Шкала отражающая качественные свойства называется шкалой. Шкалы измерений

14. Понятие, виды, особенности измерительных шкал

Измерение - это алгоритмическая операция, которая данному наблюдаемому состоянию объекта ставит в соответствие определенное обозначение: число, помер или символ. Обозначим через хi. i=1,…, m наблюдаемое состояние (свойство) объекта, а через уi, i = 1,..,m - обозначение для этого свойства. Чем теснее соответствие между состояниями и их обозначениями, тем больше информации можно извлечь в результате обработки данных. Менее очевидно, что степень этого соответствия зависит не только от организации измерений (т. е. от экспериментатора), но и от природы исследуемого явления, и что сама степень соответствия в свою очередь определяет допустимые (и недопустимые) способы обработки данных!

Измерительные шкалы в зависимости от допустимых на них операций различаются по их силе. Самые слабые - номинальные шкалы, а самые сильные - абсолютные.

С. Стивенсом предложена классификация из 4 типов шкал измерения:

1) номинативная, или номинальная, или шкала наименований;

2) порядковая, или ординальная, шкала;

3) интервальная, или шкала равных интервалов;

4) шкала равных отношений.

Выделяют три основных атрибута измерительных шкал, наличие или отсутствие которых определяет принадлежность шкалы к той или иной категории:

1. упорядоченность данных означает, что один пункт шкалы, соответствующий измеряемому свойству, больше, меньше или равен другому пункту;

2. интервальность пунктов шкалы означает, что интервал между любой парой чисел, соответствующих измеряемым свойствам, больше, меньше или равен интервалу между другой парой чисел;

3. нулевая точка (или точка отсчета) означает, что набор чисел, соответствующих измеряемым свойствам, имеет точку отсчета, обозначаемую за ноль, что соответствует полному отсутствию измеряемого свойства.

Кроме того, выделяют следующие группы:

    неметрические или качественные шкалы, в которых отсутствуют единицы измерений (номинальная и порядковая(ранговая) шкалы);

    количественные или метрические (шкала интервалов, абсолютная шкала).

Шкалирование представляет собой отображение какого-либо свойства объекта или явления в числовом множестве.

Можно сказать, что чем сильнее шкала, в которой производятся измерения, тем больше сведений об изучаемом объекте, явлении, процессе дают измерения. Поэтому так естественно стремление каждого исследователя провести измерения в возможно более сильной шкале. Однако важно иметь в виду, что выбор шкалы измерения должен ориентироваться на объективные отношения, которым подчинена наблюдаемая величина, и лучше всего производить измерения в той шкале, которая максимально согласована с этими отношениями. Можно измерять и в шкале более слабой, чем согласованная (это приведет к потере части полезной информации), но применять более сильную шкалу опасно: полученные данные на самом деле не будут иметь той силы, на которую ориентируется их обработка.

Иногда же исследователи усиливают шкалы; типичный случай - «оцифровка» качественных шкал: классам в номинальной или порядковой шкале присваиваются номера, с которыми дальше «работают» как с числами. Если в этой обработке не выходят за пределы допустимых преобразований, то «оцифровка» - это просто перекодировка в более удобную (например, для ЭВМ) форму. Однако применение других операций сопряжено с заблуждениями, ошибками, так как свойства, навязываемые подобным образом, на самом деле не имеют места.

Виды шкал:

    Номинативная или шкала наименований:

Позволяет установить к какому классу относится тот или иной объект измерения. Все объекты группируются по классам. Каждому классу приписывается значение. Особенностью является то, что учитывается одно значение чисел. Обычные арифметические операции недопустимы. Мы можем сделать вывод о тождественности по измеряемому свойству. Иными словами, объекты сравниваются друг с другом и определяется их эквивалентность -- неэквивалентность. В результате процедуры образуется совокупность классов эквивалентности. Объекты, принадлежащие одному классу, эквивалентны друг другу и отличны от объектов, относящихся к другим классам. Эквивалентным объектам присваиваются одинаковые имена. О шкале наименований можно говорить в том случае, когда эмпирические объекты просто "метятся" числом. Несмотря на тенденцию "завышать" мощность шкалы, психологи очень часто применяют шкалу наименований в исследованиях. "Объективные" измерительные процедуры при диагностике личности приводят к типологизации: отнесению конкретной личности к тому или иному типу. Примером такой типологии являются классические темпераменты: холерик, сангвиник, меланхолик и флегматик.

Самая простая номинативная шкала называется дихотомической. При измерениях по дихотомической шкале измеряемые признаки можно кодировать двумя символами или цифрами, например 0 и 1, или 2 и 6, или буквами А и Б, а также любыми двумя отличающимися друг от друга символами. Признак, измеренный по дихотомической шкале, называется альтернативным. В дихотомической шкале все объекты, признаки или изучаемые свойства разбиваются на два непересекающихся класса, при этом исследователь ставит вопрос о том, «проявился» ли интересующий его признак у испытуемого или нет.

Операции с числами для номинативной шкалы.

1) Нахождение частот распределения по пунктам шкалы с помощью процентирования или в

численности к общему ряду распределения (частоты).

2) Поиск средней тенденции по модальной частоте. Модальной (Мо) называют группу с

наибольшей численностью. Эти две операции дают представление о распределении

психологических характеристик в количественных показателях. Его наглядность повышается

отображением в диаграммах.

3) Самым сильным способом количественного анализа является установление взаимосвязи

между рядами свойств, расположенных неупорядоченно. С этой целью составляют

перекрестные таблицы. Помимо простой процентовки в таблицах перекрестной

    Порядковая (ранговая) шкала:

Измерения предполагают приписывание объектам чисел в зависимости от выраженности признака. Данная шкала делит всю совокупность признаков на множество, которые связаны отношениями «больше - меньше». Для объектов с одинаковой выраженностью признака используется правило равных рангов. При ранжировании необходимо указывать какому значению (наибольшему или наименьшему) присваивается первый ранг. Эта операция должна быть одинакова для всех признаков.

Чтобы проверить правильность ранжирования используется формула: сумма рангов равна общее количество измерений умноженное на сумму N+1 и делённое на 2.

Шкалы порядка широко используются в психологии познавательных процессов, экспериментальной психосемантике, социальной психологии: ранжирование, оценивание, в том числе педагогическое, дают порядковые шкалы. Классическим примером использования порядковых шкал является тестирование личностных черт, а также способностей. Большинство же специалистов в области тестирования интеллекта полагают, что процедура измерения этого свойства позволяет использовать интервальную шкалу и даже шкалу отношений.

В качестве характеристики центральной тенденции можно использовать медиану, а в качестве характеристики разброса - процентили. Для установления связи двух измерений допустима порядковая корреляция (т-Кэнделла и р-Спирмена).

Характерной особенностью порядковых шкал является то, что отношение порядка ничего не говорит о дистанции между сравниваемыми классами. Поэтому порядковые экспериментальные данные, даже если они изображены цифрами, нельзя рассматривать как числа.Числовые значения порядковой шкалы нельзя складывать, вычитать, делить и умножать.

    Интервальная шкала.

Отражает уровень выраженности свойства. Данная шкала предполагает использование единиц измерения. Тестовые шкалы, разработанные в следствии стандартизации. Но в данной шкале не существует нулевой точки отсчёта. Ряд авторов полагают, что относить тесты интеллекта к шкалам интервалов нет оснований. Во-первых, каждый тест имеет "нуль" - любой индивид может получить минимальный балл, если не решит ни одной задачи в отведенное время. Во-вторых, тест имеет максимум шкалы -- балл, который испытуемый может получить, решив все задачи за минимальное время. В-третьих, разница между отдельными значениями шкалы неодинакова. По крайней мере, нет никаких теоретических и эмпирических оснований утверждать, что 100 и 120 баллов по шкале IQ отличаются на столько же, на сколько 80 и 100 баллов.

Скорее всего, шкала любого теста интеллекта является комбинированной шкалой, с естественным минимумом и\или максимумом, но порядковой. Однако эти соображения не мешают тестологам рассматривать шкалу IQ как интервальную, преобразуя "сырые" значения в шкальные с помощью известной процедуры "нормализации" шкалы

Интервальная шкала позволяет применять практически всю параметрическую статистику для анализа данных, полученных с ее помощью. Помимо медианы и моды для характеристики центральной тенденции используется среднее арифметическое, а для оценки разброса--дисперсия. Можно вычислять коэффициенты асимметрии и эксцесса и другие параметры распределения. Для оценки величины статистической связи между переменными применяется коэффициент линейной корреляции Пирсона и т.д.

Операции с числами в интервальной метрической шкале богаче. Чем в номинальных

1) Точка отсчета на шкале выбирается произвольно.

2) Все методы описательной статистики.

3) Возможности корреляционного и регрессионного анализа. Можно использовать коэффициент парной корреляции Пирсона и коэффициенты множественной корреляции, что может предсказать изменения в одной переменной в зависимости от изменений в другой или в целом ряде переменных.

    Шкала абсолютная. (шкала отношений):

Шкалу отношений называют также шкалой равных отношений. Особенностью этой шкалы является наличие твердо фиксированного нуля, который означает полное отсутствие какого-либо свойства или признака. Шакала отношений является наиболее информативной шкалой, допускающей любые математические операции и использование разнообразных статистических методов. Шкала отношений по сути очень близка интервальной, поскольку если строго фиксировать начало отсчета, то любая интервальная шкала превращается в шкалу отношений.

Шкала отношений показывает данные о выраженности свойств объектов, когда можно сказать, во сколько раз один объект больше или меньше другого.

Это возможно лишь тогда, когда помимо определения равенства, рангового порядка, равенства интервалов известно равенство отношений. Шкала отношений отличается от шкалы интервалов тем, что на ней определено положение "естественного" нуля. Классический пример -- шкала температур Кельвина. Именно в шкале отношений производятся точные и сверхточные измерения в таких науках, как физика, химия, микробиология и др. Измерение по шкале отношений производятся и в близких к психологии науках, таких, как психофизика, психофизиология, психогенетика.

Измерения массы, времени реакции и выполнения тестового задания -- области применения шкалы отношений.

В шкалах отношений классы обозначаются числами, которые пропорциональны друг другу: 2 так относится к 4, как 4 к 8. Это предполагает наличие абсолютной нулевой точки отсчета. Считается, что в психологии примерами шкал равных отношений являются шкалы порогов абсолютной чувствительности. Возможности человеческой психики столь велики, что трудно представить себе абсолютный нуль в какой-либо измеряемой психологической переменной. Абсолютная глупость и абсолютная честность – понятия скорее житейской психологии.

Возможны преобразования из одной шкалы в другую. Результаты, полученные по шкале интервалов, могут быть преобразованы в ранги или переведены в номинативную шкалу.

Рассмотрим, например, первичные результаты шести испытуемых по шкале экстраверсии-

интроверсии теста Айзенка. психолог обязан помнить, что в действительности

скрывается за величинами, которыми он оперирует.

1) Первое ограничение – соразмерность количественных показателей, фиксированных разными шкалами в рамках одного исследования. Более сильная шкала отличается от слабой тем, что допускает более широкий диапазон математических операций с числами. Все, что допустимо для слабой шкалы допустимо и для более сильной, но не наоборот. Поэтому, смешение в анализе мерительных эталонов разного типа приводит к тому, что не используются возможности сильных шкал.

2) Второе ограничение связано с формой распределения величины фиксированных описанными выше шкалами, которое предполагается нормальным.

Измерительные шкалы

Термин «шкала» происходит от латинского слова «Scala», что в переводе означает лестница.

Шкалой измерений называют принятый по соглашению порядок определения и обозначения всевозможных проявлений конкретного свойства (например, значений размера). Различают пять основный типов шкал измерений: наименований, порядка, интервалов (разностей), отношений и абсолютные шкалы.

Шкала наименований .

Это самые простые шкалы, которые отражают качественные свойства. Их элементы характеризуются только соотношениями эквивалентности (равенства) и сходства конкретных качественных проявлений свойства.

Эти шкалы не имеют нуля и единицы измерений, в них отсутствуют отношения сопоставления типа «больше-меньше». На шкале наименований нельзя производить арифметические действия.

Измерение сводится к сравнению измеряемого объекта с эталонными и выбору одного из них (или двух соседних) совпадающего с измеряемым. Измерения в шкалах наименований выполняются довольно часто. Результаты качественного анализа (определение группы крови) – это измерения в шкале наименований.

Шкала порядка .

Шкала порядка. Сравнение одного размера с другим по принципу «что больше» или «что лучше» производится по шкале порядка. Эти шкалы не имеют единиц измерений. Более подробная информация насколько больше ил во сколько раз лучше иногда не требуется. Построив людей по росту, пользуясь шкалой порядка, можно сделать вывод о том, кто выше, однако сказать насколько выше или во сколько нельзя.

Расстановка размеров по мере возрастания или убывания для получения измерительной информации по шкале порядка называется ранжированием. По шкале порядка сравниваются между собой размеры, которые остаются сами неизвестными. Результатом сравнения является ранжированный ряд.

Измерения по шкале порядка являются самыми несовершенными, наименее информативными. Они не дают ответа на вопрос о том, на сколько или во сколько раз один размер больше другого. На шкале порядка могут выполняться лишь некоторые логические операции. Например, если первый размер больше второго, а второй больше третьего, то и первый больше третьего. Если два размера меньше третьего, то их разность меньше третьего.

Эти свойства шкалы называются свойствами транзитивности. В то же время на шкале порядка не могут выполняться никакие арифметические действия.

Измерения по шкале порядка широко используются при контроле. Здесь поверяемый размер Q 1 сравнивается с контрольным Q 2 . Результатом измерения служит решение о том, годно или негодно изделие по контролируемому размеру.

Классическим примером является оценивание твердости минералов на основе шкалы Мооса. Шкала Мооса относительной твердости минералов состоит из 10 эталонов твердости: тальк -1; гипс - 2; кальцит - 3; флюорит - 4; апатит - 5; ортоглаз - 6; кварц - 7; топаз - 8; корунд - 9; алмаз - 10. Относительная твердость определяется путем царапания эталоном поверхности испытываемого объекта. Как праило, шкала порядка используется в том случае, когда не существует метода, позволяющего осуществить оценку в установленных еденицах измерения.

Реперные шкалы.

Для облегчения измерений на шкале порядка можно

зафиксировать некоторые опорные точки в качестве «реперных». Такая шкала называется реперной.

Точкам реперных шкал могут быть проставлены цифры, называемые баллами.

0 1 2 3 4 5 6 7 8

По реперным шкалам измеряются:

интенсивность землетрясений по 12- ти балльной международной шкале MSK – 64 (табл.1);

сила ветра по шкале Бофорта (табл. 2).;

сила морского волнения;

чувствительность фотопленки;

степень торошения льда;

твердость минералов и т.д.

Например, для оценки скорости (силы) ветра в баллах по его действию на наземные предметы или по волнению на море была составлена условная шкала Ф Бофортом в 1805 г. Соотношения между баллами и скоростью ветра на высоте 10 м была принята в 1946 г. по международному соглашению.

Недостатком реперных шкал является неопределенность интервалов между реперными точками. Поэтому баллы нельзя складывать, вычитать, умножать или делить. Измерительная информация, полученная по шкале порядка непригодна для математической обработки. Невозможно и внесение в результат измерения поправки, ибо если сами сравниваемые размеры неизвестны, то внесение поправки не вносит ясности.

Таблица 1

Название

Краткая характеристика

Незамет-ное

Отмечается только сейсмическими приборами

Очень слабое

Ощущается отдельными людьми, находящимися в состоянии покоя

Ощущается небольшой частью населения.

Умерен-ное

Распознается по мелкому дребезжанию и колебанию предметов и оконных стекол, скрипу дверей и стен.

Доволь-но сильное

Общее сотрясение зданий, колебания мебели, трещины оконных стекол и штукатурки, пробуждение спящих.

Ощущается всеми. Картины падают со стен, откалываются куски штукатурки, легкое повреждение зданий.

Очень сильное

Трещины в стенах каменных домов. Антисейсмические, а также деревянные постройки остаются невредимыми

Разруши-тельное.

Трещины в крутых склонах и на сырой почве. Памятники сдвигаются с места или падают. Дома сильно повреждаются.

Опустоши-тельное

Сильное повреждение и разрушение каменных домов.

Уничто-жающее

Крупные трещины в почве. Оползни и обвалы. Разрушение каменных построек, искривление железнодорожных рельсов.

Катаст-рофа

Широкие трещины в земле. Многочисленные оползни и обвалы. Каменные дома совершенно разрушаются.

Сильная катаст-рофа

Изменение в почве достигает огромных размеров. Многочисленные обвалы, оползни, трещины. Возникновение водопадов, подпруд на озерах. Отклонение течения рек. Ни одно сооружение не выдерживает.

Таблица 2

Название ветра

Действие

Дым идет вертикально

Дым идет слегка наклонно

Ощущается лицом, шелестят листья.

Развеваются флаги

Умеренный

Поднимается пыль

Вызывает волны на воде

Свистит в вантах, гудят провода

На волнах образуется пена

Очень крепкий

Трудно идти против ветра

Срывает черепицу

Сильный шторм

Вырывает деревья с корнем

Жестокий шторм

Большие разрушения.

Опустошительное действие

Шкала интервалов .

Более совершенными в этом отношении являются шкалы интервалов, составленные из строго определенных интервалов. На шкале интервалов откладывается разность между размерами. Общепринятой является измерение времени по шкале, разбитой на интервалы, равные периоду обращения Земли вокруг Солнца (летоисчесление). Эти интервалы (годы) делятся в свою очередь на более мелкие (сутки), равные периоду обращения Земли вокруг оси. Сутки в свою очередь делятся на часы, часы на минуты, минуты на секунды. Такая шкала называется шкалой интервалов

На шкале интервалов определены такие математические действия, как сложение и вычитание. Интервалы с учетом знаков можно складывать друг с другом и вычитать друг из друга. Благодаря этому можно определить, на сколько один размер больше или меньше другого.

Ввиду неопределенности начала отсчета на шкале интервалов нельзя определять во сколько раз один размер больше или меньше другого.

Иногда шкалы интервалов иногда получают путем пропорционального деления интервала между реперными точками. Так, на температурной шкале Цельсия за начало отсчета принята температура таяния льда. С ней сравниваются все другие температуры. Для удобства пользования шкалой интервалов шкала между температурой таяния льда и температурой кипения воды разбит на 100 равных интервалов – градации или градусов. Вся шкала Цельсия разбита на градусы как в сторону положительных, так и в сторону отрицательных интервалов.

На температурной шкале Реомюра за начало отсчета принята та же температура таяния льда, но интервал между этой температурой и температурой кипения воды разбит на 80 равных частей. Тем самым используется другая градация температуры: температура Реомюра больше чем температура Цельсия.

На температурной шкале Фаренгейта тот же интервал разбит на 180 частей. Следовательно, градус Фаренгейта меньше градуса Цельсия. Кроме того, начало отсчета интервалов на шкале Фаренгейта сдвинут на 32 0 в сторону низких температур.

Деление шкалы на рваные части – градации – устанавливает на ней масштаб и позволяет выразить результат измерения в числовой мере.

Шкала отношений.

Если в качестве одной из двух реперных точек выбрать такую, в которой размер не принимается равным нулю, а равен нулю на самом деле, то по такой шкале можно отсчитывать абсолютное значение размера и определять во сколько раз один размер больше ли меньше другого. Эта шкала называется шкалой отношений. Примером может служить температурная шкала Кельвина. В ней за начало отсчета принят абсолютный нуль температуры, при котором прекращается тепловое движение молекул. Второй реперной точкой служит температура таяния льда. По шкале Цельсия интервал между этими реперными точками равен 273,16 0 С. Поэтому на шкале Кельвина интервал между этими точками делят на 273,16 частей. Каждая такая часть называется Кельвином и равна градусу Цельсия, что облегчает переход от одной шкалы в другую.

Шкала отношений является самой совершенной, наиболее информативной. На ней определены все математические действия.: сложение, вычитание, умножение и деление. Отсюда следует, что значения любых размеров на шкале отношений можно складывать между собой, вычитать, перемножать и делить. Следовательно, можно определить, насколько или во сколько раз один размер больше или меньше другого.

В зависимости от того, на какие интервалы разбита шкала, один и тот же размер проставляется по разному. Например, 0,001 км; 1 м; 100 см; 1000 м – четыре варианта представления одного и того же размера. Их называют значениями измеряемой величины.

Таким образом, значение измеряемой величины – это выражение ее размера в определенных единицах измерения. Входящее в нее отвлеченное число называется числовым значением .

Значение измеряемой величины Q определяется ее числовым значением g м некоторым размером
, принятым за единицу измерения:

. (53)

где Q – измеряемая величина;

- единица измерения;

g – числовое значение.

Абсолютные шкалы . Они обладают всеми свойствами шкал отношений. Единицы абсолютных шкал естественны, а не выбраны по соглашению, но эти единицы безразмерны (разы, проценты, доли, полные углы и т. д.). Единицы величин, описываемые абсолютными, не являются производными единицами СИ, так как по определению производные единицы не могут быть безразмерными. Это внесистемные единицы. Стерадиан и радиан – это типичные единицы абсолютных шкал. Абсолютные шкалы бывают ограниченными и неограниченными.

Ограниченные шкалы – это, обычно, шкалы с диапазоном от нуля до единицы (КПД, коэффициент поглощения или отражения и т. п.). Примерами неограниченных шкал являются шкалы, на которых измеряются коэффициенты усиления, ослабления и т. п.

Эти шкалы принципиально нелинейны. Поэтому они не имеют единиц измерений.

С. Стивенсом предложена классификация из четырех типов шкал измерения: номинальная, порядковая, интервальная и шкала отношений.

Номинальная шкала (шкала наименований, номинативная шкала) состоит в присваивании какому-либо свойству или признаку определенного обозначения или символа (численного, буквенного и т.д.). По сути это- классификация свойств, группирование объектов, объединение их в классы при условии, что объекты, принадлежащие к одному классу, идентичны (или аналогичны) друг другу в отношении какого-либо признака или свойства, тогда как объекты, различающиеся по этому признаку, попадают в разные классы.

Пример: а) классификация вкусовых качеств: А - сладкое, В - горь­кое, С - кислое; б) цвета видимого спектра: красный, зеленый, синий и пр.; в) национальность: А белорус, В - русский, С - украинец; г) раз­биение людей по четырем типам темперамента: сангвиник, флегматик, меланхолик, холерик.

Номинальная шкала определяет, что разные свойства или признаки качественно отличаются друг от друга. Привычные операции с числами - упорядочивание, сложение-вычитание, деление - при измерении в номинативной шкале теряют смысл. Так, для признаков, измеренных по этой шкале, нельзя сказать, что какой-то из них больше, а какой-то меньше, какой-то лучше, а какой-то хуже. То есть при сравнении объектов мы можем делать вывод только о том, принадлежат они к одному или разным классам, тождественны или нет по измеренному свойству.

Следует подчеркнуть, что присваиваемые объектам в номинативной шкале символы являются условными и допускаются любые замены или перестановки буквенных (численных) обозначений.

Простейший случай номинативной шкалы - дихотомическая шкала. При измерениях по этой шкале измеряемые признаки можно кодировать двумя символами или цифрами, например 0 и 1 или 3 и 5, или буквами А и Б, а также любыми двумя отличающимися друг от друга символами. Признак, измеренный по дихотомической шкале, называется альтернативным.

В дихотомической шкале все объекты, признаки или изучаемые свойства разбиваются на два непересекающихся класса, при этом исследователь ставит вопрос о том, «проявился» ли интересующий его признак у испытуемого или нет. Например, в конкретном исследовании признак «леворукости» проявился у 8 испытуемых из 20, то есть 8 испытуемым можно поставить цифру 1, соответствующую признаку «леворукость», остальным цифру 0, соответствующую признаку «праворукость».

Пример: а) классификация по полу: 1 - мужской, 0 - женский;
б) ответы на опросник: 1 - да, 0 - нет; в) состав семьи: А - полная семья, Б -неполная семья.

В номинативной шкале можно подсчитать частоту встречаемости признака, то есть число испытуемых, явлений и т.п., попавших в данный класс и обладающих данным свойством. Допустим, мы выясняем число мальчиков и девочек в классе. Для этого мы кодируем мальчиков, например, цифрой 1, а девочек - цифрой 0. После этого подсчитываем общее количество цифр (кодов) 1 и 0. Это и есть подсчет частоты признака.


Единица измерения, которой мы при этом оперируем - количество наблюдений (испытуемых, реакций, выборов и т.п.), или частота. Точнее, единица измерения - это одно наблюдение. Общее число наблюдений (испытуемых, реакций, выборов и т.п.) принимается за 100%, и тогда можно вычислить процентное соотношение, например, мальчиков и девочек в классе.

К результатам измерений, полученным в номинативной шкале, возможно применить небольшое число статистических методов. Такие данные могут быть обработаны, например, с помощью метода %, биномиального критерия m, углового преобразования Фишера φ и др.

Порядковая шкала (ранговая шкала) - это шкала, классифицирующая по принципу «больше - меньше», «выше - ниже», «сильнее - слабее». Измерение в этой шкале предполагает приписывание объектам чисел в зависимости от степени выраженности измеряемого свойства. Если в предыдущей шкале было несущественно, в каком порядке располагаются измеренные признаки, то в порядковой шкале все признаки располагаются по рангу - от самого большего (высокого, сильного, умного и т.п.) до самого маленького (низкого, слабого, глупого и т. п.) или наоборот. Типичный и очень хорошо известный всем пример порядковой шкалы - это школьные оценки: от 5 до 1 балла или от 0 до 10 баллов.

В порядковой шкале должно быть не менее трех классов, например «положительная реакция - нейтральная реакция - отрицательная реак­ция» или «высокий - средний - низкий» и т. п., с тем расчетом, чтобы можно было расставить измеренные признаки по порядку.

Существует множество способов получения измерения в порядковой шкале. Но суть остается общей: при сравнении испытуемых друг с другом мы можем сказать, больше или меньше выражено свойство, но не можем сказать, насколько больше или насколько меньше оно выражено, а уж тем более - во сколько раз больше или меньше. При измерении в ранговой шкале, таким образом, из всех свойств чисел учитывается то, что они разные, и то, что одно число больше, чем другое.

Пример: а) места, занятые студентами в соревновании (1, 2, 3); б) ранг студента по среднему баллу успеваемости (1, 2, 3, 4, 5, 6 и т.д.); в) ответы на тест: 1 - никогда, 2 - иногда, 3 - часто, 4 - всегда.

В порядковой шкале мы не знаем истинного расстояния между классами, а знаем лишь, что они образуют последовательность. От классов можно просто перейти к числам, если считать, что низший класс получает ранг (код или цифру) 1, средний - 2, высший - 3 (или наоборот). Чем больше число классов разбиений всей экспериментальной совокупности, тем шире возможности статистической обработки полученных данных.

При кодировании порядковых переменных им можно приписывать любые цифры (коды), но в этих кодах (цифрах) обязательно должен сохраняться порядок, или, иначе говоря, каждая последующая цифра должна быть больше (или меньше) предыдущей, Например, необходимо закодировать уровень тревожности по пяти градациям: самый низкий - 1, низкий - 2, средний - 3, высокий - 4, самый высокий - 5. Можно использовать и другие способы кодировки (например, 14, 23, 34, 45, 56 соответственно), однако предложенный первоначально способ кодировки является наиболее привычным и поэтому наиболее предпочтительным. Числа в ранговых шкалах обозначают лишь порядок следования признаков, а операции с числами в этой шкале - это операция с рангами.

При ранжировании необходимо учитывать два обстоятельства:
1. Установите для себя и запомните порядок ранжирования. Можно ранг 1 присваивать тому, у которого 1-е место по выраженности данного признака (например, «самый сильный»). Или можно ранг 1 присваивать тому, у которого наименьшая выраженность признака, и далее - увеличение ранга по мере увеличения уровня признака. Строгих правил выбора здесь нет, но важно помнить, в каком направлении производилось ранжирование. 2. Соблюдайте правило ранжирования для связанных рангов, когда двое или более испытуемых имеют одинаковую выраженность измеряемого свойства. В этом случае таким испытуемым присваивается один и тот же, средний ранг. Например, если вы ранжируете испытуемых по «месту в группе» и двое имеют одинаковые самые высокие исходные оценки, то обоим присваивается средний ранг 1,5: (1+2)/2=1,5. Следующему за этой парой испытуемому присваивается ранг 3 и т.д. Это правило основано на соглашении соблюдения одинаковой суммы рангов для связанных или несвязанных рангов. В соответствии с этим правилом сумма всех присвоенных рангов для группы численностью N должна равняться N(N+1)/2, вне зависимости от наличия или отсутствия связей в рангах.

В порядковой шкале применяется множество разнообразных статистических методов. Наиболее часто к измерениям, полученным в этой шкале, применяются коэффициенты корреляции Спирмена и Кендалла, кроме того, применительно к данным, полученным в этой шкале, используют разнообразные критерии различий.

Интервальная шкала (шкала интервалов) - это шкала, классифицирующая по принципу «больше на определенное количество единиц -меньше на определенное количество единиц». Каждое из возможных значений признака отстоит от другого на равном расстоянии. Главное понятие этой шкалы - интервал, который можно определить как долю или часть измеряемого свойства между двумя соседними позициями на шкале. Размер интервала - величина фиксированная и постоянная на всех участках шкалы. Для измерения посредством шкалы интервалов устанавливаются специальные единицы измерения (в психологии, например, стены и стенайны). Объекту присваивается число единиц измерения, пропорциональное выраженности измеряемого свойства. Важной особенностью шкалы интервалов является то, что у нее нет естественной точки отсчета (нуль условен и не указывает на отсутствие измеряемого свойства). Следовательно, применяя эту шкалу, мы можем судить, насколько больше или насколько меньше выражено свойство при сравнении объектов, но не можем судить о том, во сколько раз больше или меньше выражено свойство.

Пример: а) измерение температуры по шкале Цельсия (°С); б) тесты интеллекта (условная единица измерения IQ); в) 16-факторный опросник Кеттелла (сырые баллы переведены в стены).

К экспериментальным данным, полученным по этой шкале, применимо достаточно большое число статистических методов.

Шкала отношений - это шкала, классифицирующая объекты или субъекты пропорционально степени выраженности измеряемого свойства. В шкалах отношений классы обозначаются числами, которые пропорциональны друг другу: 2 так относится к 4, как 4 к 8. Это предполагает наличие абсолютной нулевой точки отсчета, поэтому при сравнении объектов мы можем сказать не только о том, насколько больше или меньше выражено свойство, но и о том, во сколько раз (на сколько процентов и т.д.) больше или меньше оно выражено. Измерив время решения задачи парой испытуемых, мы можем сказать не только о том, кто и на сколько секунд (минут) решил задачу быстрее, но и о том, во сколько раз быстрее.

Следует отметить, что, несмотря на привычность и обыденность абсолютной шкалы, в психологии она используется не часто. Возможности человеческой психики столь велики, что трудно представить себе абсолютный нуль в какой-либо измеряемой психологической переменной.

Пример: а) измерение времени реакции (обычно в миллисекундах); б) измерение абсолютных порогов чувствительности.

Перечисленные шкалы полезно характеризовать по признаку их дифференцирующей способности (мощности). В этом отношении шкалы по мере возрастания мощности располагаются следующим образом: номинальная, порядковая, интервальная, шкала отношений. Таким образом, неметрические шкалы заведомо менее мощные - они отражают меньше информации о различии объектов (испытуемых) по измеренному свойству, и, напротив, метрические шкалы более мощные, так как они лучше дифференцируют испытуемых. Поэтому если у исследователя есть возможность выбора, необходимо применить более мощную шкалу. Другое дело, что чаще такого выбора нет, и приходится использовать доступную измерительную шкалу.

Определение того, в какой шкале измерено явление (представлен признак), - ключевой момент анализа данных: от этого зависит выбор метода и интерпретация результатов.

Обычно идентификация номинативной шкалы, ее дифференциация от ранговой, а тем более от метрической шкалы не вызывает проблем.

Пример: рассмотрим вопрос анкеты «Насколько Вы уверены в своих силах?» для ответа, на который испытуемые выбирают один из предложенных вариантов:

1) совершенно уверен;

2) затрудняюсь ответить;

3) совершенно неуверен.

Если исследователя интересует, в какой степени испытуемые уверены или не уверены в своих силах, то логично предполагать, что признак представлен в порядковой шкале. Если же исследователя интересует то, как распределились ответы по вариантам или чем характеризуется каждая из трех соответствующих групп, то разумнее рассматривать этот признак как номинальный.

Значительно сложнее определить различие между порядковой и метрической шкалами. Проблема связана с тем, что измерения в психологии, как правило, косвенные. Непосредственно мы измеряем некоторые наблюдаемые явления или события: количество ответов на вопросы или заданий, решенных за отведенное время, или время решения набора заданий и т.д. Но при этом выносим суждения о некотором скрытом, латентном свойстве, недоступном прямому наблюдению: об агрессивности, общительности, способности и т.д.

Количество заданий, решенных за отведенное время, - это, конечно, измерение в метрической шкале. Но само по себе это количество нас интересует лишь в той мере, в какой оно отражает некоторую изучаемую нами способность. Соответствуют ли равные разности решенных задач равным разностям выраженности изучаемого свойства (способности)? Если ответ «да» - шкала метрическая (интервальная или равных отношений), если «нет» - шкала порядковая.

В подобных ситуациях проще всего согласиться с тем, что признак представлен в порядковой шкале. Но при этом мы существенно ограничиваем себя в выборе методов последующего анализа. Более того, переход к менее мощной шкале обрекает нас на утрату части ценной для нас эмпирической информации. Следствием этого может являться падение статистической достоверности результатов исследования. Поэтому исследователь стремиться все же найти свидетельство того, что используемая шкала - более мощная.

Задания:

Определите, в какой шкале представлено каждое из приведенных ниже измерений; наименований, порядка, интервалов, отношений.

1. Упорядочивание испытуемых по времени решения тестовой задачи.

2. Предпочтение домашних животных: собаки, кошки, крысы, никакие.

3. Воинское звание (рядовой, ефрейтор, сержант, лейтенант, капитан) как мера продвижения по службе.

4. Количество агрессивных реакций за день.

5. Академический статус (ассистент, доцент, профессор) как указание на принадлежность к соответствующей категории.

6. Упорядочивание испытуемым 18 инструментальных ценностей (по Рокичу) по степени их значимости для него.

7. Цвет волос (блондинки, брюнетки, шатенки, рыжие).

8. Время решения задачи.

9. Статус ученика в группе (звезда, предпочитаемый, принятый, непринятый).

Библиография

1. Ермолаев, О.Ю. Математическая статистика для психологов /
О.Ю. Ермолаев. - М.: МПСИ: Флинта. - 2002. – 325 с.

2. Наследов, А.Д. Математические методы в психологическом исследовании. Анализ и интерпретация данных / А.Д. Наследов. - СПб.: Речь. - 2004.

3. Сидоренко, Е.В. Методы математической обработки в психологии. – СПб.: ООО «Речь» - 2004. – 350с.

4. Бурлачук, Л.Ф., Морозов С.М. Словарь – справочник по психодиагностике / Л.Ф. Бурлачук, С.М. Морозов – СПб: Питер Ком. - 1999. – 528с.

5. Суходольский, Г. В. Математические методы в психологии / Г.В. Суходольский. - Харьков: Изд-во Гуманитарный Центр. - 2006. – 512с.

6. Тарасов, С.Г. Основы применения математических методов в психологии. / С.Г. Тарасов. - СПб.: Изд-во: Санкт - Петербург. ун-та. - 1999. – 326с.

7. Глинский, В. В., Ионин, В. Г. Статистический анализ данных /
В.В. Глинский, В.Г. Ионин. - М.: Филин. - 2008. – 265 с.

В процессе измерения участвуют два объекта: измерительный прибор и измеряемый объект. В результате их взаимодействия прибор приходит в некоторое состояние, которое в зависимости от вида прибора и измерительной процедуры фиксируется тем или иным способом: положением стрелки на физической приборной шкале, цветом лакмусовой бумажки, цифрами на электронном табло, положительным или отрицательным ответом на вопрос социолога и проч. Затем это состояние прибора отображается в протоколе различными символами - цифрами, буквами, словами.

Теория измерений оперирует понятием «эмпирическая система с отношениями» , которая включает в себя множество измеряемых объектов и набор интересующих исследователя отношений между этими объектами . Например, множество - это множество физических тел, а набор - отношения между ними по весу, твердости, размерам и т. п. Для записи результатов наблюдений используется символьная система с отношениями , состоящая из множества символов , например множества всех действительных чисел, и конечного набора отношений на этих символах: .

Отношения выбираются так, чтобы ими было удобно отображать наблюдаемые эмпирические отношения . Если тело тяжелее тела , т. е. если имеет место отношение , то цифровая запись веса тел и позволяет наглядно увидеть это эмпирическое событие в записи . Договоренность использовать именно такое отображение системы на систему означает выбор некоторого определенного правила отображения . Тройка элементов называется шкалой (не следует путать с физической приборной шкалой).

Но мы можем договориться и о некотором другом способе отображения и тогда будем иметь дело с другой шкалой . Например, рекомендует записывать вес тел в килограммах, а - в граммах или тоннах. Цифровая запись в протоколах будет при этом разная, но эмпирическое содержание протоколов будет одинаковым. Это означает, что мы выбрали не любые способы отображений , а только те, которые связаны между собой взаимно однозначными преобразованиями. Т. е. имеется такое преобразование , с помощью которого по записи в языке можно точно определить, какой будет запись в языке (и наоборот): и . Преобразование объединяет указанные выше по-разному выглядящие шкалы в определенную группу, которая называется типом шкалы. Зафиксировав допустимое преобразование , мы тем самым фиксируем конкретный тип шкалы.

В практике научных исследований получили распространение шкалы всего нескольких типов. Приведем описание шкал основных типов.

1. Абсолютная шкала. Допустимое преобразование для шкал данного типа представляет собой тождество, т. е. если на одном языке в протоколе записано , а на другом языке , то между ними должно выполняться простое соотношение: . Этот тип шкалы удобен для записи количества элементов в некотором конечном множестве. Если, пересчитав количество яблок, один запишет в протоколе 6, а другой запишет VI, то нам достаточно знать, что 6 и VI означают одно и то же, т. е. что между этими записями существует тождественное отношение: 6 = VI.

2. Шкала отношений. Между разными протоколами, фиксирующими один и тот же эмпирический факт на разных языках, при этом типе шкалы должно выполняться соотношение: , где - любое положительное число. Один и тот же эмпирический смысл имеют протоколы: 16 кг, 16000 г, 0,016 т, 1 пуд, 40 фунтов. От любой записи можно перейти к любой другой, подобрав соответствующий множитель . Этот тип шкалы удобен для измерения весов, длин и т. д. Если нам не известно, в каких именно единицах записаны веса тел в разных протоколах, то мы можем полагаться только на отношение весов двух тел. Например, тело с весом 10 единиц в два раза тяжелее тела с весом 5 единиц вне зависимости от того, что было взято за единицу - тонна или грамм. Инвариантность отношений отражена в названии шкалы данного типа. Если же в протоколе указана единица веса, то такой протокол отражает свойства тел в абсолютной шкале.

3. Шкала интервалов. Здесь между протоколами и допустимы линейные преобразования: , где - любое положительное число, a может быть как положительным, так и отрицательным. Это значит, что в разных протоколах может использоваться разный масштаб единиц и разные начала отсчета . Примером шкал этого типа могут быть шкалы для измерения температуры. Если в протоколе указаны градусы, но не говорится в какой шкале (Цельсия, Кельвина и т. д.), то во избежание недоразумений при описании закономерностей можно использовать только отношения интервалов, так как при любых значениях и сохраняется равенство

Если записи в протоколе сопровождаются информацией о том, какие именно градусы имеются в виду (например, 18 °С), то мы имеем дело с протоколом в абсолютной шкале.

4. Шкала порядка. Допустимыми преобразованиями для данного типа шкалы являются все монотонные преобразования, т. е. такие, которые не нарушают порядок следования значений измеряемых величин. Такие протоколы появляются, например, в результате сравнения тел по твердости. Записи «1; 2; 3» и «5,3; 12,5; 109,2» содержат одинаковую информацию о том, что первое тело самое твердое, второе менее твердое, а третье - самое мягкое. И никакой информации о том, во сколько раз одно тверже другого, на сколько единиц оно тверже, в этих записях нет и полагаться на конкретные значения чисел, на их отношения или разности нельзя.

Разновидностью шкалы порядка является шкала рангов, где используются только числа, идущие подряд от 1 вверх по возрастанию. Если среди измеряемых объектов одинаковых нет, то ранговое место каждого объекта в протоколе будет указано одним из целых чисел от 1 до

5. Шкала наименований. Здесь фиксируется только два отношения: «равно» и «не равно». Следовательно, допустимы любые преобразования, лишь бы в протоколе одинаковые объекты были поименованы одинаковыми символами (числами, буквами, словами), а разные объекты имели разные имена. Так фиксируются в протоколах такие характеристики, как собственные имена людей, их национальность, названия населенных пунктов и т. п.


ВВЕДЕНИЕ

ПОНЯТИЕ ОБ ИЗМЕРИТЕЛЬНЫХ ШКАЛАХ

ВИДЫ ШКАЛ

1 Шкала наименований

2 Шкала порядка

3 Шкала интервалов

4 Шкала отношений

5 Другие шкалы

6 Взаимосвязь различных школ между собой

ЗАКЛЮЧЕНИЕ


ВВЕДЕНИЕ


Актуальность исследования заключается в том, что в своей работе психолог достаточно часто сталкивается с проблемой измерения индивидуально-психологических особенностей таких, например, как креативность, нейротизм, импульсивность, свойства нервной системы и т.п. Для этого в психодиагностике разрабатываются специальные измерительные процедуры, в том числе и тесты.

Помимо того в психологии широко используются экспериментальные методы и модели исследования психических феноменов в познавательной и личностной сферах. Это могут быть модели процессов познания (восприятия, памяти, мышления) или особенности мотивации, ценностных ориентации, личности и т.п. Главное заключается в том, что в ходе эксперимента изучаемые характеристики могут получать количественное выражение. Количественные данные, полученные в результате тщательно спланированного эксперимента по определенным измерительным процедурам, используются затем для статистической обработки.

Любое измерение производится с помощью инструмента измерения. То, что измеряется, называется переменной, то чем измеряют - инструмент измерения. Результаты измерения называются данными либо результатами (говорят «были получены данные измерения»). Полученные данные могут быть разного качества - относиться к одной из четырех шкал измерения. Каждая шкала ограничивает использование определённых математических операций, и соответственно ограничивает применение определённых методов математической статистики.

Цель реферата - изучить понятие и классификацию измерительной шкалы.

.Рассмотреть понятие измерительной шкалы.

.Проанализировать классификацию и основные виды измерительных шкал.

.Сделать компаративный анализ сравнительных шкал.

В процессе выполнения реферата использовались следующие методы: метод индукция и дедукция, сравнение и др.

Источниками информации для написания работы явились учебники, периодические издания по теме исследования, научные труды Гусева А.Н., Стивенсона С., Перегудова Ф.И., Тарасевича Ф.П., Корнилова Т.В.


1. ПОНЯТИЕ ОБ ИЗМЕРИТЕЛЬНЫХ ШКАЛАХ


Измерение может быть самостоятельным исследовательским методом, но может выступать и как компонент целостной процедуры эксперимента. Как самостоятельный метод измерение служит для выявления индивидуальных различий в поведении субъектов и отражения ими окружающего мира, а также для исследования адекватности отражения и структуры индивидуального опыта.

Измерение в процедуре эксперимента рассматривается как метод регистрации состояния объекта исследования и соответственно изменения этого состояния в ответ на экспериментальное воздействие.

Понятие измерительной шкалы введено в психологию американским ученым С. Стивенсом. Его трактовка шкалы и сегодня используется в научной литературе.

Итак, приписывание чисел объектам создает шкалу. Создание шкалы возможно, поскольку существует изоморфизм формальных систем и систем действий, производимых над реальными объектами.

Числовая система является множеством элементов с реализованными на нем отношениями и служит моделью для множества измеряемых объектов.

Различают несколько типов таких систем и соответственно несколько типов шкал. Операции, а именно - способы измерения объектов, задают тип шкалы. Шкала в свою очередь характеризуется видом преобразований, которые могут быть отнесены к результатам измерения. Если не соблюдать это правило, то структура шкалы нарушится, а данные измерения нельзя будет осмысленно интерпретировать.

Тип шкалы однозначно определяет совокупность статистических методов, которые могут быть применены для обработки данных измерения.

Шкала (лат. scala - лестница) - инструмент для измерения непрерывных свойств объекта; представляет собой числовую систему, где отношения между различными свойствами объектов выражены свойствами числового ряда.

П. Суппес и Дж. Зинес дали классическое определение шкалы: «Пусть А-эмпирическая система с отношениями (ЭСО), R- полная числовая система с отношениями (ЧСО), F- функция, которая гомоморфно отображает - А в подсистему - R (если в области нет двух разных объектов с одинаковой мерой, что является отображением изоморфизма). Назовем шкалой упорядоченную тройку <А; R; f>».

Обычно в качестве числовой системы R выбирается система действительных чисел или ее подсистема. Множество А - это совокупность измеряемых объектов с системой отношений, определенной на этом множестве. Отображение f- правило приписывания каждому объекту определенного числа.

В настоящее время определение Суппеса и Зинеса уточнено. Во-первых, в определение шкалы вводится G - группа допустимых преобразований. Во-вторых, множество А - понимается не только как числовая система, но и как любая формальная знаковая система, которая может быть поставлена в отношение гомоморфизма с эмпирической системой. Таким образом, шкала - это четверка <А; R; f; G>. Согласно современным представлениям, внутренней характеристикой шкалы выступает именно группа G, а f - является лишь привязкой шкалы к конкретной ситуации измерения.

В настоящее время под измерением понимается конструирование любой функции, которая изоморфно отображает эмпирическую структуру в символическую структуру. Как уже отмечено выше, совсем не обязательно такой структурой должна быть числовая. Это может быть любая структура, с помощью которой можно измерить характеристики объектов, заменив их другими, более удобными в обращении (в том числе - числами). (2 ,3).


ВИДЫ ШКАЛ


В психологии различные шкалы используются для изучения разных характеристик социально-психологических явлений.

Первоначально выделялись четыре типа числовых систем, определявших соответственно четыре уровня, или шкалы измерения:

) шкала наименований - номинальная;

) шкала порядка - ординальная;

)шкала интервалов - интервальная;

) шкала отношений - пропорциональная.

Первые две шкалы получили название не метрических, вторые две - метрических. В соответствии с этим в психологии говорят и о двух подходах к психологическим измерениям: метрическом (более строгом) и не метрическом (менее строгом).

Ряд специалистов выделяют также абсолютную шкалу и шкалу разностей.

Рассмотрим особенности каждого типа шкал.


2.1 Шкала наименований


Шкала наименований или номинальная шкала используется только для обозначения принадлежности объекта к одному из нескольких непересекающихся классов. Приписываемые объектам символы, которые могут быть цифрами, буквами, словами или некоторыми специальными символами, представляют собой только метки соответствующих классов. Характерной особенностью номинальной шкалы является принципиальная невозможность упорядочить классы по измеряемому признаку - к ним нельзя прилагать суждения типа "больше - меньше", "лучше - хуже", и т.п. Примерами номинальных шкал являются: пол и национальность, специальность по образованию, марка сигарет, предпочитаемый цвет. Единственным отношением, определенным на шкале наименований, является отношение тождества: объекты, принадлежащие к одному классу, считаются тождественными, к разным классам - различными. Частным случаем шкалы наименований является дихотомическая шкала, с помощью которой фиксируют наличие у объекта определенного качества или его соответствие некоторому требованию.

В этой шкале числа присвоенные объектам говорят только лишь о том, что эти объекты различаются. По сути, это классификационная шкала. Так, например, исследователь может приписать женщинам ноль, а мужчинам единицу, или наоборот, и это будет говорить только о том, что это два разных класса объектов. Чисел в шкале наименований может быть столько, сколько существует классов объектов подлежащих измерению, но ни сумма этих чисел, ни их разность, ни произведение не будут иметь никакого смысла, т.к. в шкале наименований не осуществима ни одна арифметическая операция. Числа в шкале наименований могут быть любыми, хотя, как правило, отрицательные не используются. Наиболее часто в психологических исследованиях используется дихотомическая шкала наименований, которая задается двумя числами - нулем и единицей. Наиболее распространенные примеры таких шкал в психологии это: пол (мужчина - женщина), успешность выполнения задания (справился - не справился), соответствие норме (норма - патология), психологический тип (экстраверт - интроверт).

Шкала наименований получается путем присвоения "имен" объектам. При этом нужно разделить множество объектов на непересекающиеся подмножества.

Иными словами, объекты сравниваются друг с другом, и определяется их эквивалентность - неэквивалентность. В результате процедуры образуется совокупность классов эквивалентности. Объекты, принадлежащие одному классу, эквивалентны друг другу и отличны от объектов, относящихся к другим классам. Эквивалентным объектам присваиваются одинаковые имена.

Операция сравнения является первичной для построения любой шкалы. Для построения такой шкалы нужно, чтобы объект был равен или подобен сам себе (х=х для всех значений х), т.е. на множестве объектов должно быть реализовано отношение рефлексивности. Для психологических объектов, например испытуемых или психических образов, это отношение реализуемо, если абстрагироваться от времени. Но поскольку операции попарного (в частности) сравнения множества всех объектов эмпирически реализуются неодновременно, то в ходе эмпирического измерения даже это простейшее условие не выполняется.

Следует запомнить: любая шкала есть идеализация, модель реальности, даже такая простейшая, как шкала наименований.

На объектах должно быть реализовано отношение симметрии (R (X=Y) -> R (Y=X)) и транзитивности R (X=Y, Y=Z) -> R (X=Z). Но на множестве результатов психологических экспериментов эти условия могут нарушаться.

Кроме того, многократное повторение эксперимента (накопление статистики) приводит к "перемешиванию" состава классов: в лучшем случае мы можем получить оценку, указывающую на вероятность принадлежности объекта к классу.

Таким образом, нет оснований говорить о шкале наименований (номинативной шкале или шкале строгой классификации) как простейшей шкале, начальном уровне измерения в психологии.

Существуют более "примитивные" (с эмпирической, но не с математической точки зрения) виды шкал: шкалы, основанные на отношениях толерантности; шкалы "размытой" классификации и т.п.

О шкале наименований можно говорить в том случае, когда эмпирические объекты просто "метятся" числом.

Итак, если объекты в каком-то отношении эквивалентны, то мы имеем право отнести их к одному классу. Главное, как говорил Стивенс, не приписывать один и тот же символ разным классам или разные символы одному и тому же классу.

Несмотря на тенденцию "завышать" мощность шкалы, психологи очень часто применяют шкалу наименований в исследованиях. "Объективные" измерительные процедуры при диагностике личности приводят к типологизации: отнесению конкретной личности к тому или иному типу. Примером такой типологии являются классические темпераменты: холерик, сангвиник, меланхолик и флегматик. (2, 3).

Самая простая номинативная шкала называется дихотомической. При измерениях по дихотомической шкале измеряемые признаки можно кодировать двумя символами или цифрами, например 0 и 1, или 2 и 6, или буквами А и Б, а также любыми двумя отличающимися друг от друга символами. Признак, измеренный по дихотомической шкале, называется альтернативным. В дихотомической шкале все объекты, признаки или изучаемые свойства разбиваются на два непересекающихся класса, при этом исследователь ставит вопрос о том, «проявился» ли интересующий его признак у испытуемого или нет.

Исследователь, пользующийся шкалой наименований, может применять следующие инвариантные статистики: относительные частоты, моду, корреляции случайных событий, критерий.


2 Шкала порядка


Шкалы порядка позволяют не только разбивать объекты на классы, но и упорядочивать классы по возрастанию (убыванию) изучаемого признака: об объектах, отнесенных к одному из классов, известно, но только то, что они тождественны друг другу, но также, что они обладают измеряемым свойством в большей или меньшей степени, чем объекты из других классов. Но при этом порядковые шкалы не могут ответить на вопрос, на сколько (во сколько раз), это свойство выражено сильнее у объектов из одного класса, чем у объектов из другого класса. Примерами шкал порядка могут служить уровень образования, военные и академические звания, тип поселения (большой - средний - малый город - село), некоторые естественно научные шкалы (твердость минералов, сила шторма). Так, можно сказать, что 6-балльный шторм заведомо сильнее, чем 4-балльный, но нельзя определить, насколько он сильнее; выпускник университета имеет более высокий образовательный уровень, чем выпускник средней школы, но разница в уровне образования не поддается непосредственному измерению Упорядоченные классы достаточно часто нумеруют в порядке возрастания (убывания) измеряемого признака. Однако в силу того, что различия в значении признака точному измерению не поддаются, к шкалам порядка, также как к номинальным шкалам, действия арифметики не применяют. Исключение составляют оценочные шкалы, при использовании которых объект получает (или сам выставляет) оценки, исходя из определенного числа баллов. К таким шкалам относятся, например, школьные оценки, для которых считается вполне допустимым рассчитывать, например, средний балл по аттестату зрелости. Строго говоря, подобные шкалы являются частным случаем шкалы порядка, так как нельзя определить, на сколько знания "отличника" больше, чем знания "троечника", но в силу некоторых теоретических соображений с ними часто обращаются, как со шкалами более высокого ранга - шкалами интервалов. Другим частным случаем шкалы порядка является ранговая шкала, применяемая обычно в тех случаях, когда признак заведомо не поддается объективному измерению (например, красота или степень неприязни), или когда порядок объектов более важен, чем точная величина различий между ними (места, занятые в спортивных соревнованиях). В таких случаях эксперту иногда предлагают проранжировать по определенному критерию некий список объектов, качеств, мотивов и т.п.

Числа, присвоенные объектам в этой шкале будут говорить о степени выраженности измеряемого свойства у этих объектов, но, при этом, равные разности чисел не будут означать равных разностей в количествах измеряемых свойств. В зависимости от желания исследователя большее число может означать большую степень выраженности измеряемого свойства (как в шкале твердости минералов) или меньшую (как в таблице результатов спортивных соревнований), но в любом случае, между числами и соответствующими им объектами сохраняется отношение порядка. Шкала порядка задается положительными числами, и чисел в этой шкале может быть столько, сколько существует измеряемых объектов. Примеры шкал порядка в психологии: рейтинг испытуемых по какому-либо признаку, результаты экспертной оценки испытуемых и т.д.

Если можно установить порядок следования психологических объектов в соответствии с выраженностью какого-то свойства, то используется порядковая шкала.

Порядковая шкала образуется, если на множестве реализовано одно бинарное отношение - порядок (отношения "больше" и "меньше"). Построение шкалы порядка - процедура более сложная, чем создание шкалы наименований. Она позволяет зафиксировать ранг, или место, каждого значения переменной по отношению к другим значениям. Этот ранг может быть результатом установления порядка между какими-то стимулами или их атрибутами самим испытуемым (первичный показатель методик ранжирования, или рейтинговых процедур), но может и устанавливаться экспериментатором в качестве вторичного показателя (например, при ранжировке частот положительных ответов испытуемых на вопросы, относящиеся к разным темам).

Классы эквивалентности, выделенные при помощи шкалы наименований, могут быть упорядочены по некоторому основанию. Различают шкалу строгого порядка (строгая упорядоченность) и шкалу слабого порядка (слабая упорядоченность). В первом случае на элементах множества реализуются отношения "больше" и "меньше", а во втором - "не больше или равно" и "меньше или равно".

Значения величин можно заменять квадратами, логарифмами, нормализовать и т.д. При таких преобразованиях значений величин, определенных по шкале порядка, место объектов на шкале не изменяется, т.е. не происходит инверсий.

Еще Стивенс высказывал точку зрения, что результаты большинства психологических измерений в лучшем случае соответствуют лишь шкалам порядка.

Шкалы порядка широко используются в психологии познавательных процессов, экспериментальной психосемантике, социальной психологии: ранжирование, оценивание, в том числе педагогическое, дают порядковые шкалы. Классическим примером использования порядковых шкал является тестирование личностных черт, а также способностей. Большинство же специалистов в области тестирования интеллекта полагают, что процедура измерения этого свойства позволяет использовать интервальную шкалу и даже шкалу отношений.

Как бы то ни было, эта шкала позволяет ввести линейную упорядоченность объектов на некоторой оси признака. Тем самым вводится важнейшее понятие - измеряемое свойство, или линейное свойство, тогда как шкала наименований использует "вырожденный" вариант интерпретации понятия "свойство": "точечное" свойство (свойство есть - свойства нет).

В порядковой (ранговой) шкале должно быть не меньше трех классов (групп): например, ответы на опросник: «да», «не знаю», «нет»; или - низкий, средний, высокий; и т.п., с тем расчетом, чтобы можно было расставить измеренные признаки по порядку. Именно поэтому эта шкала и называется порядковой, или ранговой, шкалой.

От классов просто перейти к числам, если считать, что низший класс получает ранг (код или цифру) 1, средний - 2, высший - 3 (или наоборот). Чем больше число классов разбиений всей экспериментальной совокупности, тем шире возможности статистической обработки полученных данных и проверки статистических гипотез.

При кодировании порядковых переменных им можно приписывать любые цифры (коды), но в этих кодах (цифрах) обязательно должен сохраняться порядок, или, иначе говоря, каждая последующая цифра должна быть больше (или меньше) предыдущей.

Для интерпретации данных, полученных посредством порядковой шкалы, можно использовать более широкий спектр статистических мер (в дополнение к тем, которые допустимы для шкалы наименований).

В качестве характеристики центральной тенденции можно использовать медиану, а в качестве характеристики разброса - процентили. Для установления связи двух измерений допустима порядковая корреляция (т-Кэнделла и р-Спирмена).

Числовые значения порядковой шкалы нельзя складывать, вычитать, делить и умножать. (2, 3).


3 Шкала интервалов


В отличие от двух предыдущих шкал в шкале интервалов существует единица измерения, либо реальная (физическая), либо условная, при помощи которой можно установить количественные различия между объектами в отношении измеряемого свойства. Равные разности чисел в этой шкале будут означать равные различия в количествах измеряемого свойства у разных объектов, или у одного и того же объекта в разные моменты времени. Однако, то, что одно число оказывается в несколько раз больше другого не обязательно говорит о таких же отношениях в количествах измеряемых свойств. В шкале интервалов может быть задействована вся числовая ось, но при этом ноль не указывает на отсутствие измеряемого свойства, т.к. нулевая точка часто является произвольной (например, как в шкале температуры по Цельсию), либо вообще отсутствует, как в некоторых шкалах психологических тестов. Благодаря таким свойствам, шкала интервалов получила широкое распространение в психологии, на ней основано большинство психодиагностических шкал: интеллекта, самооценки и др.

Примерами шкалы интервалов являются календарное время, температурные шкалы Цельсия и Фаренгейта. Шкала оценок с заданным количеством баллов часто рассматривается как интервальная в предположении, что минимальное и максимальное положения на шкале соответствуют некоторым крайним оценкам или позициям, и интервалы между баллами шкалы имеют одинаковую длину. К шкалам отношений относится абсолютное большинство измерительных шкал, применяемых в науке, технике и быту: рост и вес, возраст, расстояние, сила тока, время (длительность промежутка между двумя событиями), температура по Кельвину (абсолютный нуль).

Шкала интервалов является первой метрической шкалой. Собственно, начиная с нее, имеет смысл говорить об измерениях в узком смысле этого слова - о введении меры на множестве объектов. Шкала интервалов определяет величину различий между объектами в проявлении свойства. С помощью шкалы интервалов можно сравнивать два объекта. При этом выясняют, насколько более или менее выражено определенное свойство у одного объекта, чем у другого.

Интервальная шкала позволяет применять практически всю параметрическую статистику для анализа данных, полученных с ее помощью. Помимо медианы и моды для характеристики центральной тенденции используется среднее арифметическое, а для оценки разброса - дисперсия. Можно вычислять коэффициенты асимметрии и эксцесса и другие параметры распределения. Для оценки величины статистической связи между переменными применяется коэффициент линейной корреляции Пирсона и т.д.

Большинство специалистов по теории психологических измерений полагают, что тесты измеряют психические свойства с помощью шкалы интервалов. Прежде всего, это касается тестов интеллекта и достижений. Численные значения одного теста можно переводить в численные значения другого теста с помощью линейного преобразования: х" = ах + b.

Ряд авторов полагают, что относить тесты интеллекта к шкалам интервалов нет оснований. Во-первых, каждый тест имеет "нуль" - любой индивид может получить минимальный балл, если не решит ни одной задачи в отведенное время. Во-вторых, тест имеет максимум шкалы - балл, который испытуемый может получить, решив все задачи за минимальное время. В-третьих, разница между отдельными значениями шкалы неодинакова. По крайней мере, нет никаких теоретических и эмпирических оснований утверждать, что 100 и 120 баллов по шкале IQ отличаются настолько же, насколько 80 и 100 баллов.

Скорее всего, шкала любого теста интеллекта является комбинированной шкалой, с естественным минимумом и\или максимумом, но порядковой. Однако эти соображения не мешают тестологам рассматривать шкалу IQ как интервальную, преобразуя "сырые" значения в шкальные с помощью известной процедуры "нормализации" шкалы


4 Шкала отношений


Шкала отношений является единственной шкалой, на которой определено отношение отношения, то есть, разрешены арифметические действия умножения и деления и, следовательно, возможен ответ на вопрос, во сколько раз одно значение больше или меньше другого.

В шкале отношений также существует единица измерения, при помощи которой объекты можно упорядочить в отношении измеряемого свойства и установить количественные различия между ними. Особенностью шкалы отношений является то, что к числам в этой шкале применимы все математические операции, а это значит, что отношения между числами соответствуют, или пропорциональны отношениям между количествами измеряемых свойств у разных объектов. В этой шкале обязательно, по, крайней мере, теоретически, присутствует ноль, который говорит об абсолютном отсутствии измеряемого свойства. Большинство ныне существующих физических шкал (длины, массы, времени, температуры по Кельвину и т.д.) являются яркими примерами шкал отношений. В психологии из шкал отношений наиболее часто используются шкала вероятностей и шкала ""сырых"" баллов (количество решенных заданий, количество ошибок, количество положительных ответов и т.д.).

Шкалу отношений называют также шкалой равных отношений. Особенностью этой шкалы является наличие твердо фиксированного нуля, который означает полное отсутствие какого-либо свойства или признака. Шакала отношений является наиболее информативной шкалой, допускающей любые математические операции и использование разнообразных статистических методов.

Шкала отношений, по сути, очень близка интервальной, поскольку если строго фиксировать начало отсчета, то любая интервальная шкала превращается в шкалу отношений.

Шкала отношений показывает данные о выраженности свойств объектов, когда можно сказать, во сколько раз один объект больше или меньше другого.

Это возможно лишь тогда, когда помимо определения равенства, рангового порядка, равенства интервалов известно равенство отношений. Шкала отношений отличается от шкалы интервалов тем, что на ней определено положение "естественного" нуля. Классический пример - шкала температур Кельвина.

Именно в шкале отношений производятся точные и сверхточные измерения в таких науках, как физика, химия, микробиология и др. Измерение по шкале отношений производятся и в близких к психологии науках, таких, как психофизика, психофизиология, психогенетика.

Измерения массы, времени реакции и выполнения тестового задания - области применения шкалы отношений.

Отличием этой шкалы от абсолютной является отсутствие "естественной" масштабной единицы.


2.5 Другие шкалы


Дихотомическая классификация часто рассматривается как вариант шкалы наименований. Это верно, за исключением одного случая, когда мы измеряем свойство, имеющее всего лишь два уровня выраженности: "есть - нет", так называемое "точечное" свойство. Примеров таких свойств много: наличие или отсутствие у испытуемого какой-либо наследственной болезни (дальтонизм, болезнь Дауна, гемофилия и др.), абсолютного слуха и др. В этом случае исследователь имеет право проводить "оцифровку" данных, присваивая каждому из типов цифру "1" или "О", и работать с ними, как со значениями шкалы интервалов.

Шкала разностей, в отличие от шкалы отношений, не имеет естественного нуля, но имеет естественную масштабную единицу измерения. Ей соответствует аддитивная группа действительных чисел. Классическим примером этой шкалы является историческая хронология. Она сходна со шкалой интервалов. Разница лишь в том, что значения этой шкалы нельзя умножать (делить) на константу. Поэтому считается, что шкала разностей - единственная с точностью до сдвига. В психологии шкала разностей используется в методиках парных сравнений.

Абсолютная шкала является развитием шкалы отношений и отличается от нее тем, что обладает естественной единицей измерения. В этом ее сходство со шкалой разностей. Число решенных задач ("сырой" балл), если задачи эквивалентны, - одно из проявлений абсолютной шкалы.

В психологии абсолютные шкалы не используются. Данные, полученные с помощью абсолютной шкалы, не преобразуются, шкала тождественна сама себе. Любые статистические меры допустимы.

В литературе, посвященной проблемам психологических измерений, упоминаются и другие типы шкал: ординальная (порядковая) с естественным началом, логинтервальная, упорядоченная метрическая и др.

Все написанное выше относится к одномерным шкалам. Шкалы могут быть и многомерными: шкалируемый признак в этом случае имеет ненулевые проекции на два (или более) соответствующих параметра. Векторные свойства, в отличие от скалярных, являются многомерными.


2.6 Взаимосвязь различных школ между собой


Между самими шкалами тоже существуют отношения порядка. Каждая из перечисленных шкал является шкалой более высокого порядка по отношению к предыдущей шкале. Так, например, измерения, произведенные в шкале отношений можно перевести в шкалу интервалов, из шкалы интервалов - в шкалу порядка и т.д., но обратная процедура будет невозможна, т.к. при переходе к шкалам более низкого порядка часть информации (о единицах измерения, количествах свойств) теряется.

Тем не менее, это не всегда означает, что шкалы более высокого порядка предпочтительней по отношению к шкалам более низкого порядка, а в ряде случаев - даже, наоборот. Например, количество правильно выполненных заданий в тесте интеллекта (шкала отношений) гораздо выгодней представить в стандартизированной шкале IQ (шкала интервалов), а множество разнообразных поведенческих реакций в виде типа личности (шкала наименований). Наконец, существуют такие признаки объектов, которые можно измерить в любой шкале, как возраст, и такие, к измерению которых подходит только одна шкала, как, например, пол. На выбор измерительной шкалы, таким образом, могут оказывать влияние многие факторы, как достоинства самой шкалы, так и специфика самого объекта измерения.

·Измерительные инструменты

Для проведения измерения в естественных и точных науках, в быту применяются специальные измерительные инструменты, которые во многих случаях представляют собой довольно сложные приборы. Качество измерения определяется точностью, чувствительностью и надежностью инструмента. Точностью инструмента называется его соответствие существующему в данной области стандарту (эталону). Чувствительность инструмента определяется величиной единицы измерения, например, в зависимости от природы объекта, расстояние может измеряться в микронах, сантиметрах или километрах. Надежностью называется способность инструмента к воспроизведению результатов измерения в пределах чувствительности шкалы. В гуманитарных и общественных науках (за исключением экономики и демографии) большинство показателей не поддаются непосредственному измерению с помощью традиционных технических средств. Вместо них применяются всевозможные анкеты, тесты, стандартизированные интервью и т.п., получившие общее название измерительного инструментария. Кроме очевидных проблем точности, чувствительности и надежности, для гуманитарного инструментария существует также достаточно острая проблема валидности - способности измерять именно то свойство личности, которое предполагается его автором.

·Качественные и количественные шкалы

В силу того, что символы, присваиваемые объектам в соответствии с порядковыми и номинальными шкалами, не обладают числовыми свойствами, даже если записываются с помощью цифр, эти два типа шкал получили общее название качественных, в отличие от количественных шкал интервалов и отношений. Шкалы интервалов и отношений имеют общее свойство, отличающее их от качественных шкал: они предполагают не только определенный порядок между объектами или их классами, но и наличие некоторой единицы измерения, позволяющей определять, насколько значение признака у одного объекта больше или меньше, чем у другого. Другими словами, на обеих количественных шкалах, помимо отношений тождества и порядка, определено отношение разности, к ним можно применять арифметические действия сложения и вычитания. Естественно, что символы, приписываемые объектам в соответствии с количественными измерительными шкалами, могут быть только числами.

·Шкала интервалов и шкала отношений

Основное различие между шкалами интервалов и отношений состоит в том, что шкала отношений имеет абсолютный нуль, не зависящий от произвола наблюдателя и соответствующий полному отсутствию измеряемого признака, а на шкале интервалов нуль устанавливается произвольно или в соответствии с некоторыми условными договоренностями.

·Дискретные и непрерывные шкалы

Количественные шкалы делятся на: дискретные и непрерывные. Дискретные показатели измеряются в результате счета: число детей в семье, количество решенных задач, и т.п. Непрерывные шкалы предполагают, что измеряемое свойство изменяется непрерывно, и при наличии соответствующих приборов и средств, могло бы быть измерено с любой необходимой степенью точности. Результаты измерения непрерывных показателей довольно часто выражаются целыми числами (например, шкала IQ для измерения интеллекта), но это связано не с природой самих показателей, а с характером измерительных процедур. Различают первичные и вторичные измерения. Первичные получаются в результате непосредственного измерения: длина и ширина прямоугольника, число родившихся и умерших за год, ответ на вопрос теста, оценка на экзамене. Вторые являются результатом некоторых манипуляций с первичными измерениями, обычно с помощью неких логико-математических конструкций: площадь прямоугольника, демографические коэффициенты смертности, рождаемости и естественного прироста, результаты тестирования, зачисление или не зачисление в институт по результатам вступительных экзаменов.


ЗАКЛЮЧЕНИЕ

измерительный шкала психологический дискретный

Таким образом, шкалы измерений принято классифицировать по типам измеряемых данных, которые определяют допустимые для данной шкалы математические преобразования, а также типы отношений, отображаемых соответствующей шкалой. Современная классификация шкал была предложена в 1946 году Стэнли Смитом Стивенсом.

·Шкала наименований (номинальная, классификационная)

Используется для измерения значений качественных признаков. Значением такого признака является наименование класса эквивалентности, к которому принадлежит рассматриваемый объект. Примерами значений качественных признаков являются названия государств, цвета, марки автомобилей и т.п. Такие признаки удовлетворяют аксиомам тождества:


Либо А = В, либо А? В;

Если А = В, то В = А;

Если А = В и В = С, то А = С.


При большом числе классов используют иерархические шкалы наименований. Наиболее известными примерами таких шкал являются шкалы, используемые для классификации животных и растений.

С величинами, измеряемыми в шкале наименований, можно выполнять только одну операцию - проверку их совпадения или несовпадения. По результатам такой проверки можно дополнительно вычислять частоты заполнения (вероятности) для различных классов, которые могут использоваться для применения различных методов статистического анализа - критерия согласия Хи-квадрат, критерия Крамера для проверки гипотезы о связи качественных признаков и др.

·Порядковая шкала (или ранговая)

Строится на отношении тождества и порядка. Субъекты в данной шкале ранжированы. Но не все объекты можно подчинить отношению порядка. Например, нельзя сказать, что больше круг или треугольник, но можно выделить в этих объектах общее свойство-площадь, и таким образом становится легче установить порядковые отношения. Для данной шкалы допустимо монотонное преобразование. Такая шкала груба, потому что не учитывает разность между субъектами шкалы. Пример такой шкалы: балльные оценки успеваемости (неудовлетворительно, удовлетворительно, хорошо, отлично), шкала Мооса.

·Интервальная шкала (она же Шкала разностей)

Здесь происходит сравнение с эталоном. Построение такой шкалы позволяет большую часть свойств существующих числовых систем приписывать числам, полученным на основе субъективных оценок. Например, построение шкалы интервалов для реакций. Для данной шкалы допустимым является линейное преобразование. Это позволяет приводить результаты тестирования к общим шкалам и осуществлять, таким образом сравнение показателей. Пример: шкала Цельсия.

Начало отсчёта произвольно, единица измерения задана. Допустимые преобразования - сдвиги. Пример: измерение времени.

·Абсолютная шкала (она же Шкала отношений)

это интервальная шкала, в которой присутствует дополнительное свойство - естественное и однозначное присутствие нулевой точки. Пример: число людей в аудитории. В шкале отношений действует отношение "во столько-то раз больше". Это единственная из четырёх шкал имеющая абсолютный ноль. Нулевая точка характеризует отсутствие измеряемого качества. Данная шкала допускает преобразование подобия (умножение на константу). Определение нулевой точки - сложная задача для психологических исследований, накладывающая ограничение на использование данной шкалы. С помощью таких шкал могут быть измерены масса, длина, сила, стоимость (цена). Пример: шкала Кельвина (температур, отсчитанных от абсолютного нуля, с выбранной по соглашению специалистов единицей измерения - Кельвин).

Из рассмотренных шкал первые две являются не метрическими, а остальные - метрическими.

С вопросом о типе шкалы непосредственно связана проблема адекватности методов математической обработки результатов измерения. В общем случае адекватными являются те статистики, которые инвариантны относительно допустимых преобразований используемой шкалы измерений.


СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ


1.Гусев А.Н., Измайлов Ч.А., Михалевская М.Б. Измерение в психологии М., 1998. С. 10 - 16

.Бахрушин В.Є. Методи аналізу даних. - Запоріжжя, КПУ, 2011

.Дружинин В.Н. Экспериментальная психология: Учебное пособие - М.: ИНФРА-М, 1997.

.Дружинин В.Н. Экспериментальная психология- СПб: Питер, 2000. - 320с.

.Ермолаев О.Ю. Математическая статистика для психологов. М.: Московский психолого-социальный институт: Флинта, 2003. - 366 с.

.Корнилова Т.В. Введение в психологический эксперимент. Учебник для ВУЗов. М.: Изд-во ЧеРо, 2001.

.Математика в социологии: Моделирование и обраб. информации / [Й. Гальтунг, П. Суппес, С. Новак и др.] ; Ред. [и авт. предисл.] А. Аганбегян [и др.] ; Пер. с англ. Л. Б. Черного; Под ред. А. Г. Аганбегяна и Ф. М. Бородкина. - М.: Мир, 1977. - 551 с.: ил.

.Перегудов Ф.И., Тарасевич Ф.П. Введение в системный анализ. - М.: Высшая школа, 1989. - 367 с.

.Психологические измерения: Основы теории измерений (Суппес П., Зинес Дж.). Психофизические шкалы (Льюс Р., Галантер Е.): 1967 - 196 с.

.Словарь практического психолога / Сост. С.Ю. Головин. - Мн: Харвест, М.: ООО «Издательство АСТ», 2003.

11.Stevens, Stanley Smith, "Psychophysics: introduction to its perceptual neural and social prospects", Wiley, 1975.


Репетиторство

Нужна помощь по изучению какой-либы темы?

Наши специалисты проконсультируют или окажут репетиторские услуги по интересующей вас тематике.
Отправь заявку с указанием темы прямо сейчас, чтобы узнать о возможности получения консультации.