Использование резонанса в технике. Разрушительная сила звука

Идя по доске, перекинутой через ров, можно попасть шагами в резонанс с собственным периодом системы (доски с человеком на ней), и доска начинает тогда сильно колебаться (изгибаться вверх и вниз). То же самое может случиться и с мостом, по которому проходит войсковая часть или проезжает поезд (периодическая сила обусловливается ударами ног или ударами колес на стыках рельсов). Так, например, в 1906г. в Петербурге обрушился так называемый Египетский мост через реку Фонтанку. Это произошло при переходе через мост кавалерийского эскадрона , причем четкий шаг лошадей, отлично обученных церемониальному маршу, попал в резонанс с периодом моста. Для предотвращения таких случаев войсковым частям при переходе через мосты приказывают обычно идти не «в ногу», а вольным шагом. Поезда же большей частью переезжают мосты на медленном ходу, чтобы период ударов колес о стыки рельсов был значительно больше периода свободных колебаний моста. Иногда применяют обратный способ «расстройки» периодов: поезда проносятся через мосты на максимальной скорости. Случается, что период ударов колес на стыках рельсов совпадает с периодом колебаний вагона на рессорах, и вагон тогда очень сильно раскачивается. Корабль также имеет свой период качаний на воде. Если морские волны попадают в резонанс с периодом корабля, то качка становится особенно сильной. Капитан меняет тогда скорость корабля или его курс. В результате период волн, набегающих на корабль, изменяется (вследствие изменения относительной скорости корабля и воли) и уходит от резонанса. Неуравновешенность машин и двигателей (недостаточная центровка, прогиб вала) является причиной того, что при работе этих машин возникает периодическая сила, действующая на опору машины - фундамент, корпус корабля и т. п. Период силы может совпасть при этом с периодом свободных колебаний опоры или, например, с периодом колебаний изгиба самого вращающегося вала или с периодом крутильных колебаний этого вала. Получается резонанс, и вынужденные колебания могут быть настолько сильны, что разрушают фундамент, ломают валы и т. д. Во всех таких случаях принимаются специальные меры, чтобы избежать резонанса или ослабить его действие (расстройка периодов, увеличение затухания - демпфирование и др.). Очевидно, для того чтобы с помощью наименьшей периодической силы получить определенный размах вынужденных колебаний, нужно действовать в резонанс. Тяжелый язык большого колокола может раскачать даже ребенок, если он будет натягивать веревку с периодом свободных колебаний языка. Но самый сильный человек не раскачает язык, дергая веревку не в резонанс.

Слышали ли вы о том, что отряд солдат, переходя мост, должен перестать маршировать? Солдаты, идущие до этого в ногу, перестают это делать и начинают идти свободным шагом.

Такой приказ отдается командирами вовсе не с целью дать солдатам возможность полюбоваться местными красотами. Это делается для того, чтобы солдаты не разрушили мост. Какая тут связь? Очень простая. Чтобы это понять, надо ознакомиться с явлением резонанса.

Что такое явление резонанса: частота колебаний

Чтобы проще понять, что такое резонанс, вспомните такую нехитрую и приятную забаву, как катание на подвесных качелях. Один человек сидит на них, а второй раскачивает.

И прикладывая совсем небольшие силы, даже ребенок может очень сильно раскачать взрослого. Как он этого добивается? Частота его раскачиваний совпадает с частотой качающегося, возникает резонанс, и амплитуда раскачиваний сильно возрастает. Как-то так. Но обо всем по порядку.

Частота колебаний это количество колебаний за одну секунду. Измеряется она при этом не в разах, а в герцах (1 Гц). То есть, частота колебаний в 50 герц означает, что тело совершает 50 колебаний в секунду.

В случае вынужденных колебаний всегда есть самоколеблющееся (или в нашем случае качающееся) тело и вынуждающая сила. Так вот эта сторонняя сила действует с определенной частотой на тело.

И если его частота будет сильно отличаться от частоты колебаний самого тела, то сторонняя сила будет слабо помогать телу колебаться или, говоря научно, слабо усиливать его колебания.

Например, если пытаться раскачать человека на качелях, толкая его в момент, когда он летит на вас, вы можете отбить себе руки, скинуть человека, но вряд ли сильно его раскачаете.

А вот если раскачивать его, толкая в направлении движения, то нужно совсем немного усилий, чтобы добиться результата. Вот это и есть совпадение частоты или резонанс колебаний . При этом сильно возрастает их амплитуда.

Примеры резонансных колебаний: польза и вред

Так же и при катании на другом варианте качелей в виде доски на подставке проще и эффективнее отталкиваться ногами от земли, когда ваша сторона качелей уже поднимается, а не когда она опускается.

По этой же причине застрявшую в ямке машину постепенно раскачивают и толкают вперед в моменты, когда она сама двигается вперед. Так значительно повышают ее инерцию, усиливая амплитуду колебаний.

Можно приводить множество подобных примеров, которые говорят о том, что мы на практике очень часто применяем явление резонанса, только делаем мы это интуитивно, не догадываясь, что применяем правила физики.

Выше говорилось о полезности явления резонанса. Однако, резонанс может и вредить. Иногда возникающее увеличение амплитуды колебаний может быть очень вредным. В частности, мы говорили о роте солдат на мосту.

Так вот были несколько случаев в истории, когда под шагами солдат реально разрушались и падали в воду мосты. Последний из них произошел около ста лет назад в Петербурге. В таких случаях частота ударов солдатских сапог совпадала с частотой колебаний моста, и мост рушился.

Резонанса механического эффект

Анимация

Описание

Резонансом (Р) называется явление возрастания амплитуды вынужденных колебаний в какой-либо колебательной системе при приближении частоты периодического внешнего воздействия к одной из частот собственных колебаний системы.

Характер Р существенно зависит от свойств колебательной системы. Простейший случай Р наступает при периодическом воздействии на линейную систему, т.е. систему с параметрами, не зависящими от состояния самой системы. Примером линейной системы с одной степенью свободы является масса m , подвешенная на пружине и находящаяся под действием гармонической силы F = F 0 cos (w t ) (рис. 1).

Пружинный маятник - механическая колебательная система с одной степенью свободы

Рис. 1

Уравнение движения такой системы имеет вид:

ma + bv + kx = F 0 cos (w t ), (1)

где x - смещение массы m от положения равновесия;

v = dx /dt - ее скорость;

a = d 2 x / dt 2 - ускорение;

k - коэффициент упругости пружины;

b - коэффициент трения.

Примечание: аналогичное уравнение имеет место и для колебательных процессов в электрической цепи, состоящей из последовательно соединенных индуктивности L , емкости С , сопротивления R и источника электродвижущей силы E , которая меняется по гармоническому закону.

Решение уравнения (1), соответствующее установившимся вынужденным колебаниям, имеет вид:

x = [ F 0 ¤ (k ((1 - w 2 ¤w 0 2 )2 + (b 2 ¤ m 2 )(w 2 ¤w 0 4 ))1/2 ]cos (w t + j ), (2)

где w 0 - собственная частота системы, при малых колебаниях w 0 2 = k ¤ m;

начальная фаза j может быть найдена из выражения tg j = (b w )/(k (1- w 2 ¤w 0 2 )).

При медленном воздействии (w << w 0 ) амплитуда смещений x 0 » F 0 ¤ k , т.е. смещение массы соответствует статическому растяжению пружины. С увеличением частоты воздействия амплитуда х 0 растет, и когда w приближается к значению частоты собственных колебаний системы w 0 , амплитуда вынужденных колебаний достигает максимума, т.е. наступает Р. Далее, с дальнейшим увеличением w , амплитуда монотонно убывает и при w ® Ґ амплитуда стремится к нулю. Амплитуду колебаний при Рможно найти из (2) при условии:

w = w 0 x 0 = F 0 ¤ (b w 0 ) = F 0 Q ¤ k ,

где Q - добротность колебательной системы.

Таким образом, амплитуда колебаний приР тем больше, чем меньше затухание (трение b ) в системе (рис. 2).

Зависимость амплитуд смещений от частоты внешнего воздействия при различных значениях коэффициента трения b

Рис. 2

Примечание:

bi < bi-1 .

При Р устанавливаются такие фазовые соотношения между собственными колебаниями системы и внешней гармонической силой, что фаза внешней силы совпадает с фазой скорости собственных колебаний. С энергетической точки зрения это означает, что в систему поступает наибольшая мощность.

Если линейная система подвергается негармоническому внешнему воздействию, то Р наступает только тогда, когда в спектре частот этого воздействия содержатся гармоники с частотой, близкой к собственной частоте системы. В линейной системе с несколькими степенями свободы, собственные колебания которой могут происходить с различными частотами (собственные, нормальные частоты), Р наступает при совпадении частоты внешнего воздействия с любой из собственных частот. При наличии в системе двух доминирующих собственных частот резонансная кривая имеет характерный "двугорбый" вид (рис. 3а); в колебательных системах, состоящих из набора звеньев из разных материалов различной формы и сечений, а также с разными контактными условиями, резонансные кривые имеют весьма сложный вид (рис. 3б).

Виды резонансных кривых в колебательных системах при наличии двух доминирующих собственных частот (а) и в сложных системах (b)

Рис. 3

Временные характеристики

Время инициации (log to от -5 до 3);

Время существования (log tc от -3 до 5);

Время деградации (log td от -3 до 3);

Время оптимального проявления (log tk от -1 до 1).

Диаграмма:

Технические реализации эффекта

Техническая реализация эффекта

Для наблюдения механического резонанса достаточно, например, разогнаться в легковом автомобиле по проселочной дороге с “гребенкой” от нуля до примерно 60 км/ч. При этом амплитуда колебания подвески (а соответственно и грохот кузова) будет возрастать примерно до 40 км/ч, и уменьшаться при дальнейшем росте скорости.

Это происходит вследствие того, что приблизительно при сорока частота ударов колеса о гребенку совпадает с резонансной частотой подвески. Последнюю можно вычислить, померив характерное расстояние между гребнями гребенки и определив скорость, сопровождающуюся максимальной вибрацией, по спидометру.

Применение эффекта

В дефектоскопии на явлении Р основан принцип действия дефектоскопа-толщиномера (рис. 4).

Блок-схема резонансного дефектоскопа-толщиномера

Рис. 4

Обозначения:

1 - генератор частотно-модулированных колебаний;

2 - генератор развертки;

3 - фильтр;

4 - усилитель;

6 - искатель;

7 - контролируемое изделие;

8 - резонансные пики.

Пьезокерамический преобразователь, возбуждаемый частотно-модулированным генератором, излучает в изделие УЗ-волны непрерывно меняющейся частоты. В моменты резонанса, когда на толщине изделия укладывается целое число полуволн, в исследуемом объекте резко возрастает амплитуда колебаний; резонансные пики отображаются на экране осциллографа или дисплее.

В архитектуре и строительстве явление Р учитывают при расчете акустических характеристик помещений (концертных залов и т.д.). При этом основными показателями являются обеспечение с минимумом энергетических затрат достаточной силы (интенсивности) звука в заданном спектре частот и время реверберации звука, т.е. продолжительность звучания после прекращения действия источника звука, определяемое добротностью колебательной системы. Используя явление Р, можно также гасить нежелательные колебания, обеспечивать звукоизоляцию. Для этого в определенных частях сооружений, выполненных в виде объемных резонаторов (в так наз. «горле» резонатора), дополнительно помещают слой звукопоглощающего материала. Также для эффективного поглощения звука применяют облицовочные плиты с резонансными полостями.

Наиболее широко явление Р используется в радиотехнике. Как было отмечено выше, существует прямая аналогия между механическим Р и Р в электрических цепях. Простейший колебательный контур (рис. 5), состоящий из активного сопротивления, емкости и индуктивности, имеет собственную частоту электромагнитных колебаний W 0 .

Электромагнитный колебательный контур

Рис. 5

Если в такой контур включен источник периодической э.д.с. с частотой W , то Р наступает при W ® W 0 . Это явление используется для настройки радиоприемников на несущие частоты различных радиостанций путем изменения собственной частоты контура (обычно регулируют величину емкости).

Следует отметить, что в строительстве, машиностроении, авиации и др. областях техники механический Р относят к вредным явлениям, поскольку возникновение резонансных условий в ряде случаев может вызвать нежелательные колебания сооружений и конструкций с большой амплитудой; деформации и смещения при этом могут достигать критических значений. Возникают существенно нелинейные эффекты, которые могут привести даже к разрушению системы.

Суть явления резонанса (в переводе с латинского – «звучу в ответ» или «откликаюсь») состоит в резком увеличении размаха собственных колебаний, наблюдаемых в структурах, подверженных воздействию внешних факторов. Основное условие его возникновения – совпадение частоты этих внешних по отношению к системе колебаний с её собственными частотными параметрами, вследствие чего они начинают работать «в унисон».

Png?x15027" alt="Механический резонанс" width="370" height="508">

Механический резонанс

Виды резонансных явлений

Наиболее часто резонанс в физике наблюдается при изучении так называемых «линейных» образований, параметры которых не зависят от текущего состояния. Типичным их представителем являются структуры с одной степенью свободы (к ним можно отнести груз, подвешенный на пружинке, или цепь с последовательно включённой индуктивностью и емкостным элементом).

Обратите внимание! В обоих этих случаях предполагается наличие внешнего по отношению к данной системе воздействия (механического или электрического).

Рассмотрим, что такое резонанс, и в чём состоит его суть более подробно.

Механический резонанс

Явление резонанса может наблюдаться в конструкциях со следующим механическим устройством. Допустим, что имеется груз массой M, свободно подвешенный на упругой пружине. На него действует внешняя сила, амплитуда которой меняется по синусоиде:

Для оценки характера колебаний такой системы необходимо воспользоваться законом Гука, согласно которому обусловленная пружиной сила равна kx, где х – величина отклонения массы M от среднего положения. Коэффициент k описывает внутренние свойства, связанные с её упругостью.

Исходя из этих предположений и после применения несложных математических выкладок, удаётся получить результат, позволяющий сделать следующие выводы:

  • Вынужденные механические колебания относятся к разряду гармонических явлений, имеющих частоту, совпадающую с тем же параметром для внешнего раздражителя;
  • Амплитуда (размах), а также фазовые характеристики механических структур зависят от того, как соотносятся её собственные параметры с характеристиками гармонического воздействия;
  • Когда на линейную систему подавался сигнал или механическое воздействие, меняющееся не по синусоидальному закону, резонансные явления наблюдались лишь в особых ситуациях;
  • Для их появления необходимо, чтобы во внешней подкачке (сигнале) содержались гармонические составляющие, сравнимые с собственной частотой системы.

Каждая из этих составляющих, даже если их обнаружится несколько, будет вызывать свой резонансный отклик. Причём комплексная реакция (согласно суперпозиционному принципу) равняется сумме тех же откликов, наблюдаемых от действия каждой из внешних гармонических составляющих.

Важно! В том случае, когда в таком воздействии совсем не содержится компонентов с близкими частотами, резонанс наступить вообще не сможет.

Для анализа всех компонентов смесей, резонирующих с системными частотами, используется метод Фурье, позволяющий раскладывать сложное колебание произвольной формы на простейшие гармонические составляющие.

Электрический колебательный контур

В электрических цепочках, состоящих из ёмкостной компоненты С и катушки индуктивности L, при наблюдении резонансных явлений нужно различать следующие две отличные по характеристикам ситуации:

  • Последовательное соединение элементов в контуре;
  • Параллельное их включение.

В первом случае при совпадении собственных колебаний с частотой внешнего воздействия (ЭДС), изменяющейся по синусоидальному закону, наблюдаются резкие всплески амплитуды, совпадающие по фазе с внешним источником сигнала.

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/2-posledovatelnyj-rezonans-768x576..jpg 960w" sizes="(max-width: 600px) 100vw, 600px">

Последовательный резонанс

При параллельном включении тех же элементов под воздействием внешней гармонической ЭДС проявляется явление «антирезонанса», состоящее в резком снижении амплитуды ЭДС.

Дополнительная информация. Этот эффект, получивший название параллельного (или резонанса токов), объясняется несовпадением фаз собственных и внешних колебаний ЭДС.

На резонансных частотах реактивные сопротивления каждой из параллельных ветвей выравниваются по величине, так что в них протекают примерно одинаковые по амплитуде токи (но они всегда не совпадают по фазе).

Jpg?.jpg 600w, https://elquanta.ru/wp-content/uploads/2018/03/3-parallelnyj-rezonans-768x576..jpg 960w" sizes="(max-width: 600px) 100vw, 600px">

Параллельный резонанс

Вследствие этого общий для всей цепи токовый сигнал оказывается на порядок меньше. Указанные свойства прекрасно описывают поведение фильтрующих контуров и цепочек, в которых применение резонанса для электротехнических нужд выражено очень наглядно.

Сложные колебательные структуры

В системах с линейными характеристиками, характеризующихся использованием нескольких (двух в частном случае) контуров, резонансные явления возможны лишь при наличии связи между ними.

Jpeg?.jpeg 600w, https://elquanta.ru/wp-content/uploads/2018/03/4-svjazannye-kontury-768x280..jpeg 900w" sizes="(max-width: 600px) 100vw, 600px">

Связанные контуры

Для связанных контуров справедливы следующие правила:

  • Они сохраняют все основные свойства одноконтурных линейных структур;
  • В таких контурах возможны колебания на двух резонансных частотах, называемых нормальными;
  • Если принудительное воздействие по частоте не совпадает ни с одной из них, при плавном её изменении «отклик» в системе будет наступать последовательно на каждой;
  • В этом случае его график будет иметь вид слитного или двойного резонанса с тупой вершиной и двумя небольшими всплесками («горбами»);
  • Когда нормальные частоты не сильно отличаются одна от другой и близки к тому же параметру для внешней ЭДС, ответ системы будет иметь тот же вид, но два «горба» практически сольются в один;
  • Форма резонансной кривой в последнем случае будет иметь почти такой же вид, как и при одноконтурном линейном варианте.

В контурах с большим количеством степеней свободы в основном сохраняются те же реакции, что и в системах с двумя параметрами.

Нелинейные системы

Отклик систем, характеристики которых определяются текущим состоянием (их называют нелинейными), имеет более сложную форму и носит характер несимметричных проявлений. Последние зависят от соотношения характеристик сторонних воздействий и частот собственных вынужденных колебаний системы.

Обратите внимание! В этом случае они могут проявляться как дробные части частот, воздействующих на систему колебаний, или в виде кратных им величин.

Примером откликов, наблюдаемых в нелинейных системах, служат так называемые феррорезонансные явления. Они возможны в электрических цепях, в состав которых входит индуктивность с ферромагнитным сердечником, и относятся к разряду структурных.

Последнее объясняется особенностями состава вещества на атомистическом уровне, при исследовании которого обнаруживается, что ферромагнитные структуры представляют собой набор огромного числа элементарных магнитиков (спинов). Каждое из этих состояний при реакции на внешнюю «подкачку» определяется множеством различных факторов, то есть проявляется в технике как нелинейное.

В заключение следует резюмировать, что, независимо от вида исследуемой системы, суть резонансных явлений заключается в наблюдении откликов колебательных структур на прилагаемые к ним внешние воздействия. Тщательное изучение этих физических явлений позволяет получить практические результаты, способствующие внедрению в производство совершенно новых технологий.

Видео

МБОУ Локотская средняя общеобразовательная школа №1 им. П.А.Маркова

Тема исследовательской работы:

« Резонанс в природе и технике»

Выполнил :

ученик 10 класса

Костюков Сергей

Научный руководитель:

учитель физики

Головнёва Ирина

Александровна

«Старт в науку»

Локоть 2013

    Что такое резонанс?

    Вред и польза резонанса.

    Примеры резонанса.

    История открытия.

    Электрический резонанс.

    Применение электрического резонанса.

    Резонанс в механике, электротехнике, СВЧ,

акустике, оптике и астрофизике.

Целью проекта является изучение явления резонанса.

Актуальность проекта.

Явление резонанса имеет большое значение почти для всех прикладных отраслей электротехники и очень активно используют в радиотехнике, в прикладной акустике, в электротехнике, электронике и других отраслях.

Для достижения цели были поставлены следующие задачи:

Проанализировать специальную литературу по данной теме.

Изучить историю возникновения резонанса.

Раскрыть сущность явления резонанса.

Показать использование явления резонанса в различных отраслях техники.

Теоретическая часть.

Резонанс - явление резкого возрастания амплитуды вынужденных колебаний, которое наступает при приближении частоты внешнего воздействия к некоторым значениям (резонансным частотам),

определяемым свойствами системы.

Увеличение амплитуды - это лишь следствие резонанса, а причина - совпадение внешней (возбуждающей) частоты с внутренней (собственной) частотой колебательной системы.

При помощи явления резонанса можно выделить и усилить даже весьма слабые периодические колебания.

Резонанс явление, заключающееся в том, что при некоторой частоте вынуждающей силы колебательная система оказывается особенно отзывчивой на действие этой силы. Степень отзывчивости в теории колебаний описывается величиной, называемой добротность.

Использование:

Растворение порошкового молока в воде.

Резонаторы в музыкальных инструментах.

Магнитно-резонансное обследование организма.

Раскачивание качелей.

Раскачивание языка колокола.

Резонансные замки и ключи.

Вред:

Разрушение сооружений.

Обрыв проводов.

Расплескивание воды из ведра.

Раскачивание вагона на стыках рельсов.

Вибрации в трубопроводах.

Раскачивание груза на подъёмном кране.

Разрушение моста в результате того, что по нему шли маршевым шагом.

Резонанс моста под действием периодических толчков при прохождении поезда по стыкам рельсов.

Некоторые возникшие в последнее время обстоятельства позволили воспринимать горные удары как лабораторную модель природных землетрясений. То есть предположить, что и природные землетрясения имеют резонансное происхождение.

Известны случаи, когда целые корабли входили в резонанс при определённых числах оборотов гребного вала.

Явление резонанса впервые было описано Галилео Галилеем в 1602 г в работах, посвященных исследованию маятников и музыкальных струн.

Применение явления электрического резонанса в технике.

Если частота ω внешней силы приближается к собственной частоте ω0, возникает резкое возрастание амплитуды вынужденных колебаний. Это явление называется резонансом. Зависимость амплитуды xm вынужденных колебаний от частоты ω вынуждающей силы называется резонансной характеристикой или резонансной кривой (рис 2).

При резонансе амплитуда xm колебания груза может во много раз превосходить амплитуду ym колебаний свободного (левого) конца пружины, вызванного внешним воздействием. В отсутствие трения амплитуда вынужденных колебаний при резонансе должна неограниченно возрастать. В реальных условиях амплитуда установившихся вынужденных колебаний определяется условием: работа внешней силы в течение периода колебаний должна равняться потерям механической энергии за то же время из-за трения. Чем меньше трение (т. е. чем выше добротность Q колебательной системы), тем больше амплитуда вынужденных колебаний при резонансе.

У колебательных систем с не очень высокой добротностью (

Явление резонанса может явиться причиной разрушения мостов, зданий и других сооружений, если собственные частоты их колебаний совпадут с частотой периодически действующей силы, возникшей, например, из-за вращения несбалансированного мотора.

Рисунок 2.

Резонансные кривые при различных уровнях затухания: 1 – колебательная система без трения; при резонансе амплитуда xm вынужденных колебаний неограниченно возрастает; 2, 3, 4 – реальные резонансные кривые для колебательных систем с различной добротностью: Q2 Q3 Q4. На низких частотах (ω ω0) xm → 0.

Электрический резонанс.

Явление возрастания амплитуды колебаний тока при совпадении частоты внешнего источника с собственной частотой электрической цепи называется электрическим резонансом.

Явление электрического резонанса играет полезную роль при настройке радиоприемника на нужную радиостанцию, изменяя величины индуктивности и ёмкости, можно добиться того, что собственная частота колебательного контура совпадёт с частотой электромагнитных волн, излучаемых какой-либо радиостанцией. В результате этого в контуре возникнут резонансные малы. Это приводит к настройке радиоприёмника на нужную станцию.

Еще одной из особенностей электрического резонанса является возможность использование его в двигателях с активными постоянными магнитами. Поскольку управляющий электромагнит периодически меняет полярность, т.е. питается переменным током, электромагниты можно включить в состав колебательного контура с емкостью.

Соединение электромагнитов может быть последовательное, параллельное или комбинированное, а емкость подбирается по резонансу на рабочей частоте двигателя, при этом среднее значение тока через электромагниты будет большим, а внешняя подпитка по току будет компенсировать в основном активные потери. По всей видимости, данный режим работы будет наиболее привлекательным с точки зрения экономичности, а двигатель в этом случае будет называться магнитно- резонансный шаговый.

Механика.

Наиболее известная большинству людей механическая резонансная система - это обычные качели. Если вы будете подталкивать качели в соответствии с их резонансной частотой, размах движения будет увеличиваться, в противном случае движения будут затухать.

Резонансные явления могут вызвать необратимые разрушения в различных механических системах. В основе работы механических резонаторов лежит преобразование потенциальной энергии в кинетическую.

Струна.

Струны таких инструментов, как лютня, гитара, скрипка или пианино, имеют основную резонансную частоту, напрямую зависящую от длины, массы и силы натяжения струны. Увеличение натяжения струны и уменьшение её массы (толщины) и длины увеличивает её резонансную частоту. Однако частоты, не гармонические колебания, которые и воспринимаются как музыкальные ноты.

Электроника.

В электронных устройствах резонанс возникает на определённой частоте, когда индуктивная и ёмкостная составляющие реакции системы уравновешены, что позволяет энергии циркулировать между магнитным полем индуктивного элемента и электрическим полем конденсатора.

Механизм резонанса заключается в том, что магнитное поле индуктивности генерирует электрический ток, заряжающий конденсатор, а разрядка конденсатора создаёт магнитное поле в

повторяется многократно, по аналогии с механическим маятником.

В СВЧ электронике широко используются объёмные резонаторы, чаще всего цилиндрической или тороидальной геометрии с размерами порядка длины волны, в которых возможны добротные колебания электромагнитного поля на отдельных частотах, определяемых граничными условиями.

Оптика.

В оптическом диапазоне самым распространенным типом резонатора является резонатор Фабри- Перо, образованный

парой зеркал, между которыми в резонансе устанавливается стоячая волна. Виды оптических резонаторов типа Фабри - Перо:

1. Плоско - параллельный;

2. Концентрический (сферический);

3. Полусферический;

4. Конфокальный;

5. Выпукло-вогнутый.

Акустика.

Резонансные явления можно наблюдать на механических колебаниях любой частоты, в частности и на звуковых колебаниях. Пример звукового или акустического резонанса мы имеем в следующем опыте.

Поставим рядом два одинаковых камертона, обратив отверстия ящиков, на которых они укреплены, друг к другу (рис. 40). Ящики нужны потому, что они усиливают звук камертонов. Это происходит вследствие резонанса между камертоном и столбом воздуха, заключенного в ящике; поэтому ящики называются резонаторами или резонансными ящиками. Подробнее мы объясним действие этих ящиков ниже, при изучении распространения звуковых волн в воздухе. В опыте, который мы сейчас разберем, роль ящиков чисто вспомогательная.

Рис. 40. Резонанс камертонов

Ударим один из камертонов и затем приглушим его пальцами. Мы услышим, как звучит второй камертон.

Возьмем два разных камертона, т. е. с различной высотой тона, и повторим опыт. Теперь каждый из камертонов уже не будет откликаться на звук другого камертона.

Нетрудно объяснить этот результат. Колебания одного камертона (1) действуют через воздух с некоторой силой на второй камертон (2), заставляя его совершать вынужденные колебания. Так как камертон 1 совершает гармоническое колебание, то сила, действующая на камертон 2, будет меняться по закону гармонического колебания с частотой камертона 1. Если частота силы та же, что и собственная частота камертона 2, то имеет место резонанс - камертон 2 сильно раскачивается. Если же частота силы иная, то вынужденные колебания камертона 2 будут настолько слабыми, что мы их не услышим.

Так как камертоны обладают очень небольшим затуханием, то резонанс у них острый (§ 14). Поэтому уже небольшая разность между частотами камертонов приводит к тому, что один перестает откликаться на колебания другого. Достаточно, например, приклеить к ножкам одного из двух одинаковых камертонов кусочки пластилина или воска, и камертоны уже будут расстроены, резонанса не будет.

Мы видим, что все явления при вынужденных колебаниях происходят у камертонов так же, как и в опытах с вынужденными колебаниями груза на пружине (§ 12).

Если звук представляет собой ноту (периодическое колебание), но не является тоном (гармоническим колебанием), то это означает, как мы знаем, что он состоит из суммы тонов: наиболее низкого (основного) и обертонов. На такой звук камертон должен резонировать всякий раз, когда частота камертона совпадает с частотой какой-либо из гармоник звука. Опыт можно произвести с упрощенной сиреной и камертоном, поставив отверстие резонатора камертона против прерывистой воздушной струи. Если частота камертона равна , то, как легко убедиться, он будет откликаться па звук сирены не только при 300 прерываниях в секунду (резонанс на основной тон сирены), но и при 150 прерываниях - резонанс на первый обертон сирены, и при 100 прерываниях - резонанс па второй обертон, и т. д.

Нетрудно воспроизвести со звуковыми колебаниями опыт, аналогичный опыту с набором маятников (§ 16). Для этого нужно только иметь набор звуковых резонаторов - камертонов, струн, органных труб. Очевидно, струны рояля или пианино образуют как раз такой и притом очень обширный набор колебательных систем с разными собственными частотами. Если, открыв рояль и нажав педаль, громко пропеть над струнами какую-нибудь ноту, то мы услышим, как инструмент откликается звуком той же высоты и сходного тембра. И здесь наш голос создает через воздух периодическую силу, действующую на все струны. Однако откликаются только те из них, которые находятся в резонансе с гармоническими колебаниями - основным и обертонами, входящими в состав спетой нами ноты.

Таким образом, и опыты с акустическим резонансом могут служить прекрасными иллюстрациями справедливости теоремы Фурье.

Резонанс - один из важнейших физических процессов, используемых при проектировании звуковых устройств, большинство из которых содержат резонаторы, например, струны и корпус скрипки, трубка у флейты, корпус у барабанов.

Инфразвук высокой интенсивности, влекущий за собой резонанс, из-за совпадения частот колебаний внутренних органов и инфразвука, приводит к нарушению работы практически всех внутренних органов, возможен смертельный исход из-за остановки сердца, или разрыва кровеносных сосудов. Следует принимать особые меры защиты против появления звуковых колебаний со следующими частотами, потому что совпадение частот приводит к возникновению резонанса:

Собственные (резонансные) частоты некоторых частей тела человека

20-30 Гц
резонанс головы
40-100 Гц
резонанс глаз
0.5-13 Гц
резонанс вестибулярного аппарата
4-6 Гц
резонанс сердца
2-3 Гц
резонанс желудка
2-4 Гц
резонанс кишечника
6-8 Гц
резонанс почек
2-5 Гц
резонанс рук
5-7 Гц
вызывает чувство страха и паники

Астрофизика.

Орбитальный резонанс в небесной механике - это ситуация, при которой два (или более) небесных тела имеют периоды обращения, которые относятся как небольшие натуральные числа. В результате эти небесные тела оказывают регулярное гравитационное

влияние друг на друга, которое может стабилизировать их орбиты.

Общественный резонанс.

Общественный резонанс - это реакция множества людей (возмущение, волнение, отклики и т.д.) на определенные действия (информация, поведение, высказывание и т.п.) кого-либо или чего-либо. Общественный резонанс может быть вызван искусственно путем привлечения средствами массовой информации общественного внимания к тому или иному социальному или политическому событию.

Кроме того, общественный резонанс используется теми или иными группами для давления на судебные органы, исполнительную и законодательную власть, правительство, общественные организации и политические партии.

Вывод.

В результате создания проекта я провел большую исследовательскую работу, направленнуюна изучение явления резонанса: работа с научной литературой,просмотр видео, опрос учащихся10 класса.В ходе работы выяснил, что явление резонанса является очень важным физическим явлением для человека и используется во многих отраслях науки и техники. Но наряду с пользой резонанс может причинять и вред.

Проект можно использовать в качестве дополнительного материала при изучении темы « Резонанс» в 9 и 11 классах.

Список использованной литературы:

    ru.wikipedia.org

  1. mirslovarei.com - что такое общественный резонанс (материал из Политического словаря)

4. М. Прикладные методы в теории колебаний. - М.: Наука, 1988.

5. Универсальный справочник, С.Ю. Курганов, Н.А. Гырдымова – М.:Эксмо, 2011.