Случайные величины. Закон распределения

Определение . Случайной величиной называют такую величину, которая в результате эксперимента принимает какое-либо одно значение из множества ее возможных значений, причем до экс­перимента невозможно предсказать, какое именно.

Случайными величинами являются, например, количество оч­ков, выпадающих при бросании игрального кубика, число посе­тителей аптеки в течение дня, количество яблок на дереве и т. д.

Случайными величинами являются также температура боль­ного в некоторое наугад выбранное время суток, масса наугад выбранной таблетки некоторого препарата, рост наугад выбран­ного студента и т. д.

О

днако с математической точки зрения между такими слу­чайными величинами, как, например, число посетителей аптеки в течение дня (обозначим эту случайную величину X 1) и рост наугад выбранного студента из некоторой группы студентов (ве­личина Х 2), имеется принципиальное различие, а именно: для величины X 1 можно перечислить все ее возможные значения (1, 2, 3, 4, 5, 6, ...), тогда как для величины Х 2 этого сделать нельзя, поскольку эта величина в результате измерения может принять любое значение из отрезка, где

и - соответ­ственно минимальный и максимальный рост студентов группы.

Случайные величины принято обозначать прописными буква­ми латинского алфавита - X, Y, Z и т. д., а их возможные значения - соответствующими строчными буквами с числовыми индексами. Например, значения случайной величины xобозна­чают следующим образом:x 1 ,x 2 ,x 3 и т. д.

Понятие дискретных и непрерывных случайных величин

Определение . Случайная величина называется дискретной, если совокупность всех ее возможных значений представляет собой конечное или бесконечное, но обязательно счетное множество значений, т. е. такое множество, все элементы которого могут быть (по крайней мере, теоретически) пронумерованы и выписаны в соответствующей последовательности.

Определение . Случайная величина называется непрерывной, если множество ее возможных значений представляет собой не­который конечный или бесконечный промежуток числовой оси.

Исходя из этих определений, такие из перечисленных выше случайных величин, как количество очков, выпадающих при бро­сании игрального кубика, число посетителей аптеки в течение дня, количество яблок на. дереве, являются дискретными случай­ными величинами, а такие, как температура больного в фикси­рованное время суток, масса наугад выбранной таблетки некото­рого препарата, рост наугад выбранного студента, - непрерыв­ными величинами.

Дискретные случайные величины

Рассмотрим подробнее дискретные случайные величины , причем, как правило, будем ограничивать рассмотрение такими случай­ными величинами, у которых количество возможных значений конечно.

Наиболее полную информацию о дискретной случайной вели­чине дает закон распределения этой величины.

Определение . Законом распределения дискретной случайной величины называется соответствие между всеми возможными значениями этой случайной величины и соответствующими им вероятностями.

Закон распределения дискретной случайной величины часто задают в виде двухстрочной таблицы, в первой строке которой перечислены все возможные значения этой величины (как правило, в порядке возрастания), а во второй - соответствующие этим значениям вероятности таблице 1:

Пример 2. Имеется десять студенческих групп, насчитыва­ющих соответственно 12, 10, 11, 8, 12, 9, 10, 8, 10 и 11 студентов. Составить закон распределения случайной величины X, опреде­ляемой как число студентов в наугад выбранной группе.

Решение. Возможными значениями рассматриваемой случай­ной величины Х являются следующие (в порядке возрастания):

8, 9, 10, 11 и 12.

Поскольку случайная величина Х принимает значение, равное 8, в том случае, если наугад выбранной группой окажется груп­па из 8 студентов (назовем это событием А), вероятность того, что случайная величина Х примет значение
, равна вероят­ности этого случайного события:
.

Вероятность же случайного события А в соответствии с классическим определением вероятности равна
по­скольку из 10 групп две насчитывают по 8 студентов.

Таким образом, для вероятности значения получаем:

.

Аналогично можно найти вероятности остальных значений слу­чайной величины X:

что позволяет составить искомый закон распределения (таблица 2):

Закон распределения дискретной случайной величины может быть задан также с помощью формулы, позволяющей для каж­дого возможного значения этой величины определить соответ­ствующую вероятность.

Дискретные и непрерывные случайные величины

Как правило, при изготовлении продукции на процесс её производства оказывает влияние множество различных факторов, в результате чего наблюдается разброс значений показателей качества продукцию. Таким образом, показатели качества изготовляемой продукции или оказываемых услуг следует рассматривать как случайные величины.

Случайной величиной называется такая величина, которая в результате испытаний в границах определенного интервала может принимать различные числовые значения (согласно СТБ ГОСТ Р 50779.10 случайная величина - переменная, которая может принимать любое значение из заданного множества значений и с которой связано распределение вероятностей ).

Дискретными случайными величинами называются такие, которые в результате испытаний могут принимать лишь отдельные, изолированные значения и не могут принимать значения промежуточные между ними. Например, количество негодных деталей в партии может быть только целым положительным числом 1, 2, 3 и т.д., но не может быть 1,3; 1,7 и т.п.

Непрерывной случайной величиной называется такая величина, которая в результате испытаний может принимать любые численные значения из непрерывного ряда их возможных значений в границах определенного интервала.

Например, действительные размеры деталей, обработанных на станке, являются случайными величинами непрерывного типа, так как они могут принять любое численное значение в определенных границах.

Возможности случайных величин принимать при испытаниях те или иные численные значения оцениваются при помощи вероятностей.

Совокупность значений случайных величин, расположенных в возрастающем порядке с указанием их вероятностей для каждого из значений, называется распределением случайных величин (согласно СТБ ГОСТ Р 50779.10 распределение – это функция, определяющая вероятность того, что случайная величина примет какое-либо заданное значение или будет принадлежать заданному множеству значений).

Распределение случайной величины можно представить в табличном, графическом виде и при помощи статистических оценок.

При представлении распределения случайной величины в табличном виде каждому номеру исследуемой единицы продукции (номеру измерения) соответствует значение показателя качества для данной единицы продукции (результат измерения).

При представлении распределения случайной величины в графическом виде строят график распределения в координатах значение случайной величины – вероятность (частота, частость) значения случайной величины.

На рисунке ниже показаны графики распределения дискретной и непрерывной случайных величин.

Рисунок - График распределения дискретной случайной величины

Рисунок - График распределения непрерывной случайной величины

Различают теоретические и эмпирические распределения случайных величин. В теоретических распределениях оценка возможных значений случайной величины производится при помощи вероятностей, а в эмпирических - при помощи частот или частостей, полученных в результате испытаний.

Следовательно, эмпирическим распределением случайной величины называется совокупность экспериментальных ее значений, расположенных в порядке возрастания, с указанием частот или частостей для каждого из значений(согласно СТБ ГОСТ Р 50779.10 распределение частот – это эмпирическое отношение между значениями признака и его частотами или его относительными частотами).

Таблица. Пример табличного представления теоретического распределения дискретной случайной величины

Графически эмпирическое распределение дискретной случайной величины можно представить в виде столбиковой диаграммы , образуемой набором столбцов равной ширины, высоты которых пропорциональны частотам дискретных значений случайной величины.

Рисунок - Столбиковая диаграмма дискретной случайной величины.

Если случайная величина является непрерывной, то возникают некоторые сложности с представлением ее распределения в виде таблицы или графика. Поэтому на практике при изучении случайных величин непрерывного типа полученные значения разбивают на равные интервалы с таким расчетом, чтобы значение интервала было несколько больше погрешности измерения исследуемой величины. Затем подсчитывают частоты не по действительным значениям случайной величины, а по интервалам. Поэтому таблица эмпирического распределения случайной величины непрерывного типа будет иметь следующий вид.

Таблица. Эмпирическое распределение случайной величины непрерывного типа.

Интервал значений Х

Среднее арифметическое значение

Частота f i

Частость m i

160,031 - 160,033

160,033 - 160,035

160,035 - 160,037

160,037 - 160,039

160,039 - 160,041

160,041 - 160,043

160,043 - 160,045

160,045 - 160,047

f i = 100

m i = 1

Эмпирическое распределение случайной непрерывной величины графически может быть представлено в виде гистограммы распределения, полигона частот или полигона кумулятивных частот.

Гистограмма распределения представляет собой совокупность соприкасающихся прямоугольников, основания которых равны интервалам разбиения непрерывной случайной величины, а площади пропорциональны частотам, с которыми значения случайной величины попадают в эти интервалы (согласно СТБ ГОСТ Р 50779.10 гистограмма (распределения) – это графическое представление распределения частот для количественного признака, образуемое соприкасающимися прямоугольниками, основаниями которых служат интервалы классов, а площади пропорциональны частотам этих классов).

Рисунок - Гистограмма распределения случайной непрерывной величины.

Полигон частот – это ломаная линия, получаемая при соединении точек, абсциссы которых равны серединам интервалов разбиения, а ординаты – соответствующим частотам.

Рисунок - Полигон частот случайной непрерывной величины.

Полигон кумулятивных частот – это ломаная линия, получаемая при соединении точек, абсциссы которых равны верхним границам интервалов разбиения, а ординаты – либо кумулятивным частотам, либо кумулятивным частостям (кумулятивным относительным частотам).

Рисунок - Полигон кумулятивных частот случайной непрерывной величины.

При теоретических описаниях случайных величин непрерывного типа используется функция распределения. Теоретическое распределение случайной непрерывной величины графически может быть представлено в виде интегральной, обратной интегральной, дифференциальной функций распределения и функции интенсивности .

Пусть Х - случайная величина, а х - какое-либо действительное число (при этом Х < х ). Событию Х < х отвечает вероятность Р(Х < х), которая является функцией F(х), т.е.

Р(Х < х) = F(х)

F(Х) называется функцией распределения вероятностей случайной величины или интегральной функцией распределения.

Для дискретной случайной величины интегральная функция распределения F(Х) легко определяется по таблице или графику.

Таким образом, для приведенного выше примера распределения дискретной случайной величины (при Х < 4):

F(X) = Р( Х ) = P(Х=1 ) + P(Х=2 ) + P(Х=3 ) = 1/30 + 4/30 +15/30 = 19/30

График интегральной функции распределения дискретной случайной величины будет иметь вид ступенчатой кривой. Ординаты кривой для любого значения Х будут представлять сумму вероятностей предшествующих значений.

Рисунок - Интегральная функция распределения дискретной случайной величины

Вероятность того, что случайная величина при испытаниях окажется в границах двух заданных значений х 1 и х 2 (х 2 > х 1) равна приращению интегральной функции на этом участке, т.е.

Р(х 1 ≤ Х ≤ х 2 ) = Р(Х < х 2 ) - Р(Х < х 1 ) = F(Х 2 ) - F(Х 1 )

Если обратиться к выше приведенному примеру распределения дискретной случайной величины, то при х1= 2 и х2 = 3:

Р(2≤Х≤3) = Р(Х < 3) - Р(Х < 2)= F(Х2) - F(Х1)= 4/30-1/30 = 3/30

Для непрерывной случайной величины график интегральной функции распределения будет иметь вид монотонно возрастающей кривой. На практике с помощью интегральной функции распределения определяют теоретические частоты распределения.

Рисунок - Интегральная функция распределения

непрерывной случайной величины

Обратная интегральная функция распределения равна разности между единицей и интегральной функции распределения.

Плотностью распределения (дифференциальной функцией распределения) случайной величины называют первую производную от интегральной функции распределения:

Для аналитического описания непрерывной случайной величины в теории надежности используют функцию интенсивности , равную отношению дифференциальной функции распределения к обратной интегральной функции распределения:

Рисунок - Функция интенсивности непрерывной случайной величины.

Тема 3.

Случайные величины и функции распределения

Понятие случайной величины.

Понятие случайной величины

Функция распределения случайной величины, ее свойства

Случайные величины с дискретным распределением

Понятие случайной величины с дискретным распределением

Закон распределения дискретной случайной величины.

Примеры дискретных распределений

Случайные величины с абсолютно непрерывным распределением

Понятие случайной величины с абсолютно непрерывным распределением

Закон распределения абсолютно непрерывной случайной величины. Плотность, ее свойства

Примеры абсолютно непрерывных распределений

Понятие случайного вектора.

Понятие случайного вектора

Независимые случайные величины

Совместное распределение случайных величин

Понятие случайной величины.

С момента возникновения теории вероятностей ее основной задачей было изучение не вероятностных свойств экспериментов со случайными исходами, а связанных с этими экспериментами числовых величин, которые естественно назвать случайными величинами . Например, мы можем интересоваться не парами чисел на верхних гранях кубиков, а их суммой; числом успехов или числом неудач до первого успеха в схеме Бернулли.

Часто в литературе можно встретить вариации на тему следующего определения: Случайной величиной называют переменную величину, которая в зависимости от исходов испытания принимает значения, зависящие от случая.

Таким образом, случайная величина – это числовая величина, значение которой зависит от того, какой именно (элементарный) исход произошел в результате эксперимента со случайным исходом. Множество всех значений, которые случайная величина может принимать, называют множеством возможных значений этой случайной величины.

Мы приведем более строгое определение, поскольку понятие случайной величины является одним из тех ключевых понятий, которые связывают теорию вероятностей с математическим анализом и составляют понятийную основу математической статистики.

Определение . Случайной величиной называется функция Х = Х(ω), определенная на пространстве элементарных событий Ω, для которых событие {Х < х} = {ω: Х(ω) < х} принадлежит σ-алгебре событий A для любого вещественного х.

Условие {Х < х} єA дает возможность рассматривать вероятности событий {Х < х}, поскольку вероятности определены только на множествах из А . Кроме того, через события {Х < х}, х є (-∞, ∞) с помощью известных операций над событиями можно выразить сколь угодно сложное событие, связанное со случайной величиной Х. Такое событие также будет принадлежать σ-алгебре событий A и, следовательно, для него определена вероятность.

Замечание. Таким образом, случайная величина – это функция, областью определения которой является пространство элементарных событий Ω, а множеством значений – числовое множество, возможно, все множество действительных чисел R .

σ-алгебра событий A – это область определения вероятности, если рассматривать ее как функцию.

Замечание . «Термин «случайная величина» несколько неточен, более подходящим был бы термин «Функция случая» , независимой переменной является точка в пространстве элементарных событий, т.е. исход эксперимента или случай». (В.Феллер «Введение в теорию вероятностей», гл. IX )

Случайные величины обозначаются буквами греческого алфавита:(кси),(эта), или заглавными буквами латинского алфавита X, Y, …Значения случайной величины будем записывать в виде конечной или бесконечной последовательностиx 1 ,x 2 ,,x n ,; y 1 ,y 2 ,,y n ,

Замечание . Ранее мы ввели понятие вероятности применительно к некоторым событиям. Теперь мы переходим к разговору о функциях. Самое очевидное событие, которое можно связать с понятием функции – это принятие ею некоторого значения (конкретного или принадлежащего промежутку)

Для исследования вероятностных свойств случайной величины необходимо знать правило, позволяющее находить вероятность того, что случайная величина примет значение из подмножества ее значений. Любое такое правило называют законом распределения вероятностей или распределением (вероятностей) случайной величины. (при этом слово «вероятностей» обычно опускают)

Общим законом распределения, присущим всем случайным величинам, является функция распределения .

Определение. Вся совокупность вероятностей Р{Х < х}, х є (-∞, ∞) задает закон распределения случайной величины Х в общем случае. Часто для краткости закон распределения случайной величины называют просто распределением случайной величины.

Определение. Функция F(x) = Р{Х < х}, х є (-∞, ∞) называется функцией распределения случайной величины Х.

Значение функции распределения в точке х равно вероятности события {Х < х}, то есть события, состоящего из тех и только тех элементарных исходов ω, для которых Х < х.

Обычно говорят, что значение функции распределения в точке х равно вероятности того, что случайная величина Х примет значение, меньшее х.

Геометрически это означает следующее: F(x) – вероятность того, что случайная величина Х примет значение, которое изображается точкой на числовой прямой, расположенной слева от точки х.

Замечание . Функцию распределения называют также интегральной функцией, или интегральным законом распределения случайной величины Х

Функция распределения обладает следующими свойствами :

    0≤ F(x)≤1 (т.к. по определению, функция распределения является вероятностью)

    F(x 1) ≤ F(x 2) при x 1 < x 2 (т.е. F(x) – неубывающая функция)

    lim F(x) = 0 при x → - ∞ , lim F(x) = 1 при x → + ∞

    P (x 1 ≤ X ≤ x 2) = F(x 1) - F(x 2)

    F(x) – непрерывная слева функция, т.е. F(x) = F(x - 0), где F(x - 0) = lim F(y) при y → x - 0 (левосторонний предел)

Замечание . Для того, чтобы подчеркнуть, какой именно случайной величине принадлежит функция распределения F(x), этой функции иногда приписывают нижний индекс, обозначающий конкретную случайную величину. Например, F X (x) = Р{Х < х}

Замечание. В некоторых изданиях функция распределения определяется как F(x) = Р{Х ≤ х}. Такое определение ничего не меняет по существу понятия функции распределения, меняется лишь последнее, пятое свойство. Функция в таком случае оказывается непрерывной справа.

Отступление: «Что такое функция?»

Пусть нам даны два множества Х и Y, причем Y – числовое множество. И пусть задано правило f, по которому каждому элементу (точке) множества Х ставится в соответствие (один и только один) элемент (число) множества Y. Правило f вместе с множествами X и Y задают функцию f. Запись y=f(x) означает, что к некоторой точке x множества X применили правило f, и в результате получили точку y из множества Y. X называется аргументом (независимой переменной), а y – значением (зависимой переменной) функции f в точке х. Множество Х называется областью определения (областью задания) функции, говорят, что функция задана на этом множестве, множество Y называется множеством значений функции. Множество Х совершенно необязательно является числовым множеством. Так, случайная величина – это функция, заданная на нечисловом пространстве элементарных событий.

СЛУЧАЙНЫЕ ВЕЛИЧИНЫ

Случайной называют величину, которая в результате испытания примет одно и только одно возможное значение, причем какое именно заранее неизвестно.

Дискретной называют случайную величину, которая принимает отдельные, изолированные возможные значения с определенными вероятностями.

Непрерывной называют случайную величину, которая может принимать все значения из некоторого конечного или бесконечного интервала.

Законом распределения дискретной случайной величины называют соответствие между возможными значениями случайной величины и их вероятностями. Этот закон задается в виде таблицы, формулы или графика.

Для дискретных случайных величин одним из наиболее употребительных является так называемый биномиальный закон распределения, к которому приводит схема Бернулли повторения испытаний. Формула (8) и является аналитическим выражением этого закона.

Пример 11 .

По каналу связи передается сообщение с помощью кода, состоящего из двух знаков. Вероятность появления первого равна 2/3. Передано три знака. Найти закон распределения для появлений первого знака.

Решение.

По условию n =4, р =2/3, q =1/3. Возможные значения числа появлений первого знака: 0, 1, 2 и 3. Найдем их вероятности по формуле (8):

Этот закон можно представить в виде таблицы

X
P1/27 1/27 2/9 4/9 8/27

Функцией распределения называют функцию, определяющую вероятность того, что случайная величина Х в результате испытания примет значение меньше х, то есть

Геометрически это означает, что случайная величина с вероятностью р примет значение, которое на числовой оси изображается точкой, лежащей левее х.

Для непрерывной случайной величины функция распределения есть непрерывная кусочно-дифференцируемая функция. Из определения выводятся основные свойства:

1. Значения функции распределения принадлежат отрезку , т.е.

2. F (x ) - неубывающая функция, то есть , если

3. Вероятность того, что случайная величина примет значение, заключенное на промежутке [а,b [, равна приращению функции распределения на этом промежутке

Для непрерывной случайной величины вероятность принять отдельное значение равно нулю. Поэтому для непрерывных случайных величин

Пример 12 .

Случайная величина Х задана функцией распределения

Найти вероятность того, что в результате испытания Х примет значение, принадлежащее отрезку [-1;0,5].

Решение.

Из условия следует, что Х - непрерывная случайная величина, которая может принимать значение от 0 до 1.

Плотностью распределения вероятностей непрерывной случайной величины Х называют первую производную от функции распределения

Функция распределения F(x) есть одна из первообразных для плотности распределения. Исходя из определения плотности или дифференциального закона распределения и ее связи с функцией распределения, легко показать следующие свойства:

1. Плотность распределения непрерывной случайной величины - неотрицательная функция

2. Вероятность попадания случайной величины Х в интервал равна

(16)

3. Из свойства 2 получим выражение для функции распределения

(17)

4. Условие нормировки

(18)

Пример 13. Дискретная величина Х задана таблицей

Х
Р 0,1 0,3 0,4 0,2

Найти функцию распределения и построить ее график.

Решение.

1. Если , то , так как Х не может принимать значение меньше 2.

В этом случае в интервал (-¥, х) попадает только одно значение случайной величины Х (X =2). Поэтому

Для любого значения аргумента х функции F(x), удовлетворяющего данному неравенству, в интервал (-¥, х ) попадает два значения случайной величины (X =2 и X =3). Поскольку события, что Х примет данные значения являются несовместными (или X =2 или X =3), то

4. Аналогично если

Следовательно, функция распределения будет иметь вид

Строим график функции распределения

Рис. 1 - График функции распределения

дискретной случайной величины

Пример 14 . Плотность распределения ошибки измерения

СЛУЧАЙНЫЕ ВЕЛИЧИНЫ

§ 1. ПОНЯТИЕ СЛУЧАЙНОЙ ВЕЛИЧИНЫ.

В физике и других науках о природе встречается много различных величин разной природы, как например: время, длина, объём, вес и т.д. Постоянной величиной называют ве- личину, принимающую лишь одно фиксированное значение. Величины, которые могут принимать различные значения, на-зываются переменными. Величина считается заданной, если указано множество значений, которые она может принимать. Если однозначно известно, какое именно значение из множества примет величина при создании опреде- лённых условий, то о ней говорят как об «обычной», детерминированной величине. Примером такой величины является количество букв в слове. Большинство физических величин измеряются при помощи приборов с присущей им точностью измерений и, в смысле приведенного определения, они не являются «обычными». Такого рода «необычные» величины называются случайными . Для случайных величин множество целесообразно назвать множеством возможных значений. Случайная величина принимает то или иное значе- ние с некоторой вероятностью. Заметим, что все величины можно считать случайными, так как детерминированная вели-чина – это случайная величина, принимающая каждое значение с вероятностью, равной единице. Всё сказанное выше является достаточным основанием для изучения случайных величин.

Определение. Случайной величиной называется величина, которая в результате опыта может принимать то или иное (но обязательно только одно) значение, причём заранее, до опыта, неизвестно, какое именно.

Понятие случайной величины является фундаментальным понятием теории вероятностей и играет важную роль в её приложениях.

Случайные величины обозначаются: , а их зна -чения, соответственно: .

Выделяют два основных класса случайных величин: диск -ретные и непрерывные.

Определение. Дискретной случайной величиной называют случайную величину, число возможных значений которой конечное либо счётное множество.

Примеры дискретных случайных величин:

1. - частота попаданий при трёх выстрелах. Возможные значения:

2. - число деффектных изделий из штук. Возможные значения:

3. - число выстрелов до первого попадания. Возможные значения:

Определение. Непрерывной случайной величиной называют такую случайную величину, возможные значения которой не –прерывно заполняют некоторый промежуток (конечный или бесконечный).

Примеры непрерывных случайных величин:

1. - случайное отклонение по дальности от точки попада- ния до цели при выстреле из орудия.

Так как снаряд может попасть в любую точку, интервала, ограниченного минимальным и максимальным значениями дальности полёта снаряда, возможных для данного орудия, то возможные значения случайной величины заполняют про -межуток между минимальным и максимальным значением.

2. - ошибки при измерении радиолокатором.

3. - время работы прибора.

Случайная величина является своего рода абстрактым вы- ражением некоторого случайного события. С каждым случай -ным событием можно связать одну или несколько характеризу- ющих его случайных величин. Например, при стрельбе по ми -шени можно рассмотреть такие случайные величины: число попаданий в мишень, частота попаданий в мишень, количество очков, набираемых при попадании в определённые области мишени и т.д.

§ 2 ЗАКОНЫ РАСПРЕДЕЛЕНИЯ ВЕРОЯТНОСТЕЙ

СЛУЧАЙНЫХ ВЕЛИЧИН.

Определение. Законом распределения случайной величины называется всякое соотношение, устанавливающее связь меж- ду возможными значениями случайной величины и соответст- вующими им вероятностями.

Если вспомнить определение функции, то закон распреде -ления является функцией, область определения которой есть область значений случайной величины, а область значений рассматриваемой функции состоит из вероятностей значений случайной величины.

2.1. РЯД РАСПРЕДЕЛЕНИЯ

Рассмотрим дискретную случайную величину , воз- можные значения которой нам известны. Но зна- ние значений случайной величины, очевидно, не позволяет нам её полностью описать, так как мы не можем сказать, насколь- ко часто следует ожидать тех или иных возможных значений случайной величины при повторении опыта в одних и тех же условиях. Для этого необходимо знать закон распределения вероятностей.

В результате опыта дискретная случайная величина прини –мает одно из своих возможных значений, т.е. произойдёт одно из событий:

которые образуют полную группу несовместных событий.

Вероятности этих событий:

Простейшим законом распределения дискретной случайной величины является таблица, в которой приведены все возмож- ные значения случайной величины и соответствующие им ве –роятности:

Такую таблицу называют рядом распределения случайной величины .

Для наглядности, ряд распределения можно представить графиком:

Эта ломаная называется многоугольником распределения . Это также одна из форм задания закона распределения дискрет – ной случайной величины .

Сумма ординат многоугольника распределения, представля – ющая сумму вероятностей всех возможных значений случай -ной величины, равна единице.

Пример 1. Произведено три выстрела по мишени. Вероят- ность попадания при каждом выстреле равна 0,7. Составить ряд распределения числа попаданий.

Случайная величина - «число попаданий» может прин- мать значения от 0 до 3 – х, причём в этом случае вероят – ности определяются по формуле Бернулли:

.

0,027 0,189 0,441 0,343

Проверка

Пример 2. В урне назодится 4 белых и 6 чёрных щаров. Наугад извлекаются 4 шара. Найти закон распределения слу- чайной величины - «число белых шаров среди отобран -ных».

Эта случайная величина может принимать значения от 0 до 4 – х. Найдём вероятности аозможных значений случайной величины.

Можем проверить, что сумма полученных вероятностей рав- на единице.

2.2. ФУНКЦИЯ РАСПРЕДЕЛЕНИЯ .

Ряд распределения нельзя построить для непрерывной слу- чайной величины, так как она принимает бесконечно много значений. Более универсальным законом распределения под- ходящим, как для дискретной, так и для непрерывной слу - чайной величины является функция распределения.

Определение. Функцией распределения (интегральным зако- ном распределения) случайной величины называется зада- ние вероятности выполнения неравенства , т.е.

(1)

Таким образом, функция распределения равна вероят -ности того, что случайная величина в результате опыта попа- дает левее точки .

Для дискретной случайной величины, для которой мы знаем ряд распределения:

функция распределения будет иметь вид:

График функции распределения дискретной случайной вели- чины - разрывная ступенчатая фигура. Для наглядности, рассмотрим пример.

Пример 3 Дан ряд паспределения. Найти функцию распре -деления и построить её график

0,2 0,1 0,3 0,4

По определению,

СВОЙСТВА ФУНКЦИИ РАСПРЕДЕЛЕНИЯ

1 Функция распределения - это неотрицательная фун- кция, значения которой заключены между 0 и 1, т.е.

2 Вероятность появления случайной величины в про- межутке равна разности значений функции распределения на концах промежутка:

3 Функция распределения - неубывающая функция, т.е. при выполнено: ;

Перейдём в равенстве (2) к пределу при . Полу- чим вместо вероятности попадания случайной величины в про- межуток вероятность точечного значения случайной величины, т.е.

Значение этого предела зависит от того, является ли точка точкой непрерывности функции , или в этой точке функция имеет разрыв. Если функция непрерыв- на в точка , то предел равен 0, т.е. . Если же в этой точке функция имеет разрыв (1 – го ро- да), то предел равен значению скачка функции в точке .

Так как непрерывная случайная величина имеет непрерыв -ную функцию распределения , то из равенства нулю предела (3) следует, что вероятность любого фиксированного значения непрерывной случайной величины равна нулю. Это следует из того, что возможных значений непрерывной случайной величины бесконечно много. Из этого, в частности, следует, что следующие вероятности совпадают:

Приведённые свойства функции распределения можно сфор- мулировать следующим образом: функция распределения - это неотрицательная неубывающая функция, удовлетворяющая ус –ловиям: Обратное утверждение также имеет место: монотонно возрастающая непрерывная функция, удовлетворяющая условиям

является функцией распределения некоторой непрерывной слу- чайной величины. Если значения этой величины сосредоточе -ны на некотором промежутке , то график этой функции можно схематически изобразить следующим образом:

Рассмотрим пример. Функция распределения непрерывной случайной величины задана следующим образом:

Найти значение « », построить график и найти веро –ятность

Так как функция распределения непрерывной случайной ве- личины непрерывна, то - непрерывная функция, и при должно выполгяться равенство:

или , т.е.

Построим график этой функции

Найдём требуемую вероятность

Замечание. Функцию распределения, иногда ещё называют интегральным законом распределения . Ниже объясним, почему именно.

2.3 ПЛОТНОСТЬ РАСПРЕДЕЛЕНИЯ.

Так как с помощью функции распределения дискретной

случайной величины в любой точке мы можем определить вероятность возможных значений, то она однозначно опре- деляет закон распределения дискретной случайной величины.

Однако по функции распределения трудно судить о харак- тере распределения непрерывной случайной величины в не -большой окрестности той или иной точки числовой оси.

Более наглядное представление о характере распределения непрерывной случайной величины вблизи различных точек даёт функция, которую называют плотностью распределения (или дифференциальным законом распределения)

Пусть - непрерывная случайная величина с функцикй распределения . Найдём вероятность попадания этой случайной величины в элементарный участок .

По формуле (2), имеем

Разделим это равенство на

Отношение, стоящее слева, называется средней вероятно –стью на единице длины участка.

Считая функцию дифференцируемой, перейдём к перейдём в этом равенстве к пределу

Определение. Предел отношения вероятности попадания непрерывной случайной величины на элементарный участок к длине этого участка при называ- ется плотностью распределения непрерывной случайной ве – личины и обозначается Следовательно,

Плотность распределения показывает, насколько часто слу -чайная величина появляется в некоторой окрестности точ –ки при повторении опытов.

Кривая, изображающая график плотности распределения, на- зывается кривой распрелеления.

Если возможные значения случайной величины запол- няют некоторый промежуток , то вне этого промежутка.

Определение. Случайная величина называется непре – рывной , если её функция распределения непрерывна на всей числовой прямой, а плотность распределения не- прерывна везде, за исключением может быть конечного числа точек (точек разрыва 1 – го рода).

СВОЙСТВА ПЛОТНОСТИ РАСПРЕДЕЛЕНИЯ

1. Плотность распределения неотрицательна, т.е.

(это следует из того, что - производная неубывающей функции ).

2. Функция распределения непрерывной случайной величи-

ны равна интегралу от плотности распределения (и поэтому является интегральным законом распределения), т.е.

В самом деле, (по определению дифференциала функции). Следовательно,

На графике плотности распределения функция распределения

изображается площадью заштрихованной области.

3. Вероятность попадания случайной величины на участок равна интегралу от плотности распределения по этому промежутку, т.е.

В самом деле,

4. Интеграл в бесконечных пределах от плотности распре –деления равен единице, т.е.

Другими словами, площадь фигуры под графиком плотности распределения равна 1. В частности, если возможные значе- ния случайной величины сосредоточены на участке , то

Пример. Пусть плотность распределения зазана функцией

Найти: а) значение параметра ; б) функцию распределения в) Вычислить вероятность того, что случайная величи- на примет значение из отрезка .

а) По свойству 4, . Тогда

б) По свойству 2, Если

Если , .

Таким образом,

в) По свойству 3,

§ 3. ЧИСЛОВЫЕ ХАРАКТЕРИСТИКИ СЛУЧАЙНЫХ

При решении многих практических задач нет необходимости знать все вероятностные характеристики случайной величины. Иногда достаточно знать только некоторые числовые характе - ристики закона распределения.

Числовые характеристики позволяют в сжатой форме выра -зить наиболее существенные особенности того или иного рас- пределения.

О каждой случайной величине прежде всего необходимо знать её среднее значения, около которого группируются все возможные значения этой величины, а также некоторое число, характеризующее степень рассеяния этих значений относитель- но среднего.

Различают характеристики положения и характеристики рас- сеяния. Одной из самых важных характеристик положения яв- ляется математическое ожидание.

3.1 Математическое ожидание (среднее значение).

Рассмотрим сначала дискретную случайную величину, име -ющую возможные значения с вероятностями

Определение. Математическим ожиданием дискретной слу- чайной величины называется сумма произведений всех возможных значений этой величины на их вероятности, т.е.

По другому, математическое ожидание обозначается

Пример. Пусть дан ряд распределения:

0,2 0,1 0,3 0,4

Рассмотрим теперь непрерывную случайную величину все возможные значения которой заключены в отрезке .

Разобьём этот отрезок на частичных отрезков, длины которых обозначим: , и в каждом частичном интервале возьмём по произвольной точке, соответственно .

Так как произведение при- ближённо равно вероятности попадания случайной величины на элементарный участок , то сумма произведений составленная по аналогии с опреде -лением математического ожидания дискретной случайной ве- личины, приближённо равна математическому ожиданию не -прерывной случайной величины Пусть .

Тогда

Определение. Математическим ожиданием непрерывной случайной величины называется следующий определённый интеграл:

(2)

Если непрерывная случайная величина принимает значения на всей числовой прямой, то

Пример. Пусть дана плотность распределения непрерывной случайной величины:

Тогда её математическое ожидание:

Понятие математического ожидания имеет простую меха -ническую интерпретацию. Распределение вероятностей слу -чайной величины можно интерпретироварь как распределение единичной массы по прямой. Дискретной случайной величине, принимающей значения с вероятностями соответствует прямая, на которой массы сосредоточены в точках . Непре- рывной случайной величине отвечает непрерывное распреде -ление масс на всей прямой или на конечном отрезке этой прямой. Тогда математическое ожидание - это абсцисса цент- ра тяжести .

СВОЙСТВА МАТЕМАТИЧЕСКОГО ОЖИДАНИЯ

1. Математическое ожидание постоянной величины равно самой постоянной:

2. Постоянный множитель можно вынести за знак матема- тического ожидания:

3. Математическое ожидание алгебраической суммы слу –чайных величин равна алгебраической сумме их мате- матических ожиданий:

4. Математическое ожидание произведения независимых случайных величин равно произведению их математи -ческих ожиданий:

5. Математическое ожидание отклонения случайной вели- чины от её математического ожидания равно нулю:

3.2. Мода и медиана случайной величины.

Это ещё две характеристики положения случайной вели- чины.

Определение. Модой дискретной случайной величины называется её наиболее вероятное значение. Для непрерыв –ной случайной величины мода - это точка максимума функ- ции .

Если многоугольник распределения (для дискретной случай- ной величины) или кривая распределение (для непрерывной случайной величины) имеет две или более точек максимума, то распределение называется двухмодальным или многомо -дальным, соответственно.

Если нет ни одной точки максимума, то распределение называется антимодальным.

Определение. Медианой случайной величины на – зывается такое её значение, относитеоьно которого равноверо- ятны получение большего или меньшего значения случайной величины, т.е.

Другими словами, - это абсцисса точки, в которой площадь под графиком плотности распределения (многоуголь- ником распределения) делится пополам.

Пример. Дана плотность случайной величины:

Найти медиану этой случайной величины.

Медиану найдём из условия . В нашем случае,

Из четырёх корней необходимо выбрать тот, который заключён между 0 и 2, т.е.

Замечание . Если распределение случайной величины одно- модальное и симметричное (нормальное), то все три характе -ристики положения: математическое ожидание, мода и медиа -на, совпадают.

3.3 Дисперсия и среднее квадратическое отклонение.

Значения наблюдаемых случайных величин, обычно, более или менее колеблются около некоторого среднего значения. Это явление называется рассеянием случайной величины око- ло её среднего значения. Числовые характеристики, показыва- ющие, насколько плотно сгруппированы возможные значения случайной велипины около среднего, называются характерис – тиками рассеяния. Из свойства 5 математического ожидания следует, что линейное отклонение значений случайной вели –чины от среднего значения не может служить характеристикой рассеяния, так как положительные и отрицательные отклоне –ния «гасят» друг друга. Поэтому основной характеристикой рассеяния случайной величины принято считать математичес - кое ожидание квадрата отклонения случайной величины от среднего.

Определение. Дисперсией называется математическое ожи –дание квадрата отклонения случайной величины от её матема- тического ожидания (среднего значения), т.е.

(3)

(4) для непрерывной случайной величины:

(5)

Но, несмотря на удобства этой характеричтики рассеяния, желательно иметь характеристику рассеяния соразмерную с самой случайной величиной и её математическим ожиданием.

Поэтому вводится ещё одна характеристика рассеяния, кото -рая называется средним квадратическим отклонением и рав -на корню из дисперсии, т.е. .

Для вычисления дисперсии удобно пользоваться формулой, которую даёт следующая теорема.

ТЕОРЕМА. Дисперсия случайной величины равна разности между математическим ожиданием квадрата случайной вели -чины и квадратом её математического ожиданием, т.е.

В самом деле, по определению

Так как .

СВОЙСТВА ДИСПЕРСИИ:

1. Дисперсия постоянной случайной величины равна нулю, т.е.

2. Постоянный множитель сучайной величины выносится из дисперсии с квадратом, т.е.

3. Дисперсия алгебраической суммы двух случайных вели- чин равна сумме их дисперсий, т.е.

Следствие из 2 и 3 свойств:

Рассмотрим примеры..

Пример 1. Дан ряд распределения дискретной случайной величины. Найти её среднее квадратическое отклонение.

- 1
0,2 0,05 0,2 0,3 0,25

Сначала найдём

Тогда среднее квадратическое отклонение

Пример 2 . Пусть дана плотность распределения непрерыв -ной случайной величины:

Найти её дисперсию и среднее квадратическое отклонение.

3.4 Моменты случайных величин.

Различают моменты двух видов: начальные и центральные.

Определение. Начальным моментом порядка случайной

величины называют математическое ожидание величины , т.е. .

Для дискретной случайной величины:

Для непрерывной случайной величины:

В частности, математическое ожидание - это началь- ный момент 1 – го порядка.

Определение. Центральным моментом полрядка слу -чайной величины называется математическое ожидание ве- личины , т.е.

Для дискретной случайной величины:

Для непрерывной -

Центральный момент 1 – го порядка равен нулю (свойство 5 математического ожидания); ; характеризует асимметрию (скощенность) графика плотности распределения. называется коэффициентом асимметрии.

Служит для характеристики островерхости распределения.

Определение. Эксцессом случайной величины называет- ся число

Для номально распределённой случайной величины отноше- ние . Поэтому кривые распределения, более островер- хие, чем нормальная, имеют положительный эксцесс (), а более плосковерхие имеют отрицательный эксцесс ().

Пример. Пусть дана плотность распределения случайной величины :

Найти коэффициент асимметрии и эксцесс этой случайной величины.

Найдём необходимые для этого моменты:

Тогда коэффициент асимметрии: (отрицательная асимметрия).

Учреждение образования «Белорусская государственная

сельскохозяйственная академия»

Кафедра высшей математики

Методические указания

по изучению темы «Случайные величины» студентами бухгалтерского факультета заочной формы получения образования (НИСПО)

Горки, 2013

Случайные величины

    Дискретные и непрерывные случайные величины

Одним из основных понятий в теории вероятностей является понятие случайной величины . Случайной величиной называется величина, которая в результате испытания из множества возможных своих значений принимает только одно, причём заранее неизвестно, какое именно.

Случайные величины бывают дискретными и непрерывными . Дискретной случайной величиной (ДСВ) называется случайная величина, которая может принимать конечное число изолированных друг о друга значений, т.е. если возможные значения этой величины можно пересчитать. Непрерывной случайной величиной (НСВ) называется случайная величина, все возможные значения которой сплошь заполняют некоторый промежуток числовой прямой.

Случайные величины обозначаются заглавными буквами латинского алфавита X, Y, Z и т.д. Возможные значения случайных величин обозначаются соответствующими малыми буквами.

Запись
означает «вероятность того, что случайная величинаХ примет значение, равное 5, равна 0.28».

Пример 1 . Один раз бросают игральный кубик. При этом могут выпасть цифры от 1 до 6, обозначающие число очков. Обозначим случайную величину Х ={число выпавших очков}. Эта случайная величина в результате испытания может принять только одно из шести значений: 1, 2, 3, 4, 5 или 6. Следовательно, случайная величина Х есть ДСВ.

Пример 2 . При бросании камня он пролетает некоторое расстояние. Обозначим случайную величину X ={расстояние полёта камня}. Эта случайная величина может принять любое, но только одно, значение из некоторого промежутка. Следовательно, случайная величина Х есть НСВ.

    Закон распределения дискретной случайной величины

Дискретная случайная величина характеризуется значениями, которые она может принимать, и вероятностями, с которыми эти значения принимаются. Соответствие между возможными значениями дискретной случайной величины и соответствующими им вероятностями называется законом распределения дискретной случайной величины .

Если известны все возможные значения
случайной величиныХ и вероятности
появления этих значений, то считают, что закон распределения ДСВХ известен и он может быть записан в виде таблицы:

Закон распределения ДСВ можно изобразить графически, если в прямоугольной системе координат изобразить точки
,
, …,
и соединить их отрезками прямых линий. Полученная фигура называется многоугольником распределения.

Пример 3 . В зерне, предназначенном для очистки, содержится 10% сорняков. Наугад отобраны 4 зерна. Обозначим случайную величину X ={число сорняков среди четырёх отобранных}. Построить закон распределения ДСВ Х и многоугольник распределения.

Решение . По условию примера . Тогда:

Запишем закон распределения ДСВ Х в виде таблицы и построим многоугольник распределения:

    Математическое ожидание дискретной случайной величины

Наиболее важные свойства дискретной случайной величины описываются её характеристиками. Одной из таких характеристик является математическое ожидание случайной величины.

Пусть известен закон распределения ДСВ Х :

Математическим ожиданием ДСВ Х называется сумма произведений каждого значения этой величины на соответствующую вероятность:
.

Математическое ожидание случайной величины приближённо равно среднему арифметическому всех её значений. Поэтому в практических задачах часто за математическое ожидание принимают среднее значение этой случайной величины.

Пример 8 . Стрелок выбивает 4, 8, 9 и 10 очков с вероятностями 0.1, 0.45, 0.3 и 0.15. Найти математическое ожидание числа очков при одном выстреле.

Решение . Обозначим случайную величину X ={число выбитых очков}. Тогда . Таким образом, ожидаемое среднее значение числа выбитых очков при одном выстреле равно 8.2, а при 10 выстрелах – 82.

Основными свойствами математического ожидания являются:


.


.


, где
,
.

.

, где Х и Y – независимые случайные величины.

Разность
называетсяотклонением случайной величины Х от её математического ожидания. Эта разность является случайной величиной и её математическое ожидание равно нулю, т.е.
.

    Дисперсия дискретной случайной величины

Для характеристики случайной величины, кроме математического ожидания, используется и дисперсия , которая даёт возможность оценить рассеяние (разброс) значений случайной величины около её математического ожидания. При сравнении двух однородных случайных величин с равными математическими ожиданиями «лучшей» считается та величина, которая имеет меньший разброс, т.е. меньшую дисперсию.

Дисперсией случайной величины Х называется математическое ожидание квадрата отклонения случайной величины от её математического ожидания: .

В практических задачах для вычисления дисперсии используют равносильную формулу .

Основными свойствами дисперсии являются:


.

Случайная величина - величина, значение которой получается в результате пересчета или измерений и не может быть однозначно определено условиями его возникновения.

То есть случайная величина представляет собой числовые случайные события.

Случайные величины подразделяют на два класса:

Дискретные случайные величины - значения этих величин представляют собой натуральные числа, которым как отдельным событиям сопоставляются частоты и вероятности.

Непрерывные случайные величины - могут принимать любые значения из некоторого промежутка (интервала). Учитывая, что на промежутке от Х1 до Х2 числовых значений бесконечное множество, то вероятность того, что случайная величина ХiЄ(Х1,Х2) примет определенное значение, бесконечно мала. Учитывая, что невозможно перечислить все значения непрерывной случайной величины, на практике пользуются средним значением интервала (Х1,Х2).

Для дискретных случайных величин функция у=Р(х) - называется функцией распределения случайной величины и имеет график - его называют многоугольник распределения.

Различают следующие группы числовых характеристик: характеристики положения (математическое ожидание, мода, медиана, квантиль и др.), рассеивания (дисперсия, среднеквадратичное отклонение и др.), характеристики формы плотности распределения (показатель асимметрии, эксцесса и др.).

Математическим ожиданием (средним значением по распределению) называется действительное число, определяемое в зависимости от типа СВ Х формулой:


Математическое ожидание существует, если ряд (соответственно интеграл) в правой части формулы сходится абсолютно. Если mX = 0, то СВ Х называется центрированной (обозначается ).

Свойства математического ожидания:

где С - константа;

M = C×M[X];

M = M[X]+M[Y],

для любых СВ X и Y;

M = M[X]×M[Y] + KXY,

где KXY = M - ковариация СВ X и Y.

Начальным моментом k-го порядка (k = 0, 1, 2, ...) распределения СВ Х называется действительное число, определяемое по формуле:

nk = M =

Центральным моментом k-го порядка распределения СВ Х называется число, определяемое по формуле:

mk = M[(X-mX)k]=

Из определений моментов, в частности, следует, что: n0 = m0 = 1, n1 = mX, m2 = DX = sX2.

Модой СВНТ называется действительное число Mo(X) = x*, определяемое как точка максимума ПР f(x). Мода может иметь единственное значение (унимодальное распределение) или иметь множество значений (мультимодальное распределение).

Медианой СВНТ называется действительное число Mе(X) = x0, удовлетворяющее условию: P{X < x0} = P{X ³ x0} или F(x0) = 0,5.

Квантилем уровня р называется действительное число tp, удовлетворяющее уравнению: F(tp) = p. В частности, из определения медианы следует, что x0 = t0,5.

Дисперсией СВ Х называется неотрицательное число D[X] = DХ, определяемое формулой:

DX = M[(X-mX)2] = M - mX2 =

Дисперсия существует, если ряд (соответственно интеграл) в правой части равенства сходится. Свойства дисперсии:

D[C] = 0, где С - константа;

D = C2×D[X];

дисперсия, очевидно, не меняется от смещения СВ X;

D = D[X] + D[Y] + 2×KXY,

где KXY = M - ковариация СВ X и Y;

Неотрицательное число sХ = называется среднеквадратичным отклонением СВ X. Оно имеет размерность СВ Х и определяет некоторый стандартный среднеквадратичный интервал рассеивания, симметричный относительно математического ожидания. (Величину sХ иногда называют стандартным отклонением). СВ Х называется стандартизованной, если mX = 0 и sХ = 1. Если величина Х = const (т.е. Х не случайна), то D[X] = 0.

Показателем асимметрии ПР является коэффициент асимметрии (“скошенности”) распределения: A = m3/s3X. Показателем эксцесса ПР является коэффициент эксцесса (“островершинности”) распределения: E = (m4/s4X)-3. В частности, для нормального распределения E = 0.

Упорядочная совокупность n случайных величин (СВ) Х1, Х2, ..., Хn, рассматриваемых совместно в данном опыте, называется n-мерной СВ или случайным вектором и обозначается = (Х1, Х2, ..., Хn).

Функцией распределения (ФР) n-мерного случайного вектора называется функция n действительных переменных х1, x2, ..., xn, определяемая как вероятность совместного выполнения n неравенств: F(x1, x2, ... xn) = P{ X1 < x1, X2 < x2,..., Xn < xn}. В частности, для двумерного случайного вектора (X, Y) по определению ФР имеем: F(x, y) = P{X < x, Y < y}. ФР F (х, у) обладает следующими свойствами:

1 0 £ F(x, у) £ 1;

2 F(x, у) - неубывающая функция своих аргументов;

4.

Свойство 4 обычно называют условием согласованности. Оно означает, что ФР отдельных компонент случайного вектора могут быть найдены предельным переходом из функции совместного распределения этих компонент. Вероятность попадания случайной точки на плоскости (X, Y) в прямоугольник со сторонами, параллельными осям координат, может быть вычислена с помощью ФР по формуле:

P{x1 £ X < x2, y1 £ Y < y2} = F(x1, y1)+ F(x2, y2)- F(x1, y2)- F(x2, y1).

Двумерный случайный вектор (X,Y) называется случайным вектором дискретного типа (СВДТ), если множество его возможных значений G(x, y) не более чем счетно. Ее закон распределения можно задать двумерной таблицей из перечня возможных значений пар компонент {(хi, yi) | (хi, yi) Î G(x, y)} и соответствующих каждой такой паре вероятностей pij = P{X = xi, Y = yj}, удовлетворяющих условию

Двумерный случайный вектор (X, Y) называется случайным вектором непрерывного типа (СВНТ), если существует такая неотрицательная функция f(x, y) называемая плотностью распределения (ПР) вероятностей случайного вектора, что:

f(x, y) = , тогда F(x, y) = .

ПР вероятностей обладает следующими свойствами:

f(x, y) ³ 0, (x, y) Î R2;

- условие нормировки.

ПР вероятностей отдельных компонент случайного вектора выражаются в виде интегралов от совместной плотности:

f(x) = f(y) = .

Вероятность попадания случайной точки в произвольную квадрируемую область S на плоскости определяется по формуле

P{(X, Y) Î S}= .

Условной плотностью распределения вероятностей случайной компоненты X при условии, что компонента Y приняла определенное значение у, называется функция f(x/y) действительной переменной х Î R: f(x/y) = f(x, y)/f(y). Аналогично определяется условная плотностью распределения вероятностей случайной компоненты Y при условии, что компонента X приняла определенное значение x: f(y/x) = f(x, y)/f(x). СВ X1, X2, ..., Хn называются независимыми (в совокупности), если для событий {Xi Î Bi}, i = 1, 2, ..., n, где B1, B2, ... Bn - подмножества числовой прямой, выполняется равенство: P{X1 Î B1, X2 Î B2, ... Xn Î Bn} = P{X1 Î B1}× P{X2 Î B2}× ... ×P{Xn Î Bn}.

Теорема: СВ X1, Х2, .... Хn независимы тогда и только тогда, когда в любой точке x = (x1, x2, ..., xn) имеет место равенство: F(x1, x2, ..., xn) = F(x1) × F (x2) × ... × F (xn) (или f(x1, x2, ..., xn) = f(x1) × f(x2) × ... × f(xn)).

Для двумерного случайного вектора (X, Y) вводятся следующие числовые характеристики.

Начальным моментом порядка r + s случайного вектора (X, Y) называется действительное число nr,s, определяемое формулой:

nr,s = M =

Начальный момент nr,s существует, если интеграл (соответственно ряд) в правой части равенства абсолютно сходится. В частности, nr,0 = M - соответствующие начальные моменты компоненты X. Вектор с неслучайными координатами (mX, mY) = (n1,0, n0,1) называется математическим ожиданием случайного вектора (X, Y) или центром рассеивания.

Центральным моментом порядка r + s случайного вектора (X, Y) называется действительное число mr,s определяемое формулой

mr,s = M[(X-mX)r (Y-mY)s] =

Центральный момент mr,s существует, если интеграл (соответственно ряд) в правой части равенства абсолютно сходится. Вектор с неслучайными координатами (DX, DY) = (m2,0, m0,2) называется дисперсией случайного вектора.

Центральный момент m1,1 называется корреляционным моментом (ковариацией): KXY = M = M[(X-mX)×(Y-mY)] = M-mX mY.

Коэффициентом корреляции двух случайных компонентов X и Y случайного вектора является нормированная ковариация

rXY = KXY/(sXsY).

Свойства ковариации (и коэффициента корреляции).

Расширением понятия случайных событий, состоящих в появлении некоторых числовых значений в результате эксперимента, является случайная величина Х.

Определение. Случайной называют величину, принимающую в результате эксперимента одно только значение из некоторой их совокупности и неизвестное заранее, какое именно.

Случайная величина , к примеру, представляет собой обоснованную модель описания геологических данных, учитывающую влияние различных факторов на физическое поле .

Как и результат отдельного эксперимента, точное значение случайной величины предсказать нельзя, можно лишь установить ее статистические закономерности, т.е. определить вероятности значений случайной величины. Например, измерения физических свойств горных пород являются наблюдениями соответствующих случайных величин.

Среди случайных величин, с которыми приходится встречаться геологу, можно выделить два основных типа: величины дискретные и величины непрерывные .

Определение. Дискретной случайной величиной называется такая, которая может принимать конечное или бесконечное счетное множество значений.

В качестве типичных примеров дискретной случайной величины могут выступать все результаты полевых работ , все результаты экспериментов, привезенные c поля образцы и пр.

Всевозможные значений случайной величины образуют полную группу событий, т.е. , где - конечное или бесконечное. Поэтому можно говорить, что случайная величина обобщает понятие случайного события.

Пусть в результате исследований был получен следующий ряд данных по количественному составу некоторой породы: 4; 3; 1; 2; 5; 4; 2; 2; 3; 1; 5; 4; 3; 5; 5; 2; 5; 5; 6; 1. Всего было проведено 20 испытаний. Для того, чтобы с данными было удобно работать, их преобразовали: расположили полученные значения по возрастанию и подсчитали количество появления каждого из значений. В результате получили (Таблица 7.1):

Определение . Распределение данных по возрастанию называется ранжированием .

Определение . Наблюдаемое значение некоторого признака случайной величины называется вариантом.

Определение . Ряд, составленный из вариант, называется вариационным рядом .

Определение . Изменение некоторого признака случайной величины называется варьированным .

Определение . Число, показывающее сколько раз варьируется данная варианта, называется частотой и обозначается .

Определение. Вероятность появления данной варианты равно отношению частоты к общей сумме вариационного ряда

(1)

С учетом введенных определений перепишем таблицу 7.1 .

Таблица 7.2. Ранжированный ряд
Вариант 1 2 3 4 5 6
Частота 3 4 3 3 6 1
Вероятность 3/20 4/20 3/20 3/20 6/20 1/20

При статистическом анализе экспериментальных данных главным образом используется дискретные величины. В таблице 7.3 приведены основные числовые характеристики этих величин, имеющих важное практическое значение при обработке экспериментальных данных.

Таблица 7.3. Числовые характеристики случайных величин
N п/п Характеристика (параметр) случайной величины и ее обозначение Формула для нахождения характеристики случайной величины Примечание
1 Математическое ожидание
(2)
Характеризует положение случайной величины на числовой оси
2 Среднее значение
(3)
Если случайная величина независимая, то
3 Мода Это такое значение , для которого наиболь-шее Равна наиболее часто встречающемуся значению . Если таких значений в вариационном ряду несколько, то не определяется.
4 Медиана Если четное, то Если нечетное, то Это такое значение, которое находится в центре ранжированного ряда.
5 Дисперсия Характеризует действительное рассеяние случайной величины вокруг среднего значения.
7 Коэффициент вариации
(6)
Наряду с дисперсией характеризует изменчивость случайной величины
8 Центрированное нормированное уклонение