случаем предложенной формулы.

Геометрия вероятности для наглядности

Интересно, что вероятность суммы совместных событий может быть представлена в виде двух областей А и В, которые пересекаются между собой. Как видно из картинки, площадь их объединения равна общей площади за минусом области их пересечения. Это геометрическое пояснения делают более понятной нелогичную на первый взгляд формулу. Отметим, что геометрические решения - не редкость в теории вероятностей.

Определение вероятности суммы множества (больше двух) совместных событий довольно громоздкое. Чтобы вычислить ее, нужно воспользоваться формулами, которые предусмотрены для этих случаев.

Зависимые события

Зависимыми события называются в случае, если наступление одного (А) из них влияет на вероятность наступления другого (В). Причем учитывается влияние как появления события А, так и его непоявление. Хотя события и называются зависимыми по определению, но зависимо лишь одно из них (В). Обычная вероятность обозначалась как Р(В) или вероятность независимых событий. В случае с зависимыми вводится новое понятие - условная вероятность Р A (В) , которая является вероятностью зависимого события В при условии произошедшего события А (гипотезы), от которого оно зависит.

Но ведь событие А тоже случайно, поэтому у него также есть вероятность, которую нужно и можно учитывать в осуществляемых расчетах. Далее на примере будет показано, как работать с зависимыми событиями и гипотезой.

Пример расчета вероятности зависимых событий

Хорошим примером для расчета зависимых событий может стать стандартная колода карт.

На примере колоды в 36 карт рассмотрим зависимые события. Нужно определить вероятность того, что вторая карта, извлеченная из колоды, будет бубновой масти, если первая извлеченная:

  1. Бубновая.
  2. Другой масти.

Очевидно, что вероятность второго события В зависит от первого А. Так, если справедлив первый вариант, что в колоде стало на 1 карту (35) и на 1 бубну (8) меньше, вероятность события В:

Р A (В) =8/35=0,23

Если же справедлив второй вариант, то в колоде стало 35 карт, и по-прежнему сохранилось полное число бубен (9), тогда вероятность следующего события В:

Р A (В) =9/35=0,26.

Видно, что если событие А условлено в том, что первая карта - бубна, то вероятность события В уменьшается, и наоборот.

Умножение зависимых событий

Руководствуясь предыдущей главой, мы принимаем первое событие (А) как факт, но если говорить по сути, оно имеет случайный характер. Вероятность этого события, а именно извлечение бубны из колоды карт, равна:

Р(А) = 9/36=1/4

Поскольку теория не существует сама по себе, а призвана служить в практических целях, то справедливо отметить, что чаще всего нужна вероятность произведения зависимых событий.

Согласно теореме о произведении вероятностей зависимых событий, вероятность появления совместно зависимых событий А и В равна вероятности одного события А, умноженная на условную вероятность события В (зависимого от А):

Р(АВ) = Р (А) *Р A (В)

Тогда в примере с колодой вероятность извлечения двух карт с мастью бубны равна:

9/36*8/35=0,0571, или 5,7%

И вероятность извлечения вначале не бубны, а потом бубны, равна:

27/36*9/35=0,19, или 19%

Видно, что вероятность появления события В больше при условии, что первой извлекается карта масти, отличной от бубны. Такой результат вполне логичный и понятный.

Полная вероятность события

Когда задача с условными вероятностями становится многогранной, то обычными методами ее вычислить нельзя. Когда гипотез больше двух, а именно А1,А2,…,А n , ..образует полную группу событий при условии:

  • P(A i)>0, i=1,2,…
  • A i ∩ A j =Ø,i≠j.
  • Σ k A k =Ω.

Итак, формула полной вероятности для события В при полной группе случайных событий А1,А2,…,А n равна:

Взгляд в будущее

Вероятность случайного события крайне необходима во многих сферах науки: эконометрике, статистике, в физике и т. д. Поскольку некоторые процессы невозможно описать детерминировано, так как они сами имеют вероятностный характер, необходимы особые методы работы. Теория вероятности события может быть использована в любой технологичной сфере как способ определить возможность ошибки или неисправности.

Можно сказать, что, узнавая вероятность, мы некоторым образом делаем теоретический шаг в будущее, разглядывая его через призму формул.

Глава I . СЛУЧАЙНЫЕ СОБЫТИЯ. ВЕРОЯТНОСТЬ

1.1. Закономерность и случайность, случайная изменчивость в точных науках, в биологии и медицине

Теория вероятностей – область математики, изучающая закономерности в случайных явлениях. Случайное явление – это явление, которое при неоднократном воспроизведении одного и того же опыта может протекать каждый раз несколько по-иному.

Очевидно, что в природе нет ни одного явления, в котором не присутствовали бы в той или иной мере элементы случайности, но в различных ситуациях мы учитываем их по-разному. Так, в ряде практических задач ими можно пренебречь и рассматривать вместо реального явления его упрощенную схему – «модель», предполагая, что в данных условиях опыта явление протекает вполне определенным образом. При этом выделяются самые главные, решающие факторы, характеризующие явление. Именно такая схема изучения явлений чаще всего применяется в физике, технике, механике; именно так выявляется основная закономерность, свойственная данному явлению и дающая возможность предсказать результат опыта по заданным исходным условиям. А влияние случайных, второстепенных, факторов на результат опыта учитывается здесь случайными ошибками измерений (методику их расчета рассмотрим далее).

Однако описанная классическая схема так называемых точных наук плохо приспособлена для решения многих задач, в которых многочисленные, тесно переплетающиеся между собой случайные факторы играют заметную (часто определяющую) роль. Здесь на первый план выступает случайная природа явления, которой уже нельзя пренебречь. Это явление необходимо изучать именно с точки зрения закономерностей, присущих ему как случайному явлению. В физике примерами таких явлений являются броуновское движение, радиоактивный распад, ряд квантово-механических процессов и др.

Предмет изучения биологов и медиков – живой организм, зарождение, развитие и существование которого определяется очень многими и разнообразными, часто случайными внешними и внутренними факторами. Именно поэтому явления и события живого мира во многом тоже случайны по своей природе.

Элементы неопределенности, сложности, многопричинности, присущие случайным явлениям, обусловливают необходимость создания специальных математических методов для изучения этих явлений. Разработка таких методов, установление специфических закономерностей, свойственных случайным явлениям, –главные задачи теории вероятностей. Характерно, что эти закономерности выполняются лишь при массовости случайных явлений. Причем индивидуальные особенности отдельных случаев как бы взаимно погашаются, а усредненный результат для массы случайных явлений оказывается уже не случайным, а вполне закономерным. В значительной мере данное обстоятельство явилось причиной широкого распространения вероятностных методов исследования в биологии и медицине.

Рассмотрим основные понятия теории вероятностей.

1.2. Вероятность случайного события

Каждая наука, развивающая общую теорию какого-либо круга явлений, базируется на ряде основных понятий. Например, в геометрии – это понятия точки, прямой линии; в механике – понятия силы, массы, скорости и т. д. Основные понятия существуют и в теории вероятностей, одно из них – случайное событие.

Случайное событие – это всякое явление (факт), которое в результате опыта (испытания) может произойти или не произойти.

Случайные события обозначаются буквами А, В, С … и т. д. Приведем несколько примеров случайных событий:

А –выпадение орла (герба) при подбрасывании стандартной монеты;

В – рождение девочки в данной семье;

С – рождение ребенка с заранее заданной массой тела;

D – возникновение эпидемического заболевания в данном регионе в определенный период времени и т. д.

Основной количественной характеристикой случайного события является его вероятность. Пусть А – какое-то случайное событие. Вероятность случайного события А – это математическая величина, которая определяет возможность его появления. Она обозначается Р (А ).

Рассмотрим два основных метода определения данной величины.

Классическое определение вероятности случайного события обычно базируется на результатах анализа умозрительных опытов (испытаний), суть которых определяется условием поставленной задачи. При этом вероятность случайного события Р(А) равна:

где m – число случаев, благоприятствующих появлению события А ; n – общее число равновозможных случаев.

Пример 1. Лабораторная крыса помещена в лабиринт, в котором лишь один из четырех возможных путей ведет к поощрению в виде пищи. Определите вероятность выбора крысой такого пути.

Решение : по условию задачи из четырех равновозможных случаев (n =4) событию А (крыса находит пищу)
благоприятствует только один, т. е. m = 1 Тогда Р (А ) = Р (крыса находит пищу) = = 0,25= 25%.

Пример 2. В урне 20 черных и 80 белых шаров. Из нее наугад вынимается один шар. Определите вероятность того, что этот шар будет черным.

Решение : количество всех шаров в урне – это общее число равновозможных случаев n , т. е. n = 20 + 80 = 100, из них событие А (извлечение черного шара) возможно лишь в 20, т. е. m = 20. Тогда Р (А ) = Р (ч. ш.) = = 0,2 = 20%.

Перечислим свойства вероятности следующие из ее классического определения – формула (1):

1. Вероятность случайного события – величина безразмерная.

2. Вероятность случайного события всегда положительна и меньше единицы, т. е. 0 < P (A ) < 1.

3. Вероятность достоверного события, т. е. события, которое в результате опыта обязательно произойдет (m = n ), равна единице.

4. Вероятность невозможного события (m = 0) равна нулю.

5. Вероятность любого события – величина не отрицательная и не превышающая единицу:
0 £ P (A ) £ 1.

Статистическое определение вероятности случайного события применяется тогда, когда невозможно использоватьклассическое определение (1). Это часто имеет место в биологии и медицине. В таком случае вероятность Р (А ) определяют путем обобщения результатов реально проведенных серий испытаний (опытов).

Введем понятие относительной частоты появления случайного события. Пусть была проведена серия, состоящая из N опытов (число N может быть выбрано заранее); интересующее нас событие А произошло в М из них (M < N ). Отношение числа опытов М , в которых произошло это событие, к общему числу проведенных опытов N называют относительной частотой появления случайного события А в данной серии опытов – Р * (А )

Р* (А ) = .

Экспериментально установлено, что если серии испытаний (опытов) проводятся в одинаковых условиях и в каждой из них число N достаточно велико, то относительная частота обнаруживает свойство устойчивости: от серии к серии она меняется мало, приближаясь c увеличением числа опытов к некоторой постоянной величине. Ее и принимают за статистическую вероятность случайного события А :

Р (А) = lim , при N , (2)

Итак, статистической вероятностью Р (А ) случайного события А называют предел, к которому стремится относительная частота появления этого события при неограниченном возрастании числа испытаний (при N → ∞).

Приближенно статистическая вероятность случайного события равна относительной частоте появления этого события при большом числе испытаний:

Р (А ) ≈ Р* (А ) = (при больших N ) (3)

Например, в опытах по бросанию монеты относительная частота выпадения герба при 12000 бросаний оказалась равной 0,5016, а при 24000 бросаний – 0,5005. В соответствии с формулой (1):

P (герб) = = 0,5 = 50%

Пример. При врачебном обследовании 500 человек у 5 из них обнаружили опухоль в легких (о. л.). Определите относительную частоту и вероятность этого заболевания.

Решение : по условию задачи М = 5, N = 500, относительная частота Р *(о. л.) = М /N = 5/500 = 0,01; поскольку N достаточно велико, можно с хорошей точностью считать, что вероятность наличия опухоли в легких равна относительной частоте этого события:

Р (о. л.) = Р *(о. л.) = 0,01 = 1%.

Перечисленные ранее свойства вероятности случайного события сохраняются и при статистическом определении данной величины.

1.3. Виды случайных событий. Основные теоремы теории вероятностей

Все случайные события можно разделить на:

¾ несовместные;

¾ независимые;

¾ зависимые.

Для каждого вида событий характерны свои особенности и теоремы теории вероятностей.

1.3.1. Несовместные случайные события. Теорема сложения вероятностей

Случайные события (А, В, С, D …) называются несовместными, если появление одного из них исключает появление других событий в одном и том же испытании.

Пример1. Подброшена монета. При ее падении появление «герба» исключает появление «решки» (надписи, определяющей цену монеты). События «выпал герб» и «выпала решка» несовместные.

Пример 2. Получение студентом на одном экзамене оценки «2», или «3», или «4», или «5» – события несовместные, так как одна из этих оценок исключает другую на том же экзамене.

Для несовместных случайных событий выполняется теорема сложения вероятностей: вероятность появления одного, но все равно какого, из нескольких несовместных событий А1, А2, А3 … А k равна сумме их вероятностей:

Р(А1или А2 … или А k ) = Р(А1) + Р(А2) + …+ Р(А k ). (4)

Пример 3. В урне находится 50 шаров: 20 белых, 20 черных и 10 красных. Найдите вероятность появления белого (событие А ) или красного шара (событие В ), когда шар наугад достают из урны.

Решение: Р (А или В ) = Р (А ) + Р (В );

Р (А ) = 20/50 = 0,4;

Р (В ) = 10/50 = 0,2;

Р (А или В ) = Р (б. ш. или к. ш.) = 0,4 + 0,2 = 0,6 = 60%.

Пример 4. В классе 40 детей. Из них в возрасте от 7 до 7,5 лет 8 мальчиков (А ) и 10 девочек (В ). Найдите вероятность присутствия в классе детей такого возраста.

Решение: Р (А ) = 8/40 = 0,2; Р (В ) = 10/40 = 0,25.

Р(А или В) = 0,2 + 0,25 = 0,45 = 45%

Следующее важное понятие – полная группа событий: несколько несовместных событий образуют полную группу событий, если в результате каждого испытания может появляться только одно из событий этой группы и никакое другое.

Пример 5. Стрелок произвел выстрел по мишени. Обязательно произойдет одно из следующих событий: попадание в «десятку», в «девятку», в «восьмерку»,.. ,в «единицу» или промах. Эти 11 несовместных событий образуют полную группу.

Пример 6. На экзамене в Вузе студент может получить одну из следующих четырех оценок: 2, 3, 4 или 5. Эти четыре несовместных события также образуют полную группу.

Если несовместные события А1, А2 … А k образуют полную группу, то сумма вероятностей этих событий всегда равна единице:

Р (А1 ) + Р (А2 )+ … Р (А k ) = 1, (5)

Это утверждение часто используется при решении многих прикладных задач.

Если два события единственно возможны и несовместны, то их называют противоположными и обозначают А и . Такие события составляют полную группу, поэтому сумма их вероятностей всегда равна единице:

Р (А ) + Р () = 1. (6)

Пример 7. Пусть Р (А ) – вероятность летального исхода при некотором заболевании; она известна и равна 2%. Тогда вероятность благополучного исхода при этом заболевании равна 98% (Р () = 1 – Р (А ) = 0,98), так как Р (А ) + Р () = 1.

1.3.2. Независимые случайные события. Теорема умножения вероятностей

Случайные события называются независимыми, если появление одного из них никак не влияет на вероятность появления других событий.

Пример 1. Если есть две или более урны с цветными шарами, то извлечение какого-либо шара из одной урны никак не повлияет на вероятность извлечения других шаров из оставшихся урн.

Для независимых событий справедлива теорема умножения вероятностей: вероятность совместного (одновременного ) появления нескольких независимых случайных событий равна произведению их вероятностей:

Р(А1и А2 и А3 … и А k ) = Р(А1) ∙Р(А2) ∙…∙Р(А k ). (7)

Совместное (одновременное) появление событий означает, что происходят события и А1, и А2 , и А3 … и А k .

Пример 2. Есть две урны. В одной находится 2 черных и 8 белых шаров, в другой – 6 черных и 4 белых. Пусть событие А –выбор наугад белого шара из первой урны, В – из второй. Какова вероятность выбрать наугад одновременно из этих урн по белому шару, т. е. чему равна Р (А и В )?

Решение: вероятность достать белый шар из первой урны
Р (А ) = = 0,8 из второй – Р (В ) = = 0,4. Вероятность одновременно достать по белому шару из обеих урн –
Р (А и В ) = Р (А Р (В ) = 0,8∙ 0,4 = 0,32 = 32%.

Пример 3. Рацион с пониженным содержанием йода вызывает увеличение щитовидной железы у 60% животных большой популяции. Для эксперимента нужны 4 увеличенных железы. Найдите вероятность того, что у 4 случайно выбранных животных будет увеличенная щитовидная железа.

Решение : Случайное событие А – выбор наугад животного с увеличенной щитовидной железой. По условию задачи вероятность этого события Р (А ) = 0,6 = 60%. Тогда вероятность совместного появления четырех независимых событий – выбор наугад 4 животных с увеличенной щитовидной железой – будет равна:

Р (А 1 и А 2 и А 3 и А 4) = 0,6 ∙ 0,6 ∙0,6 ∙ 0,6=(0,6)4 ≈ 0,13 = 13%.

1.3.3. Зависимые события. Теорема умножения вероятностей для зависимых событий

Случайные события А и В называются зависимыми, если появление одного из них, например, А изменяет вероятность появления другого события – В. Поэтому для зависимых событий используются два значения вероятности: безусловная и условная вероятности.

Если А и В зависимые события, то вероятность наступления события В первым (т. е. до события А ) называется безусловной вероятностью этого события и обозначается Р (В ). Вероятность наступления события В при условии, что событие А уже произошло, называется условной вероятностью события В и обозначается Р (В /А ) или РА (В).

Аналогичный смысл имеют безусловная – Р (А ) и условная – Р (А/В ) вероятности для события А.

Теорема умножения вероятностей для двух зависимых событий: вероятность одновременного наступления двух зависимых событий А и В равна произведению безусловной вероятности первого события на условную вероятность второго:

Р (А и В ) = Р (А ) ∙Р (В/А ) , (8)

А , или

Р (А и В ) = Р (В ) ∙Р (А/В), (9)

если первым наступает событие В .

Пример 1. В урне 3 черных шара и 7 белых. Найдите вероятность того, что из этой урны один за другим (причем первый шар не возвращают в урну) будут вынуты 2 белых шара.

Решение : вероятность достать первый белый шар (событие А ) равна 7/10. После того как он вынут, в урне остается 9 шаров, из них 6 белых. Тогда вероятность появления второго белого шара (событие В ) равна Р (В /А ) = 6/9, а вероятность достать подряд два белых шара равна

Р (А и В ) = Р (А )∙Р (В /А ) = = 0,47 = 47%.

Приведенная теорема умножения вероятностей для зависимых событий допускает обобщение на любое количество событий. В частности, для трех событий, связанных друг с другом:

Р (А и В и С ) = Р (А ) ∙ Р (В/А ) ∙ Р (С/АВ ). (10)

Пример 2. В двух детских садах, каждый из которых посещает по 100 детей, произошла вспышка инфекционного заболевания. Доли заболевших составляют соответственно 1/5 и 1/4, причем в первом учреждении 70 %, а во втором – 60 % заболевших – дети младше 3-х лет. Случайным образом выбирают одного ребенка. Определите вероятность того, что:

1) выбранный ребенок относится к первому детскому саду (событие А ) и болен (событие В ).

2) выбран ребенок из второго детского сада (событие С ), болен (событие D ) и старше 3-х лет (событие Е ).

Решение . 1) искомая вероятность –

Р (А и В ) = Р (А ) ∙ Р (В /А ) = = 0,1 = 10%.

2) искомая вероятность:

Р (С и D и Е ) = Р (С ) ∙ Р (D /C ) ∙ Р (Е /CD ) = = 5%.

1.4. Формула Байеса

Если вероятность совместного появления зависимых событий А и В не зависит от того, в каком порядке они происходят, то Р (А и В ) = Р (А ) ∙Р (В/А ) = Р (В ) × Р (А/В ). В этом случае условную вероятность одного из событий можно найти, зная вероятности обоих событий и условную вероятность второго:

Р (В/А ) = (11)

Обобщением данной формулы на случай многих событий является формула Байеса.

Пусть «n » несовместных случайных событий Н1, Н2, …, Н n , образуют полную группу событий. Вероятности этих событий – Р (Н1 ), Р (Н2 ), …, Р (Н n ) известны и так как они образуют полную группу, то = 1.

Некоторое случайное событие А связано с событиями Н1, Н2, …, Н n , причем известны условные вероятности появления события А с каждым из событий Н i , т. е. известны Р (А/Н1 ), Р (А/Н2 ), …, Р (А/Н n ). При этом сумма условных вероятностей Р (А/Н i ) может быть не равна единице т. е. ≠ 1.

Тогда условная вероятность появления события Н i при реализации события А (т. е. при условии, что событие А произошло) определяется формулой Байеса:

Причем для этих условных вероятностей .

Формула Байеса нашла широкое применение не только в математике, но и в медицине. Например, она используется для вычисления вероятностей тех или иных заболеваний. Так, если Н 1,…, Н n – предполагаемые диагнозы для данного пациента, А – некоторый признак, имеющий отношение к ним (симптом, определенный показатель анализа крови, мочи, деталь рентгенограммы и т. д.), а условные вероятности Р (А/Н i ) проявления этого признака при каждом диагнозе Н i (i = 1,2,3,…n ) заранее известны, то формула Байеса (12) позволяет вычислить условные вероятности заболеваний (диагнозов) Р (Н i ) после того как установлено, что характерный признак А присутствует у пациента.

Пример1. При первичном осмотре больного предполагаются 3 диагноза Н 1, Н 2, Н 3. Их вероятности, по мнению врача, распределяются так: Р (Н 1) = 0,5; Р (Н 2) = 0,17; Р (Н 3) = 0,33. Следовательно, предварительно наиболее вероятным кажется первый диагноз. Для его уточнения назначается, например, анализ крови, в котором ожидается увеличение СОЭ (событие А ). Заранее известно (на основании результатов исследований), что вероятности увеличения СОЭ при предполагаемых заболеваниях равны:

Р (А /Н 1) = 0,1; Р (А /Н 2) = 0,2; Р (А /Н 3) = 0,9.

В полученном анализе зафиксировано увеличение СОЭ (событие А произошло). Тогда расчет по формуле Байеса (12) дает значения вероятностей предполагаемых заболеваний при увеличенном значении СОЭ: Р (Н 1/А ) = 0,13; Р (Н 2/А ) = 0,09;
Р (Н 3/А ) = 0,78. Эти цифры показывают, что с учетом лабораторных данных наиболее реален не первый, а третий диагноз, вероятность которого теперь оказалась достаточно большой.

Приведенный пример – простейшая иллюстрация того, как с помощью формулы Байеса можно формализовать логику врача при постановке диагноза и благодаря этому создать методы компьютерной диагностики.

Пример 2. Определите вероятность, оценивающую степень риска перинатальной* смертности ребенка у женщин с анатомически узким тазом.

Решение : пусть событие Н 1 – благополучные роды. По данным клинических отчетов, Р (Н 1) = 0,975 = 97,5 %, тогда, если Н2 – факт перинатальной смертности, то Р (Н 2) = 1 – 0,975 = 0,025 = 2,5 %.

Обозначим А – факт наличия узкого таза у роженицы. Из проведенных исследований известны: а) Р (А /Н 1) – вероятность узкого таза при благоприятных родах, Р (А /Н 1) = 0,029, б) Р (А /Н 2) – вероятность узкого таза при перинатальной смертности,
Р (А /Н 2) = 0,051. Тогда искомая вероятность перинатальной смертности при узком тазе у роженицы рассчитывается по формуле Байса (12) и равна:


Таким образом, риск перинатальной смертности при анатомически узком тазе значительно выше (почти вдвое) среднего риска (4,4 % против 2,5 %).

Подобные расчеты, обычно выполняемые с помощью компьютера, лежат в основе методов формирования групп пациентов повышенного риска, связанного с наличием того или иного отягощающего фактора.

Формула Байеса очень полезна для оценки многих других медико-биологических ситуаций, что станет очевидным при решении приведенных в пособии задач.

1.5. О случайных событиях с вероятностями близкими к 0 или к 1

При решении многих практических задач приходится иметь дело с событиями, вероятность которых очень мала, т. е. близка к нулю. На основании опыта в отношении таких событий принят следующий принцип. Если случайное событие имеет очень малую вероятность, то практически можно считать, что в единичном испытании оно не наступит, иначе говоря, возможностью его появления можно пренебречь. Ответ на вопрос, насколько малой должна быть эта вероятность, определяется существом решаемых задач, тем, насколько важен для нас результат предсказания. Например, если вероятность того, что парашют при прыжке не раскроется равна 0,01, то применение таких парашютов недопустимо. Однако равная той же 0,01 вероятность того, что поезд дальнего следования прибудет с опозданием, делает нас практически уверенными в том, что он прибудет вовремя.

Достаточно малую вероятность, при которой (в данной конкретной задаче) событие можно считать практически невозможным, называют уровнем значимости. На практике уровень значимости обычно принимают равным 0,01 (однопроцентный уровень значимости) или 0,05 (пятипроцентный уровень значимости), намного реже он берется равным 0,001.

Введение уровня значимости позволяет утверждать, что если некоторое событие А практически невозможно, то противоположное событие - практически достоверно, т. е. для него Р () » 1.

Глава II . СЛУЧАЙНЫЕ ВЕЛИЧИНЫ

2.1. Случайные величины, их виды

В математике величина – это общее название различных количественных характеристик предметов и явлений. Длина, площадь, температура, давление и т. д. – примеры разных величин.

Величина, которая принимает различные числовые значения под влиянием случайных обстоятельств, называется случайной величиной . Примеры случайных величин: число больных на приеме у врача; точные размеры внутренних органов людей и т. д.

Различают дискретные и непрерывные случайные величины.

Случайная величина называется дискретной, если она принимает только определенные отделенные друг от друга значения, которые можно установить и перечислить.

Примерами дискретной случайной величиной являются:

– число студентов в аудитории – может быть только целым положительным числом: 0,1,2,3,4….. 20…..;

– цифра, которая появляется на верхней грани при бросании игральной кости – может принимать лишь целые значения от 1 до 6;

– относительная частота попадания в цель при 10 выстрелах – ее значения: 0; 0,1; 0,2; 0,3 …1

– число событий, происходящих за одинаковые промежутки времени: частота пульса, число вызовов скорой помощи за час, количество операций в месяц с летальным исходом и т. д.

Случайная величина называется непрерывной, если она может принимать любые значения внутри определенного интервала, который иногда имеет резко выраженные границы, а иногда – нет *. К непрерывным случайным величинам относятся, например, масса тела и рост взрослых людей, масса тела и объем мозга, количественное содержание ферментов у здоровых людей, размеры форменных элементов крови, р Н крови и т. п.

Понятие случайной величины играет определяющую роль в современной теории вероятностей, разработавшей специальные приемы перехода от случайных событий к случайным величинам.

Если случайная величина зависит от времени, то можно говорить о случайном процессе.

2.2. Закон распределения дискретной случайной величины

Чтобы дать полную характеристику дискретной случайной величины необходимо указать все ее возможные значения и их вероятности.

Соответствие между возможными значениями дискретной случайной величины и их вероятностями называется законом распределения этой величины.

Обозначим возможные значения случайной величины Х через х i , а соответствующие им вероятности – через р i *. Тогда закон распределения дискретной случайной величины можно задать тремя способами: в виде таблицы, графика или формулы.

В таблице, которая называется рядом распределения, перечисляются все возможные значения дискретной случайной величины Х и соответствующие этим значениям вероятности Р (Х ):

Х

…..

…..

P (X )

…..

…..

При этом сумма всех вероятностей р i должна быть равна единице (условие нормировки):

р i = p 1 + p 2 + ... + pn = 1. (13)

Графически закон представляется ломаной линией, которую принято называть многоугольником распределения (рис.1). Здесь по горизонтальной оси откладывают все возможные значения случайной величины х i , , а по вертикальной оси – соответствующие им вероятности р i

Аналитически закон выражается формулой. Например, если вероятность попадания в цель при одном выстреле равна р, то вероятность поражения цели 1 раз при n выстрелах дается формулой Р (n ) = n qn -1 × p , где q = 1 – р – вероятность промаха при одном выстреле.

2.3. Закон распределения непрерывной случайной величины. Плотность распределения вероятности

Для непрерывных случайных величин невозможно применить закон распределения в формах, приведенных выше, поскольку такая величина имеет бесчисленное («несчетное») множество возможных значений, сплошь заполняющих некоторый интервал. Поэтому составить таблицу, в которой были бы перечислены все ее возможные значения, или построить многоугольник распределения нельзя. Кроме того, вероятность какого-либо ее конкретного значения очень мала (близка к 0)*. Вместе с тем различные области (интервалы) возможных значений непрерывной случайной величины не равновероятны. Таким образом, и в данном случае действует некий закон распределения, хотя и не в прежнем смысле.

Рассмотрим непрерывную случайную величину Х , возможные значения которой сплошь заполняют некий интервал , b )**. Закон распределения вероятностей такой величины должен позволить найти вероятность попадания ее значения в любой заданный интервал (х1, х2 ), лежащий внутри (а, b ), рис.2.

Эту вероятность обозначают Р (х1 < Х < х2 ), или
Р (х1 £ Х £ х2 ).

Рассмотрим сначала очень малый интервал значений Х – от х до (х + D х ); см. рис.2. Малая вероятность d Р того, что случайная величина Х примет какое-то значение из интервала (х, х + D х ), будет пропорциональна величине данного интервала D х: d Р ~ D х , или, введя коэффициент пропорциональности f , который сам может зависеть от х , получим:

d Р = f (х ) × Dх = f (x ) × dx (14)

Введенная здесь функция f (х ) называется плотностью распределения вероятностей случайной величины Х, или, короче, плотностью вероятности , плотностью распределения . Уравнение (13) – дифференциальное уравнение, решение которого дает вероятность попадания величины Х в интервал (х1 , х2) :

Р (х1 < Х < х2 ) = f (х ) d х. (15)

Графически вероятность Р (х1 < Х < х2 ) равна площади криволинейной трапеции, ограниченной осью абсцисс, кривой f (х ) и прямыми Х = х1 и Х = х2 (рис.3). Это следует из геометрического смысла определенного интеграла (15) Кривая f (х ) при этом называется кривой распределения.

Из (15) следует, что если известна функция f (х ), то, изменяя пределы интегрирования, можно найти вероятность для любых интересующих нас интервалов. Поэтому именно задание функции f (х ) полностью определяет закон распределения для непрерывных случайных величин.

Для плотности вероятности f (х ) должно выполняться условие нормировки в виде:

f (х ) d х = 1, (16)

если известно, что все значения Х лежат в интервале (а, b ), или в виде:

f (х ) d х = 1 , (17)

если границы интервала для значений Х точно неопределенны. Условия нормировки плотности вероятности (16) или (17) являются следствием того, что значения случайной величины Х достоверно лежат в пределах (а, b ) или (-¥, +¥). Из (16) и (17) следует, что площадь фигуры, ограниченной кривой распределения и осью абсцисс, всегда равна 1.

2.4. Основные числовые характеристики случайных величин

Результаты, изложенные в параграфах 2.2 и 2.3, показывают, что полную характеристику дискретной и непрерывной случайных величин можно получить, зная законы их распределения. Однако во многих практически значимых ситуациях пользуются так называемыми числовыми характеристиками случайных величин, главное назначение этих характеристик – выразить в сжатой форме наиболее существенные особенности распределения случайных величин. Важно, что данные параметры представляют собой конкретные (постоянные) значения, которые можно оценивать с помощью полученных в опытах данных. Этими оценками занимается «Описательная статистика».

В теории вероятностей и математической статистике используется достаточно много различных характеристик, но мы рассмотрим только наиболее употребляемые. Причем лишь для части из них приведем формулы, по которым рассчитываются их значения, в остальных случаях вычисления оставим компьютеру.

Рассмотрим характеристики положения – математическое ожидание, моду, медиану.

Они характеризуют положение случайной величины на числовой оси, т. е. указывают некоторое ориентировочное значение, около которого группируются все возможные значения случайной величины. Среди них важнейшую роль играет математическое ожидание М (Х ).

Классическое определение вероятности
Вероятностью события А Р(A) называется отношение числа благоприятствующих этому событию исходов m к общему числу всех единственно возможных и равновозможных элементарных исходов n, Р(A)=.

Задача1

Из 20 экзаменационных билетов 3 содержат простые вопросы. Пять студентов по очереди берут билеты. Найти вероятность того, что хотя бы одному из них достанется билет с простыми вопросами.

Решение:

Для начала найдем вероятность того, что ни одному из студентов не достанется билет с простыми вопросами.
Эта вероятность равна

Первая дробь показывает вероятность того, что первому студенту достался билет со сложными вопросами (их 17 из 20)
Вторая дробь показывает вероятность того, что второму студенту достался билет со сложными вопросами (их осталось 16 из 19)
Третья дробь показывает вероятность того, что третьему студенту достался билет со сложными вопросами (их осталось 15 из 18)
И так далее до пятого студента. Вероятности перемножаются т.к. по условию требуется одновременное выполнение этих условий.

Чтобы получить вероятность того, что хотя бы одному из студентов достанется билет с простыми вопросами надо вычесть полученную выше вероятность из единицы.

Ответ: 0,6009.

Задача2
Из множества всех последовательностей длины 10, состоящих из цифр 0; 1; 2; 3, наудачу выбирается одна. Какова вероятность того, что выбранная последовательность содержит ровно 5 нулей, причем два из них находятся на концах последовательности. Решение

Вероятность события A – «Выбранная последовательность содержит ровно 5 нулей, причем два из них находятся на концах последовательности», согласно классическому определению, равна P (A ) = , где n – полное число равновероятных исходов; m – число исходов, благоприятствующих событию A .

Число способов заполнить 10 позиций в последовательности цифрами 0; 1; 2; 3 составляет, с учетом возможности повторения цифр, n = 410 = 220 = 1048576.

Число способов разместить 5 нулей на 10 позициях в последовательности при условии, что нули обязательно находятся на первом и десятом месте в последовательности, равно числу способов разместить три нуля на восьми свободных позициях в последовательности и равно числу сочетаний из 8 элементов по 3: = = 56.

Оставшиеся 8 – 3 = 5 позиций в последовательности будут заполнены цифрами 1; 2; 3. Число способов осуществить это, с учетом возможности повторения, равно 35 = 243.

Т.о., число исходов, благоприятствующих событию A , равно m = ×35 = 56×243 = 13608.
Искомая вероятность события A равна:
P (A ) = = 0,013.
Ответ: P(A) = = 0,013.

Задача 3.
Имеется 100 одинаковых деталей, среди которых 3 бракованных. Найти вероятность того, что взятая наудачу деталь без брака.

Решение. В этой задаче производится испытание – извлекается одна деталь. Число всех исходов испытания равно 100, т. к. может быть взята любая деталь из 100. Эти исходы несовместны, равновозможны, единственно возможны. Таким образом, Событие - появилась деталь без брака. Всего в партии 97 деталей без брака, следовательно, число исходов, благоприятных появлению события А равно 97 . Итак, Тогда
Задача 4.
Код банковского сейфа состоит из 6 цифр. Найти вероятность того, что наудачу выбранный код содержит различные цифры? Решение. Так как на каждом из шести мест в шестизначном шифре может стоять любая из десяти цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, то всех различных шестизначных номеров по правилу произведения будет . Номера, в которых все цифры различны, - это размещения из 10 элементов (10 цифр) по 6. Поэтому число благоприятствующих исходов . Искомая вероятность равна
Задача 5.
Между шестью фирмами (А, Б, В, Г, Д, Е), занимающимися продажей компьютерной техники, проводится жеребьевка на предмет очередности предъявления своей продукции на выставке потенциальным потребителям. Какова вероятность того, что очередь будет выстроена по порядку, т. е. А, Б, В, Г, Д, Е? Решение. Исход испытания - случайное расположение фирм в очереди. Число всех возможных исходов равно числу всех перестановок из шести элементов (фирм), т.е.Число исходов, благоприятствующих событию : m= 1, если очередь выстроена по порядку. Тогда
Задача 6.
В компании 10 акционеров, из них трое имеют привилегированные акции. На собрание акционеров явилось 6 человек. Найти вероятность того, что среди явившихся акционеров:
а) все трое акционеров с привилегированными акциями отсутствуют;
б) двое присутствуют и один не явился. Решение
а) испытанием является отбор 6 человек из 10 акционеров. Число всех исходов испытания равно числу сочетаний из 10 по 6, т. е.

Пусть событие - среди шести человек нет ни одного с привилегированными акциями. Исход, благоприятствующий событию ,- отбор шести человек среди семи акционеров, не имеющих привилегированных акций. Число всех исходов, благоприятствующих событию А , будет
Искомая вероятность

б) пусть событие - среди шести явившихся акционеров двое с привилегированными акциями, а остальные четыре – с общими акциями. Число всех исходов, Число способов выбора двух человек из необходимых трех Число способов выбора оставшихся четырех акционеров среди семи с общими акциями Тогда число всех способов отбора по правилу произведения
Искомая вероятность равна