Транспорт минеральных веществ. Поглощение и транспорт минеральных веществ в растении

Описанное выше движение минеральных солей через толщу корня в ксилему представляет собой начальный этап их транслокации по растению в целом. Попав в ксилему, соли разносятся дальше ко всем органам по механизму объемного потока, который обеспечивается транспира-цией (транспирационный ток). Это движение можно продемонстрировать, поставив опыт с кольцеванием растений. При этом удаление тканей, расположенных ближе к поверхности ствола, т. е. флоэмы и т. д., не нарушит поступления ионов к вышележащим частям растения. Анализ ксилемного сока показывает также, что значительная доля азота переносится по сосудам в форме аминокислот и других близких к ним органических соединений, хотя некоторое его количество движется вверх в составе неорга-нических ионов нитрата и аммония. Следовательно, уже в корнях часть минерального азота превращается в азотсодержащую органику. Точно так же и небольшие количества фосфора и серы транспортируются в виде органических соединений.

Поэтому, хотя традиционно ксилему и флоэму рассматривают как две ткани, проводящие соответственно минеральные и органические вещества, эти различия не вполне четкие.

Главными потребителями минеральных элементов, т. е. «пунктами их назначения», являются растущие части растения , в частности верхушечные и боковые меристемы, молодые листья, развивающиеся цветки и плоды, а также запасающие ткани.

Транслокация органических веществ по флоэме

Фотосинтез происходит не во всех частях растения. Тем из них, которые удалены от фотосинтезируюших структур, например корням, нужна специальная транспортная система снабжения ассимилятами. У сосудистых растений органические продукты переносятся из главных органов фотосинтеза - листьев - ко всем остальным частям растения по флоэме. На рисунке приведена общая схема связей между автотрофными клетками, образующими органические питательные вещества, и клетками, получающими эти вещества. Как видно из этого рисунка, органические вещества у растений могут перемещаться по побегам как вверх, так и вниз. Это отличает флоэму от ксилемы, по которой транспорт осуществляется только вверх. Следует также отметить, что запасающие органы в разное время могут функционировать то как источники ассимилятов, то как их потребители.

Обычно около 90% всех переносимых по флоэме питательных веществ составляет дисахарид глюкоза. Это сравнительно инертный и хорошо растворимый углевод, который не играет почти никакой роли в метаболизме и поэтому служит идеальной транспортной формой, так как маловероятно, чтобы он расходовался в процессе переноса. Основное предназначение сахарозы - вновь превратиться в более активные моносахариды - глюкозу и фруктозу. Высокая растворимость позволяет ей достигать во фло-эмном соке очень высокой концентрации, например у сахарного тростника она составляет до 25% (масса/объем).

Флоэма переносит в различной форме и некоторые элементы минерального питания, например азот и серу в составе аминокислот, фосфор в виде неорганического фосфата и фосфо-рилированных Сахаров, калий в виде ионов. В ней могут содержаться небольшие количества витаминов, растительных гормонов (таких как ауксины и гиббереллины), вирусов и других ингредиентов.

Наглядно продемонстрировать циркуляцию углерода в растении можно, если дать листьям поглощать углекислый газ, меченный радиоактивным изотопом |4С. Радиоактивная углекислота будет фиксироваться в процессе фотосинтеза, и 14С окажется в составе органических соединений, включая сахарозу. Затем движение изотопа по растению можно проследить с помощью известных методов, например радиоавтографии, подсчета счетчиком Гейгера импульсов у поверхности растения или экстрагирования из его частей этого изотопа. В конечном итоге, и флоэма, и ксилема будут непосредственно участвовать в циркуляции углерода. Например, достигнув в составе сахарозы корней, углерод может использоваться там для синтеза аминокислот из нитратов и углеводов, а затем синтезированные аминокислоты, содержащие меченый углерод, могут транспортироваться в ксилемном соке вверх по стеблю.

Корни растений поглощают из почвы как воду, так и минеральные вещества. Эти процессы взаимосвязаны, но осуществляются разными механизмами. Катионы и анионы поступают в клеточные стенки ризодермы из почвенного раствора, а также путем контактного обмена с частицами почвенного поглощающего комплекса. Тесный контакт обеспечивается благодаря выделению корневыми волосками слизи и отсутствию у ризодермы кутикулы и других покровных образований. Эти процессы связаны с обменом ионов Н" на катионы окружающей среды или анионов органических кислот на анионы минеральных веществ.

Процесс поглощения состоит из двух этапов: поступление ионов в свободное пространство корня и транспорт через мембрану-плазмалемму. Свободное пространство корня занимает примерно 10% его объема и образовано межмолекулярным пространством в толще клеточных стенок. Клеточные стенки образуют единую систему - апопласт, по которому могут передвигаться растворенные в воде вещества. Кроме того, на клеточных стенках происходит адсорбция и концентрирование ионов. Адсорбция ионов на стенках корневых волосков происходит путем непосредственного химического взаимодействия молекул клеточной стенки с адсорбируемым ионом или в результате взаимного притяжения ионов, основанного на электростатических силах.

Транспорт веществ через плазмалемму может быть пассивным и активным. Пассивное поступление ионов осуществляется путем диффузии по электрохимическому, т.е. по электрическому и концентрационному, градиенту. При этом ионы могут передвигаться через липиды мембран, растворяясь в них, или через специальные гидрофильные каналы в мембранах. Активный транспорт веществ идет против электрохимического градиента с затратой энергии в форме АТФ. Ионы перемещаются через специфические зоны мембраны, называемые насосами. Особую роль играет Н+ насос в плазмалемме, создающий через мембрану электрический и химический градиенты ионов Н". Электрический потен-циал ионов Н+ может быть использован для транспорта катионов по электрическому градиенту против концентрационного.

Функционирование активных механизмов транспорта ионов- энергозависимый процесс, поэтому существует тесная связь по-глощения веществ с дыханием корня. Почвенные условия (аэра-ция, температура, рН) должны способствовать энергетически эффективному дыханию и росту корней.

Радиальное перемещение ионов в корне называют ближним транспортом Он осуществляется по апопласту, симпласту - совокупности протопластов клеток, соединенными плазмодеснами, и вакуому- совокупности систем вакуолей. Поглощенные корневыми волосками ионы поступают в симпласт коры, где минеральные формы азота, фосфора и серы включаются в органические соединения и к сосудам уже направляются продукты их первичной ассимиляции. При высоком уровне питания избыток ионов сбрасывается в накуоли и к сосудам подается необходимое количество питательных веществ. При дефицитном питании недостаток ионов восполняется запасами вакуоли.



Особое значение в радиальном транспорте ионов имеет самый внутренний слой клеток коры - эндодерма. Пояски Каспари прерывают апопластический транспорт веществ между корой и центральным цилиндром. Весь поток переходит на симпластический путь, чем обеспечивается метаболический контроль поступления веществ.

Восходящий транспорт ионов по ксилеме называют дальним траиспортом. Механизм ксилемного транспорта растворенных в воде веществ обеспечивается корневым давлением и транспирацией.

Клетки обмениваются различными веществами с окружающей их средой в результате диффузии. Однако перенос веществ обычной диффузией на большие расстояния неэффективен; возникает необходимость в специализированных системах транспорта. Такой перенос из одного места в другое осуществляется за счёт разности давлений в этих местах. Все переносимые вещества движутся с одинаковой скоростью в отличие от диффузии, где каждое вещество движется со своей скоростью в зависимости от градиента концентрации.

У животных можно выделить четыре основных типа транспорта: пищеварительную , дыхательную , кровеносную и лимфатическую системы. Часть из них были описаны ранее, к другим мы перейдем в следующих параграфах.

У сосудистых растений передвижение веществ осуществляется по двум системам: ксилеме (вода и минеральные соли) и флоэме (органические вещества). Передвижение веществ по ксилеме направлено от корней к надземным частям растения; по флоэме питательные вещества движутся от листьев.

Одним из важнейших механизмов транспорта веществ в растении является осмос. Осмос – это переход молекул растворителя (например, воды) из областей с более высокой концентрацией в области с более низкой концентрацией через полупроницаемую мембрану. Этот процесс похож на обычную диффузию, но протекает быстрее. Численно осмос характеризуется осмотическим давлением – давлением, которое нужно приложить, чтобы предотвратить осмотическое поступление воды в раствор.

В растениях роль таких полупроницаемых мембран играют плазматическая мембрана и тонопласт (мембрана, окружающая вакуоль). Если клетка контактирует с гипертоническим раствором (то есть раствором, в котором концентрация воды меньше, чем в самой клетке), то вода начинает выходить из клетки наружу. Этот процесс называется плазмолизом . Клетка при этом сморщивается. Плазмолиз обратим: если такую клетку поместить в гипотонический раствор (с более высоким содержанием воды), то вода начнёт поступать внутрь, и клетка снова набухнет. При этом внутренние части клетки (протопласт) оказывают давление на клеточную стенку. У растительной клетки набухание останавливается жесткой клеточной стенкой. У животных клеток жёстких стенок нет, а плазматические мембраны слишком нежны; необходим особый механизм, регулирующий осмос.

Еще раз подчеркнём, что осмотическое давление – величина скорее потенциальная, чем реальная. Она становится реальной только в отдельных случаях – например, при её измерении. Также необходимо помнить, что вода движется в направлении от более низкого осмотического давления к более высокому.

Основная масса воды поглощается молодыми зонами корней растений в области корневых волосков – трубчатых выростов эпидермиса. Благодаря им значительно увеличивается всасывающая воду поверхность. Вода поступает в корень за счёт осмоса и движется вверх к ксилеме по апопласту (по клеточным стенкам), симпласту (по цитоплазме и плазмодесмам), а также через вакуоли . Надо заметить, что в клеточных стенках имеются полоски, называемые поясками Каспари . Они состоят из водонепроницаемого суберина и препятствуют продвижению воды и растворённых в ней веществ. В этих местах вода вынуждена проходить через плазматические мембраны клеток; полагают, что таким образом растения защищаются от проникновения токсичных веществ, патогенных грибов и т. п.

Вторая важная сила, участвующая в подъёме воды, – это корневое давление . Оно составляет 1–2 атм (в исключительных случаях – до 8 атм). Этой величины, конечно, недостаточно, чтобы в одиночку обеспечить движение жидкости, но её вклад у многих растений несомненен.

Попадая по ксилеме в листья, вода и минеральные вещества распределяются через разветвлённую сеть проводящих пучков по клеткам. Движение по клеткам листа осуществляется, как и в корне, тремя способами: по апопласту, симпласту и вакуолям. На свои нужды растение использует менее 1 % поглощаемой им воды, остальное в конце концов испаряется через восковый слой на поверхности листьев и стеблей – кутикулу (около 10 % воды) – и особые поры – устьица (90 % воды). Травянистые растения теряют в день около литра воды, а у больших деревьев эта цифра может доходить до сотен литров. Испарение воды ( транспирация ) осуществляется за счёт энергии солнца. Проще всего транспирацию наблюдать, если накрыть растение в горшке колпаком; на внутренней поверхности колпака будут собираться капельки жидкости.

На скорость испарения влияют многие факторы; как внешние условия (свет, температура, влажность, наличие ветра, доступность воды в почве), так и особенности строения листьев (площадь поверхности листа, толщина кутикулы, количество устьиц). Ряд внешних факторов приводит к уменьшению диффузии воды из листьев, другие (например, отсутствие света или сильный ветер) вызывают замыкание устьиц (благодаря работе особых замыкающих клеток). Растения засушливых регионов имеют специальные приспособления для уменьшения транспирации: погруженные глубоко в листья устьица, густое опушение из волосков или чешуек, толстый восковой налёт, превращение листьев в колючки или иглы и другие. Осенний листопад в умеренных широтах также призван уменьшить испарение воды, когда наступят холода.

Некоторые минеральные вещества, выполнив свою полезную функцию, могут перемещаться дальше вверх или вниз по флоэме. Это происходит, например, перед сбрасыванием листьев, когда накопленные листьями полезные вещества сохраняются, откладываясь в других частях растения.

У многоклеточных растений есть ещё одна транспортная система, предназначенная для распределения продуктов фотосинтеза, – флоэма. В отличие от ксилемы, органические вещества могут транспортироваться по флоэме и вверх, и вниз. 90 % переносимых веществ составляет сахароза, которая практически не участвует в метаболизме растения непосредственно и поэтому является идеальным углеводом для транспорта. Скорость движения сахара обычно составляет 20–100 см/ч; за день по стволу большого дерева может пройти несколько килограммов сахара (в сухой массе).

Каким образом столь большие потоки питательных веществ могут протекать в тонких ситовидных трубках флоэмы (их диаметр не превышает 30 мкм), не совсем понятно. По-видимому, вещества по флоэме распространяются массовым током, а не диффузией. Возможными механизмами транспорта являются обычное давление или электроосмос.

При повреждении флоэмы ситовидные трубки закупориваются в результате отложения каллозы на ситовидных пластинках. Безвозвратная утечка питательных веществ обычно прекращается уже через несколько минут после повреждения.

Для осуществления процессов жизнедеятельности растениям нужна вода и растворенные в ней минеральные (неорганические) вещества. Получить их растение может в основном из увлажненной почвы. За всасывание водного раствора у растений отвечают корни. Однако не столько корни нуждаются в воде, сколько листья и другие надземные органы растения (развивающиеся почки, побеги, цветки, плоды). Поэтому у высших растениях в процессе эволюции получила развитие проводящая система, обеспечивающая транспорт веществ. Наиболее сложное строение она имеет у покрытосеменных растений.

За передвижение воды и минеральных веществ как по стеблю, так и по листьям и в корнях, отвечают сосуды . Они представляют собой мертвые клетки. Движение воды и минеральных веществ вверх обеспечивается за счет корневого давления и испарения воды листьями.

У древесных растений сосуды находятся в древесине стеблей. В этом можно убедиться, если поставить ветку в подкрашенный водный раствор. Через некоторое время на поперечном спиле можно увидеть, что окрасится только древесина. Это значит, что только по ней передвигаются вода и растворенные в ней минеральные вещества.

Передвижение по стеблю органических веществ

В зеленых листьях растений происходит фотосинтез, в процессе которого синтезируются органические вещества. Из этих веществ в дальнейшем синтезируются другие органические вещества, используемые в различных процессах жизнедеятельности и для получения энергии.

В органических веществах нуждаются не только зеленые части растения, но и другие органы и ткани. Кроме того, часть органических веществ откладывается про запас. Поэтому в растениях осуществляется передвижение не только воды и минеральных веществ, но и транспорт органических веществ. Обычно он идет в противоположную сторону от тока водного раствора.

Органические вещества у покрытосеменных растений передвигаются по ситовидным трубкам . Это живые клетки, их поперечные перегородки, которыми они соприкасаются друг с другом, похожи на сито.

У древесных растений ситовидные трубки расположены в лубе, который является часть коры, расположенной ближе к камбию (с внутренней стороны от камбия находится древесина).

Если кора стебля растения повреждается достаточно глубоко, и это препятствует оттоку органических веществ, то на стволе образуются так называемые наплывы, или наросты. В них скапливаются органические вещества. За их счет на повреждении ствола образуется раневая пробка. Далее в этом месте могут начать развиваться корни и почки.

Органические вещества у растений часто накапливаются в различных органах и тканях (корнях, стеблях, сердцевине). Весной эти вещества используются для того, чтобы у растения появились листья и новые побеги. Для этого запасенные органические вещества должны раствориться в воде и переместиться туда, где они требуются. И получается, что в это время органические вещества двигаются не по ситовидным трубкам, а по сосудам с водой и минеральными веществами.

Теперь, когда мы рассмотрели функции минеральных элементов, необходимых для нормального роста растений, следует обсудить механизмы их поступления в растения и структурные элементы, по которым предстоит им двигаться. Минеральные вещества обычно поглощаются из почвы с помощью корней. Они могут поступать в небольших количествах также и через листья, поэтому внекорневое внесение некоторых микроэлементов стало стандартным сельскохозяйственным методом. Минеральные вещества почти всегда поступают в растения в форме ионов. Эти ионы сначала должны пересечь оболочку и плазмалемму, с тем, чтобы попасть в цитоплазму: затем при необходимости пройти и через мембрану, окружающую вакуоль (тонопласт) или какую-либо клеточную органеллу, для того, чтобы оказаться в том или ином внутреннем компартменте.

Изучение вопроса транспорта элементов является одним из основных в проблеме минерального питания. Это предопределяется следующими обстоятельствами. Во-первых, суть питания растений состоит в поступлении и включении в метаболизм минеральных элементов в результате обмена между организмом и средой. Во-вторых, изучение процесса транспорта элементов сопряжено с выяснением свойств и функций клеточной оболочки, мембранных образований, связи между клетками и тканями. В-третьих, выяснение вопросов, связанных с транспортом, приближает нас к целенаправленному управлению продуктивностью сельскохозяйственных растений.

Гидратированное состояние ионов. Перенос ионов через мембрану связан с определенными трудностями. Одной из трудностей является наличие гидратированной воды, которая окружает ион и значительно увеличивает его объем.

Рассмотрим одновалентные ионы, в частности катионы Li + , Na + , K + , Rb + и Cs + : самое легкое ядро у лития, а самое тяжелое у цезия. С увеличением массового числа растет также и количество электронов, которые окружают ядро и объем пространства, занимаемого электронными орбиталями. Поскольку плотность электронного облака, окружающего ядро мала, можно предположить, что ядро более доступно внешним воздействиям. Эта зависимость находит свое отражение в величинах радиусов гидратированных ионов: Li + – 0,06; Na + – 0,095; K + – 0,133; Rb + – 0,148; Cs + – 169 нм.

В водных растворах молекулы воды удерживаются около ионов электростатическими силами, источником которых служат заряженные частицы атомного ядра. Чем ближе могут подойти к заряженному атомному ядру молекулы воды, тем сильнее они связываются и тем больше изменяется величина свободной энергии, обусловленная гидратацией. Таким образом, у лития молекулы воды ближе к ядру и это значит, что в гидратной оболочке лития содержится больше молекул воды. Известно, что молекулы воды являются диполями. Около катионов все ближайшие молекулы воды ориентируются отрицательными полюсами внутрь, а около анионов внутрь направлены положительные полюсы молекул воды (рис. 5.1).


Этот внутренний, сильно связанный с ионами структурированный слой молекул воды, называют первичной оболочкой.

На некотором отдалении, превышающем толщину первичной оболочки, напряженность электрического поля несколько снижается, что приводит к изменению нормальной ориентации молекул воды. Из-за этого вокруг иона возникает вторичная оболочка (рис. 5.2).

Таким образом, благодаря гидратной оболочке размеры ионов сильно увеличиваются. Между радиусами гидратированных и негидратированных катионов щелочных металлов существует обратная зависимость, т. е. гидратированный ион, имеющий меньший кристаллический радиус, имеет большие размеры. Радиусы гидратированных ионов трудно вычислить; данные разных авторов значительно разнятся. Подвижность ионов дает представление об их относительных размерах (табл. 5.2).

Таблица 5.2

Подвижность ионов в водных растворах (25 О С)

В настоящее время общепринятыми являются представления о том, что ионы и различные вещества преодолевают мембрану несколькими способами, основные из которых:

1. Простая диффузия через липидную фазу, если вещество растворимо в липидах (это не касается ионов).

2. Облегченная диффузия гидрофильных веществ с помощью липофильных переносчиков (транспортеров).

3. Простая диффузия ионов через гидрофильные поры (например, через ионные каналы).

4. Перенос веществ с участием активных комплексов (насосов).

5. Транспорт веществ путем пиноцитоза в условиях существенных изменений архитектуры мембран.

Что касается движущих сил мембранного транспорта, то различают два механизма.

Пассивный транспорт – перемещение веществ путем диффузии по градиенту электрохимического потенциала без затраты энергии (простая и, в какой-то мере, облегченная диффузия).

Активный транспорт перемещение веществ против градиента электрохимического потенциала с затратой метаболической энергии, как правило в форме АТФ или редокс-цепей.

Для того чтобы понять механизмы трансмембранного переноса элементов минерального питания, остановимся на рассмотрении некоторых физико-химических закономерностях, определяющих движение ионов в растворе и мембране. Начнем с процессов пассивного транспорта (в частности вспомним законы диффузии).

Согласно первому закону Фика, поток (Ф) прямо пропорционален коэффициенту диффузии D и градиенту концентрации dC/dх в точке х в данный момент времени.